Expression of Lectins in Heterologous Systems
Abstract
:1. Introduction
2. Synthesis and Processing of Lectins
3. Classification of Lectins
4. Carbohydrate Recognition
5. Extraction and Purification of Lectins
6. Production of Recombinant Lectins
6.1. Production of Recombinant Lectins in Bacteria
6.2. Production of Recombinant Lectins in Yeast
6.3. Production of Recombinant Lectins in Plants
6.4. Production of Recombinant Lectins in Animal Cells
7. Summary of Considerations for Recombinant Lectin Production
- Lectins synthesized in cytoplasm. The lectins produced by free ribosomes in the cytoplasm, whether or not they have possible glycosylation sites, can be successfully expressed in E. coli with the consideration that it is necessary to introduce only the sequence of the mature protein. If the product obtained tends to form inclusion bodies, denaturation/renaturation strategies or the addition of excretion tags might be needed. When the lectin is normally synthesized in the cytoplasm, but contains possible glycosylation sites, and is desired to be expressed in yeast, it may be useful to mutate the sequons to avoid the addition of non-desirable glycosidic antennas. Proteins synthesized in cytoplasm can also be expressed in plants and animal cells, although these alternatives require more complex strategies, more investment of time and money. Furthermore, these generate lower yields than bacteria and yeasts. When using these strategies, it may be advisable not to add signal peptides that redirect the synthesis of the lectin in question to the ER and if added, it is recommended to mutate possible glycosylation sites to avoid the addition of non-desirable glycosidic antennas.
- Lectins synthesized in ER. Those lectins that are commonly synthesized in ER but do not contain possible glycosylation sites can also be expressed in E. coli with the previously mentioned recommendations. However, it is important to consider that if an oxidizing or chaperoning environment is required for the correct folding, it may be convenient to use a modified strain of E. coli with non-reducing cytoplasm and chaperones. Yeasts may be a better alternative. It is important to note that in these cases, no drawbacks caused by non-native glycosylations will occur because the lectin will not contain any sequons. If the protein is normally synthesized in ER and if it contains sequons, we do not recommend using E. coli since the product will not contain glycosylations. Although it was shown that it is possible to obtain this type of lectins when using bacteria as producing organisms in some of the reports, all showed some type of structural alteration and/or partial loss of their functions. Therefore, it is preferable to use yeasts or higher organisms since they contain all the post-translational machinery, chaperones and the ER with an oxidizing environment. These lectins can also be expressed in plants and animal cells. In such cases, signalling peptides must be added, which can be recognized by the host organism and it is not necessary to mutate possible glycosylation sites.
8. Final Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sharon, N.; Lis, H. How proteins bind carbohydrates: Lessons from legume lectins. J. Agric. Food Chem. 2002, 50, 6586–6591. [Google Scholar] [CrossRef] [PubMed]
- Tazaki, K.; Yoshida, K.; Shinohara, K.; Koshiba, T.; Yamamoto, N. Expression of cDNA for a bark lectin of Robinia in transgenic tobacco plants. FEBS Lett. 1995, 377, 54–58. [Google Scholar] [CrossRef]
- Sharon, N. Lectins: Carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 2007, 282, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Ferriz-Martinez, R.; García-García, K.; Torres-Arteaga, I.; Rodriguez-Mendez, A.J.; Guerrero-Carrillo, M.J.; Moreno-Celis, U.; Ángeles-Zaragoza, M.V.; Blanco-Labra, A.; Gallegos-Corona, M.A.; Robles-Álvarez, J.P.; et al. Tolerability assessment of a lectin fraction from Tepary bean seeds (Phaseolus acutifolius) orally administered to rats. Toxicol. Rep. 2015, 2, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.T.; Bernabé, R.B.; Dos Santos-Ferreira, B.; De Oliveira, M.V.; Garcia, A.B.; De Souza-Filho, G.A. Expression and purification of the recombinant SALT lectin from rice (Oryza sativa L.). Protein Expr. Purif. 2004, 33, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Raemaekers, J.M.; De Muro, L.; Gatehouse, J.A.; Fordham-Skelton, A.P. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris. Correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur. J. Biochem. 1999, 265, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Teixeira, J.A.; Domingues, L. Recombinant production of plant lectins in microbial systems for biomedical application—The frutalin case study. Front. Plant Sci. 2014, 5, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Upadhyay, V.; Panda, A.K. Solubilization and refolding of inclusion body proteins. Insoluble Proteins Methods Protoc. 2014, 99, 283–291. [Google Scholar]
- Kawano, S.; Iyaguchi, D.; Okada, C.; Sasaki, Y.; Toyota, E. Expression, purification, and refolding of active recombinant human E-selectin lectin and EGF domains in E. coli. Protein J. 2013, 32, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Upadhyay, V.; Upadhyay, A.K.; Singh, S.M.; Panda, A.K. Protein recovery from inclusion bodies of E. coli using mild solubilization process. Microb. Cell Fact. 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.K.; Saurabh, S.; Rai, P.; Singh, R.; Chandrashekar, K.; Verma, P.C.; Singh, P.K.; Tuli, R. SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. J. Biotechnol. 2010, 146, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marblestone, J.G.; Edavettal, S.C.; Lim, Y.; Lim, P.; Zuo, X.; Butt, T.R. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Sci. 2006, 15, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Wildt, S.; Gerngross, T.U. The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 2005, 3, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Vaishnav, P. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 2009, 27, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Lannoo, N.; Vervecken, W.; Proost, P.; Rougé, P.; Van-Damme, E.J.M. Expression of the nucleocytoplasmic tobacco lectin in the yeast Pichia Pastoris. Protein Expr. Purif. 2007, 53, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Díaz, C.L.; Logman, T.J.J.; Stam, H.C.; Kijne, J.W. Sugar-binding activity of pea lectin expressed in white clover hairy roots. Plant Physiol. 1995, 109, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Chrispeels, M.J.; Raikhel, N.V. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 2004, 14, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Varki, A.; Cummings, R.D.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. Microbial Lectins: Hemagglutinins, adhesins, and toxins. In Essentials of Glycobiology, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2009. [Google Scholar]
- Franz, H.; Ziska, P.; Mohr, J. Lectins-definition and classification. Acta Histochem. 1982, 71, 19–21. [Google Scholar] [CrossRef]
- Goldstein, I.J.; Hughes, C.R.; Monsigny, M.; Osawa, T.; Sharon, N. What should be called a lectin? Nature 1980, 66. [Google Scholar] [CrossRef]
- Laursen, B.S.; Sørensen, H.P.; Mortensen, K.K.; Sperling-Petersen, H.U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 2005, 69, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M. The Endoplasmic Reticulum. In The Cell, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000; ISBN-10: 0-87893-106-6. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Intracellular compartments and protein sorting. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002; pp. 723–730, ISBN-10: 0815332181. [Google Scholar]
- Cunningham, B.A.; Hemperly, J.J.; Hopp, T.P.; Edelman, G.M. Favin versus concanavalin A: Circularly permuted amino acid sequences. Proc. Natl. Acad. Sci. USA 1979, 76, 3218–3222. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.; Surolia, A.; Mukhopadhyay, C. Impact of glycosylation on stability, structure and unfolding of soybean agglutinin (SBA): An insight from thermal perturbation molecular dynamics simulations. Glycoconj. J. 2015, 32, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Nothaft, H.; Szymanski, C.M. Protein glycosylation in bacteria: Sweeter than ever. Nat. Rev. Microbiol. 2010, 11, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, J.; Licon, V.; Benen, J.; Visser, J.; Bergmann, C.; Orlando, R. Characterization of the glycosylation of recombinant endopolygalacturonase I from Aspergillus niger. Rapid Commun. Mass Spectrom. 1999, 13, 1448–1453. [Google Scholar] [CrossRef]
- Dodd, R.B.; Drickamer, K. Lectin-like proteins in model organisms: Implications for evolution of carbohydrate-binding activity. Glycobiology 2001, 11, 71R–99R. [Google Scholar] [CrossRef] [PubMed]
- Lakhtin, V.; Lakhtin, M.; Alyoshkin, V. Lectins of living organisms. The overview. Anaerobe 2011, 17, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Van-Damme, E.J.; Barre, A.R.P. Classification of plant lectins in families of structurally and evolutionary related proteins. In The Molecular Immunology of Complex Carbohydrates—2. Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2001; Volume 491, pp. 27–54. ISBN 978-1-4613-5469-7. [Google Scholar]
- Kilpatrick, D.C. Animal lectins: A historical introduction and overview. Biochim. Biophys. Acta 2002, 1572, 187–197. [Google Scholar] [CrossRef]
- Kumar, K.; Reddy, G.; Reddy, B.; Shekar, P.; Sumanthi, J.; Chandra, K.L.P. Biological role of lectins: A review. J. Orofac. Sci. 2012, 4, 20–25. [Google Scholar] [CrossRef]
- Goldstein, I.J.; Hayes, C.E. The Lectins: Carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 1978, 35, 127–340. [Google Scholar] [PubMed]
- Weis, W.I.; Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem. 1996, 65, 441–473. [Google Scholar] [CrossRef] [PubMed]
- Soga, K.; Abo, H.; Qin, S.Y.; Kyoutou, T.; Hiemori, K.; Tateno, H.; Matsumoto, N.; Hirabayashi, J.; Yamamoto, K. Mammalian Cell Surface Display as a Novel Method for Developing Engineered Lectins with Novel Characteristics. Biomolecules 2015, 5, 1540–1562. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Ng, T.B. Lectins: Production and practical applications. Appl. Microbiol. Biotechnol. 2011, 89, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, A.; Haque, S.; Khan, R.H. Purification and characterization of a novel β-d-galactosides-specific lectin from Clitoria ternatea. Protein J. 2007, 26, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.S.; Medeiros, T.L.; Ribeiro, J.K.C.; Monteiro, N.K.V.; Migliolo, L.; Uchoa, A.F.; Vasconcelos, I.M.; Oliveira, A.S.; de Sales, M.P.; Santos, E.A. A lactose specific lectin from the sponge Cinachyrella apion: Purification, characterization, N-terminal sequences alignment and agglutinating activity on Leishmania promastigotes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 155, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Hamid, R.; Masood, A.; Wani, I.H.; Rafiq, S. Lectins: Proteins with diverse applications. J. Appl. Pharm. Sci. 2013, 3, S93–S103. [Google Scholar]
- Torres-Arteaga, I.; Castro-Guillen, J.L.; Mendiola-Olaya, E.; García-Gasca, T.; Angeles-Zaragoza, M.V.; García-Santoyo, V.; Torres-Castillo, J.A.; Aguirre, C.; Phinney, B.; Blanco-Labra, A. Characterization of Two Non-Fetuin-Binding Lectins from Tepary Bean (Phaseolus acutifolius) Seeds with Differential Cytotoxicity on Colon Cancer Cells. J. Glycobiol. 2016, 5, 1–7. [Google Scholar] [CrossRef]
- Felsted, R.L. Biological and biochemical properties of Phaseolus vulgaris isolectins. J. Biol. Chem. 1977, 252, 2961–2966. [Google Scholar]
- Miller, J.B.; Hsu, R.; Heinrikson, R.; Yachnin, S. Extensive homology between the subunits of the phytohemagglutinin mitogenic proteins derived from Phaseolus vulgaris. Proc. Natl. Acad. Sci. USA 1975, 72, 1388–1391. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Tang, J.; Gu, X. Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Vet. Immunol. Immunopathol. 2010, 133, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Imamichi, Y.; Yokoyama, Y. Purification, characterization and cDNA cloning of a novel lectin from the jellyfish Nemopilema nomurai. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 156, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Amano, Y.; Fujita, M.; Kobayashi, Y.; Dohra, H.; Hirai, H.; Murata, T.; Usui, T.; Morita, T.; Kawagishi, H. Purification, characterization, and cDNA cloning of a lectin from the mushroom Pleurocybella porrigens. Biosci. Biotechnol. Biochem. 2009, 73, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.K.; Wang, H.X.; Ng, T.B. Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 2009, 53, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Sharma, A.; Wong, J.H.; Lin, P. Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi Beans). J. Biomed. Biotechnol. 2009, 2009, 1–9. [Google Scholar]
- Xia, L.; Ng, T.B. An antifungal protein from flageolet beans. Peptides 2005, 26, 2397–2403. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.; Bun, T. Novel galactonic acid-binding hexameric lectin from Hibiscus mutabilis seeds with antiproliferative and potent HIV-1 reverse transcriptase inhibitory activities. Acta Biochim. Pol. 2009, 56, 649–654. [Google Scholar]
- Kvennefors, E.C.E.; Leggat, W.; Hoegh-Guldberg, O.; Degnan, B.M.; Barnes, A.C. An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev. Comp. Immunol. 2008, 32, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, G.M.; Rizvi, S.; Naqvi, S.; Suhail, N.; Bilal, N.; Hasan, S.; Tabish, M.; Banu, N. Purification, characterization, structural analysis and protein chemistry of a buffalo heart galectin-1. Amino Acids 2010, 39, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.M.; Goswami, U.; Khan, M.I. Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate, sea cucumber (Holothuria scabra). Fish Shellfish Immunol. 2008, 24, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Adhya, M.; Singha, B.; Chatterjee, B.P. Purification and characterization of an N-acetylglucosamine specific lectin from marine bivalve Macoma birmanica. Fish Shellfish Immunol. 2009, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Leung, E.; Wong, J.; Ng, T.B. Concurrent purification of two defense proteins from French bean seeds: A defensin-like antifungal peptide and a hemagglutinin. J. Pept. Sci. 2008, 14, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Patel, A. Isolation, characterization and production of a new recombinant lectin protein from leguminous plants. Biochem. Compd. 2014, 2, 2. [Google Scholar] [CrossRef]
- Lara, A. Produccion de proteinas recombinantes en E. coli. Rev. Mex. Ing. Quim. 2011, 10, 209–223. [Google Scholar]
- Adar, R.; Streicher, H.; Rozenblatt, S.; Sharon, N. Synthesis of soybean agglutinin in bacterial and mammalian cells. Eur. J. Biochem. 1997, 249, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Johannssen, T.; Lepenies, B. Glycan-Based Cell Targeting To Modulate Immune Responses. Trends Biotechnol. 2017, 35, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Hatahet, F.; Boyd, D.; Beckwith, J. Disulfide bond formation in prokaryotes: History, diversity and design. Biochim. Biophys. Acta Proteins Proteom. 2014, 1844, 1402–1414. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, H.P.; Mortensen, K.K. Advanced genetic strategies for recombinant protein expression in E. coli. J. Biotechnol. 2005, 115, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Romanos, M.; Scorer, C.; Clare, J.J. Foreign gene expression in yeast: A review. Yeast 1992, 8, 423–488. [Google Scholar] [CrossRef] [PubMed]
- Chrispeels, A.S.; Maarten, J. Identification of vacuolar sorting information in phytohemagglutinin, an unprocessed vacuolar protein. J. Exp. Bot. 1993, 44, 23–27. [Google Scholar]
- Chao, Q.; Etzler, M.E. Incorrect targeting of plant vacuolar lectins in yeast. J. Biol. Chem. 1994, 269, 20866–20871. [Google Scholar] [PubMed]
- Barnes, D.A.; Thorner, J. Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2 gene. Mol. Cell. Biol. 1986, 6, 2828–2838. [Google Scholar] [CrossRef] [PubMed]
- Cereghino, J.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Felix, W.; Moreira, R.A.; Teixeira, J.A.; Domingues, L. Expression of frutalin, an α-d-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris. Protein Expr. Purif. 2008, 60, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Giddings, G.; Allison, G.; Brooks, D.; Carter, A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 2000, 18, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Borisjuk, N.V.; Borisjuk, L.G.; Logendra, S.; Petersen, F.; Gleba, Y.; Raskin, I. Production of recombinant proteins in plant root exudates. Nat. Biotechnol. 1999, 17, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Does, M.P.; Houterman, P.M.; Dekker, H.L.; Cornelissen, B.J. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. Plant Physiol. 1999, 120, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Aumiller, J.J.; Mabashi-Asazuma, H.; Hillar, A.; Shi, X.; Jarvis, D.L. A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 2012, 22, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Mabashi-Asazuma, H.; Kuo, C.W.; Khoo, K.H.; Jarvis, D.L. Modifying an insect cell N-glycan processing pathway using CRISPR-Cas Technology. ACS Chem. Biol. 2015, 10, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Kase, T.; Suzuki, Y.; Kawai, T.; Sakamoto, T.; Ohtani, K.; Eda, S.; Maeda, A.; Okuno, Y.; Kurimura, T.; Wakamiya, N. Human mannan-binding lectin inhibits the infection of influenza A virus. Inmmunology 1999, 97, 385–392. [Google Scholar]
- Ohtani, K.; Suzuki, Y.; Eda, S.; Kawai, T.; Kase, T.; Keshi, H.; Sakai, Y.; Yamamoto, S.; Sakamoto, T.; Wakamiya, N. High-level and effective production of human mannan-binding lectin (MBL) in Chinese hamster ovary (CHO) cells. J. Immunol. Methods 1999, 222, 135–144. [Google Scholar] [CrossRef]
- Cho, M.; Cummings, R.D. Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J. Biol. Chem. 1995, 270, 5198–5206. [Google Scholar] [CrossRef] [PubMed]
- Croset, A.; Delafosse, L.; Gaudry, J.P.; Arod, C.; Glez, L.; Losberger, C.; Begue, D.; Krstanovic, A.; Robert, F.; Vilbois, F.; et al. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J. Biotechnol. 2012, 161, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Cervera, L.; Gutiérrez-Granados, S.; Martínez, M.; Blanco, J.; Gòdia, F.; Segura, M.M. Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. J. Biotechnol. 2013, 166, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Blondeel, E.J.M.; Braasch, K.; McGill, T.; Chang, D.; Engel, C.; Spearman, M.; Butler, M.; Aucoin, M.G. Tuning a MAb glycan profile in cell culture: Supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth. J. Biotechnol. 2015, 214, 105–112. [Google Scholar] [CrossRef] [PubMed]
- St. Amand, M.M.; Radhakrishnan, D.; Robinson, A.S.; Ogunnaike, B.A. Identification of manipulated variables for a glycosylation control strategy. Biotechnol. Bioeng. 2014, 111, 1957–1970. [Google Scholar] [CrossRef] [PubMed]
- Meuris, L.; Santens, F.; Elson, G.; Festjens, N.; Boone, M.; Dos Santos, A.; Devos, S.; Rousseau, F.; Plets, E.; Houthuys, E.; et al. GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat. Biotechnol. 2014, 32, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Costa, S.; Teixeira, J.A.; Domingues, L. cDNA Cloning and Functional Expression of the α-d-Galactose-Binding Lectin Frutalin in E. coli. Mol. Biotechnol. 2009, 43, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, P.; Raemaekers, R.J.M.; Durieux, A.; Gatehouse, A.; Davies, H.; Taylor, M. Large-scale production, purification, and characterisation of recombinant Phaseolus vulgaris phytohemagglutinin E-form expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 2002, 26, 394–405. [Google Scholar] [CrossRef]
- Abd-Wahid, M.A.; Megat-Mohd, M.J.; Goto, M.; Sugiura, N.; Othman, N.; Zakaria, Z.; Ahmad-Mohammed, T.; Jusoh, A.; Hara, H. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment. Biosci. Biotechnol. Biochem. 2017, 81, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Van Eijk, M.; Guo, H.; van Dijk, A.; Bleijerveld, O.B.; Verheije, M.H.; Wang, G.; Haagsman, H.P.; Veldhuizen, E.J. Expression and characterization of recombinant chicken mannose binding lectin. Immunobiology 2017, 222, 518–528. [Google Scholar] [CrossRef] [PubMed]
Parameter | Organism | Lectin Family | Reference |
---|---|---|---|
Cell localization | All | Extracellular lectins, intracellular endoplasmic reticulum (ER) lectins, Golgi lectins, cytoplasmic lectins, membrane-bound lectins. | [30] |
Structural and evolutionary sequence similarities | All | Beta prism lectins (B-type), calcium dependent lectins (C-type), lectins with Ficolins-Fibrinogen/collagen domain (F-type), garlic and snow drop lectins (G-type), hyaluronan bonding proteins or hyal-adherins (H-type), immunoglobulin superfamily lectins (I-type), jocob and related lectins (J-type), legume seed lectins (L-type), alpha mannosidase related lectins (M-type), nucleotide phosphohydrolases lectins (N-type), ricin lectins (R-type), Tachypleus tridentatus (T-type), wheat germ agglutinin (W type), Xenopus egg lectins (X type) | [33] |
Taxonomic origin | All | Plants lectins, animal lectins, microbial lectins. | [30] |
Carbohydrate-specificities | Plant and animals | d-mannose (d-glucose)-binding lectins, 2-acetamido-2-deoxy-glucose-binding lectins, 2-acetamido-2-deoxy-galactose-binding lectins, d-galactose-binding lectins, l-fucose-binding lectins, other lectins. | [34] |
All | Glucose/mannose-binding lectins, galactose and N-acetyl-d-galactosamine-binding lectins, l-fucose-binding lectins, sialic acids-binding lectins. | [33] | |
Function | Microbial | Hemagglutinins, adhesins, and toxins. | [30] |
Animal | Galectins, selectins, collectins and pentraxins. | [32] | |
Structure | Animals | C-type, galectins, P-type (M-6-PR), I-type, pentraxins, heparyn binding type, F-type, calnexin, M-type, L-type, R-type, F-box, ficolin, chitinase-like. | [32] |
Plants | Amaranthins, nictaba related proteins, heveins (chitin binding lectins), jackalins, legume lectins, Galanthus nivalis agglutinin and GNA-related lectins, monocot mannose binding lectins, and plant lectins with Ricin-B domain. | [31] |
Natural Source | Purification | Lectin Yield | References |
---|---|---|---|
Acropora millepora (coral), plasma fluid. | Mannose affinity chromatography. | 0.7 mg/100 mL of plasma | [51] |
Aristichthys nobilis (bighead carp), gills. | Chromatography on diethylaminoethanol (DEAE)-Sepharose, Sephacryl S-200 and superdex-200. | 9.4 mg/100 g | [44] |
Pleurocybella porrigens. | Chromatography on Sepharose 4B, BioAssist Q. | 2.6 mg/100 g | [46] |
Bubalus bubalis (buffalo), heart tissue. | Ammonium sulphate precipitation and chromatography on Sephadex G50. | 0.97 mg/100 g | [52] |
Hibiscus mutabilis. | Ion exchange chromatography on SP-Sepharose and gel filtration in Superdex 75 and Superdex 200. | 4.04 mg/100 g | [50] |
Inocybe umbrinella (mushroom). | Ion exchange chromatography on DEAE cellulose and carboxymethylcellulose, and gel filtration on Superdex 75. | 15.3 mg/100 g | [47] |
Holothuria scabra (sea cucumber), coelomic fluid. | Ultrafiltration and chromatography on Phenyl-Sepharose. | 1.6 mg/100 g | [53] |
Macoma birmanica (marine bivalve), foot muscles. | Ammonium sulphate precipitation and chromatography on N-acetylglucosamine Sepharose 4B. | 4.5 mg/100 g | [54] |
Nemopilema nomurai (jellyfish). | Chromatography on SP-Sepharose and BSM-Toyopearl. | 0.35 mg/100 g | [45] |
Phaseolus vulgaris (common bean), cultivar french bean. | Chromatography on SP-Sepharose, Affi-gel blue, Q-Sepharose, and Superdex 200. | 4.8 mg/100 g | [55] |
Phaseolus vulgaris (common bean), cultivar dark red kidney bean | Chromatography on DEAE-cellulose and Affi-gel blue gel. | 107 mg/100 g | [49] |
Phaseolus vulgaris (common bean) cultivar Anasazi bean | Affi-gel blue gel, Mono S and chromatography on Superdex 200. | 13 mg/100 g | [48] |
Lectin | Natural Source | Producing Organism | Production Yield | References |
---|---|---|---|---|
SALT | Oryza sativa L | E. coli | 14.6 mg/L | [5] |
ASAL | Allium sativum | E. coli | 5 mg/L | [11] |
Artocarpus incisa lectin | Artocampus incisa | E. coli | 16 mg/L | [81] |
NICTABA | Nicotiana tabacum | P. pastoris | 6 mg/L | [15] |
PHA-E | Phaseolus vulgaris | P. pastoris | 0.4–1 mg/L | [6] |
GNA | Galanthus nivalis | P. pastoris | 1–2 mg/L | [6] |
SBA | Glycine max | BS-C-1 cells | 1 mg/L | [58] |
PHA | Phaseolus vulgaris | P. pastoris | 100 mg/L | [82] |
GNA | Galantus nivalis | P. pastoris | 80 mg/L | [82] |
UDA | Urtica doica | Nicotiana tabacum | No reported | [70] |
R. pseudoacacia lectin | Robinia pseudoacacia | Nicotiana tabacum | 2 mg/100 g of dry leaves | [2] |
MLB | Homo sapiens | Chinese hamster ovary cells | 128 µg/mL | [73] |
MoL | Moringa oleifera | P. pastoris | 520 mg/L | [83] |
MBL | Gallus Gallus | HeLa R19 Cells | 1.5–2 mg/L | [84] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Alarcón, D.; Blanco-Labra, A.; García-Gasca, T. Expression of Lectins in Heterologous Systems. Int. J. Mol. Sci. 2018, 19, 616. https://doi.org/10.3390/ijms19020616
Martínez-Alarcón D, Blanco-Labra A, García-Gasca T. Expression of Lectins in Heterologous Systems. International Journal of Molecular Sciences. 2018; 19(2):616. https://doi.org/10.3390/ijms19020616
Chicago/Turabian StyleMartínez-Alarcón, Dania, Alejandro Blanco-Labra, and Teresa García-Gasca. 2018. "Expression of Lectins in Heterologous Systems" International Journal of Molecular Sciences 19, no. 2: 616. https://doi.org/10.3390/ijms19020616
APA StyleMartínez-Alarcón, D., Blanco-Labra, A., & García-Gasca, T. (2018). Expression of Lectins in Heterologous Systems. International Journal of Molecular Sciences, 19(2), 616. https://doi.org/10.3390/ijms19020616