3′-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Genotype Frequencies of MTHFR and TS 3′-UTR Variants
2.3. Stratified Analysis for MTHFR and TS 3′-UTR Variants According to Clinical Parameters
2.4. Haplotype Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Population
4.3. Genetic Analyses
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- NIH Consensus Development panel on osteoporosis prevention, diagnosis, and therapy, March 7–29, 2000: Highlights of the conference. South. Med. J. 2001, 94, 569–573.
- Weaver, J.P.; Olsson, K.; Sadasivan, R.; Modi, A.; Sen, S. Reasons for not treating women with postmenopausal osteoporosis with prescription medications: Physicians’ and patients’ perspectives. J. Women Health 2017. [Google Scholar] [CrossRef] [PubMed]
- García-Gomáriz, C.; Blasco, J.M.; Macián-Romero, C.; Guillem-Hernández, E.; Igual-Camacho, C. Effect of 2 years of endurance and high-impact training on preventing osteoporosis in postmenopausal women: Randomized clinical trial. Menopause 2017. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Yang, R.; Wei, L.; Liu, J.; Yang, Y.; Shao, F.; Ma, W.; Li, T.; Wang, Y.; Guo, T. Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: A cross-sectional study in Gansu province, Northwestern of China. Medicine 2017, 96, e8294. [Google Scholar] [CrossRef] [PubMed]
- Almassinokiani, F.; Kashanian, M.; Akbari, P.; Mossayebi, E.; Sadeghian, E. Folic acid supplementation reduces plasma homocysteine in postmenopausal women. J. Obstet. Gynaecol. 2016, 36, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Cristalli, C.P.; Zannini, C.; Comai, G.; Baraldi, O.; Cuna, V.; Cappuccilli, M.; Mantovani, V.; Natali, N.; Cianciolo, G.; Manna, G.L. Methylenetetrahydrofolate reductase, MTHFR, polymorphisms and predisposition to different multifactorial disorders. Genes Genom. 2017, 39, 689–699. [Google Scholar] [CrossRef]
- LeBoff, M.S.; Narweker, R.; LaCroix, A.; Wu, L.; Jackson, R.; Lee, J.; Bauer, D.C.; Cauley, J.; Kooperberg, C.; Lewis, C.; et al. Homocysteine levels and risk of hip fracture in postmenopausal women. J. Clin. Endocrinol. Metab. 2009, 94, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Van Meurs, J.B.; Dhonukshe-Rutten, R.A.; Pluijm, S.M.; van der Klift, M.; de Jonge, R.; Lindemans, J.; de Groot, L.C.; Hofman, A.; Witteman, J.C.; van Leeuwen, J.P.; et al. Homocysteine levels and the risk of osteoporotic fracture. N. Engl. J. Med. 2004, 350, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, X.; Zhang, Q.; Cao, H.; Wang, J.; Liu, B. Homocysteine level and risk of fracture: A meta-analysis and systematic review. Bone 2012, 51, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Widmann, T.; Colaianni, G.; Colucci, S.; Zallone, A.; Herrmann, W. Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin. Chem. 2005, 51, 2348–2353. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Koh, J.-M.; Lee, O.; Kim, N.J.; Lee, Y.S.; Kim, Y.S.; Park, J.Y.; Lee, K.U.; Kim, G.S. Homocysteine enhances apoptosis in human bone marrow stromal cells. Bone 2006, 39, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Uitterlinden, A.G.; van Meurs, J.B.J.; Rivadeneira, F.; Pols, H.A.P. Identifying genetic risk factors for osteoporosis. J. Musculoskelet. Neuronal Interact. 2006, 6, 16. [Google Scholar] [PubMed]
- Wu, C.; Gong, Y.; Sun, A.; Zhang, Y.; Zhang, C.; Zhang, W.; Zhao, G.; Zou, Y.; Ge, J. The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Jeon, Y.J.; Shin, D.E.; Min, K.T.; Shin, Y.S.; Won, K.S.; Koh, Y.C.; Hong, S.H.; Kim, N.K. Methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) polymorphisms with osteoporotic vertebral compression fracture (OVCF) in postmenopausal Korean women. Genes Genom. 2012, 34, 257–263. [Google Scholar] [CrossRef]
- Kim, O.J.; Hong, S.P.; Ahn, J.Y.; Hong, S.H.; Hwang, T.S.; Kim, S.O.; Yoo, W.; Oh, D.; Kim, N.K. Influence of combined methionine synthase (MTR 2756A>G) and methylenetetrahydrofolate reductase (MTHFR 677C>T) polymorphisms to plasma homocysteine levels in Korean patients with ischemic stroke. Yonsei Med. J. 2007, 48, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Baines, M.; Kredan, M.-B.; Usher, J.; Davison, A.; Higgins, G.; Taylor, W.; West, C.; Fraser, W.D.; Ranganath, L.R. The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B 12 and vitamin B 6 with bone mineral density in postmenopausal British women. Bone 2007, 40, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Kim, J.W.; Park, H.M.; Kim, J.O.; Jang, H.G.; Oh, J.; Hwang, S.G.; Kwon, S.W.; Oh, D.; Kim, N.K. Genetic variants in 3′-UTRs of methylenetetrahydrofolate reductase (MTHFR) predict colorectal cancer susceptibility in Koreans. Sci. Rep. 2015, 5, 11006. [Google Scholar] [CrossRef] [PubMed]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Gao, J.; Hu, Z.; Tang, J.; Qin, J.; Wang, S.; Wang, X.; Jin, G.; Liu, J.; Chen, W.; et al. Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: A case-control analysis. BMC Cancer 2006, 6, 138. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, T.J.; Skibola, C.F.; Willett, E.V.; Skibola, D.R.; Allan, J.M.; Coppede, F.; Adamson, P.J.; Morgan, G.J.; Roman, E.; Smith, M.T. Risk of non–hodgkin lymphoma associated with polymorphisms in folate-metabolizing genes. Cancer Epidemiol. Prev. Biomark. 2005, 14, 2999–3003. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.M.; Bigler, J.; Bostick, R.; Fosdick, L.; Potter, J.D. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 2002, 62, 3361–3364. [Google Scholar] [PubMed]
- Shen, R.; Liu, H.; Wen, J.; Liu, Z.; Wang, L.E.; Wang, Q.; Tan, D.; Ajani, J.A.; Wei, Q. Genetic polymorphisms in the microRNA binding-sites of the thymidylate synthase gene predict risk and survival in gastric cancer. Mol. Carcinog. 2015, 54, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.M.; Buckenberger, J.A.; Jiang, J.; Malana, G.E.; Nuovo, G.J.; Chotani, M.; Feldman, D.S.; Schmittgen, T.D.; Elton, T.S. The human angiotensin II type 1 receptor+ 1166 A/C polymorphism attenuates microrna-155 binding. J. Biol. Chem. 2007, 282, 24262–24269. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.M.; Robles, A.I.; Harris, C.C. Genetic variation in microRNA networks: The implications for cancer research. Nat. Rev. Cancer 2010, 10, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Ongphiphadhanakul, B. Osteoporosis: The role of genetics and the environment. Forum Nutr. 2007, 60, 158–167. [Google Scholar] [PubMed]
- Krela-Kaźmierczak, I.; Michalak, M.; Wawrzyniak, A.; Szymczak, A.; Eder, P.; Łykowska-Szuber, L.; Kaczmarek-Ryś, M.; Drwęska-Matelska, N.; Skrzypczak-Zielińska, M.; Linke, K.; et al. The c.29T>C polymorphism of the transforming growth factor β-1 (TGFB1) gene, bone mineral density and the occurrence of low-energy fractures in patients with inflammatory bowel disease. Mol. Biol. Rep. 2017, 44, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Taha, I.M.; Abdu-Allah, A.M.; Hamoudah, M.A.F.; Justin-Carlus, S. Transforming Growth Factor-β1 gene polymorphism and osteoporosis in postmenopausal egyptian women. Cell. Mol. Biol. 2017, 63, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Nazarian, A.; Hasankhani, M.; Aghajany-Nasab, M.; Monfared, A. Association between Klotho Gene Polymorphism and Markers of Bone Metabolism in Patients Receiving Maintenance Hemodialysis in Iran. Iran. J. Kidney Dis. 2017, 11, 456–460. [Google Scholar] [PubMed]
- Diab, S.M.; Kamal, H.M.; Mansour, A.I.; Fawzy, R.M.; Azab, B.S. Clinical significance of Matrilin-3 gene polymorphism in Egyptian patients with primary knee osteoarthritis. Eur. J. Rheumatol. 2017, 4, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Roughley, P.; Martens, D.; Rantakokko, J.; Alini, M.; Mwale, F.; Antoniou, J. The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur. Cell. Mater. 2006, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Urano, T.; Shiraki, M.; Saito, M.; Sasaki, N.; Ouchi, Y.; Inoue, S. Polymorphism of SLC25A32, the folate transporter gene, is associated with plasma folate levels and bone fractures in Japanese postmenopausal women. Geriatr. Gerontol. Int. 2014, 14, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Steer, C.D.; Emmett, P.M.; Lewis, S.J.; Smith, G.D.; Tobias, J.H. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with spinal BMD in 9-year-old children. J. Bone Miner. Res. 2009, 24, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Qin, J.; Hoang, B.H.; Healey, J.H.; Gorlick, R. Polymorphisms and methylation of the reduced folate carrier in osteosarcoma. Clin. Orthop. Relat. Res. 2008, 466, 2046–2051. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsen, B.; Madsen, J.S.; Tofteng, C.L.; Stilgren, L.; Bladbjerg, E.M.; Kristensen, S.R.; Brixen, K.; Mosekilde, L. Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. Bone 2005, 36, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Ralston, S.H.; Uitterlinden, A.G. Genetics of osteoporosis. Endocr. Rev. 2010, 31, 629–662. [Google Scholar] [CrossRef] [PubMed]
- Panach, L.; Mifsut, D.; Tarín, J.J.; Cano, A.; García-Pérez, M.Á. Serum circulating microRNAs as biomarkers of osteoporotic fracture. Calcif. Tissue Int. 2015, 97, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Yerges, L.M.; Klei, L.; Cauley, J.A.; Roeder, K.; Kammerer, C.M.; Ensrud, K.E.; Nestlerode, C.S.; Lewis, C.; Lang, T.F.; Barrett-Connor, E. Candidate gene analysis of femoral neck trabecular and cortical volumetric bone mineral density in older men. J. Bone Miner. Res. 2010, 25, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Tokuzawa, Y.; Yagi, K.; Yamashita, Y.; Nakachi, Y.; Nikaido, I.; Bono, H.; Ninomiya, Y.; Kanesaki-Yatsuka, Y.; Akita, M.; Motegi, H.; et al. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet. 2010, 6, e1001019. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, M.; Zhao, L.; Cui, B.; Li, Z.B.; Zhao, H.Y.; Sun, L.H.; Tao, B.; Li, M.; Ning, G. Analysis of recently identified osteoporosis susceptibility genes in Han Chinese women. J. Clin. Endocrinol. Metab. 2010, 95, E112–E120. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Evangelou, E.; Ioannidis, J.P.A.; Ralston, S.H. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: Meta-analysis of published studies. Osteoporos. Int. 2011, 22, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Seeliger, C.; Karpinski, K.; Haug, A.T.; Vester, H.; Schmitt, A.; Bauer, J.S.; van Griensven, M. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J. Bone Miner. Res. 2014, 29, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.-F.; Papasian, C.J.; Deng, H.-W. Polymorphisms in predicted miRNA binding sites and osteoporosis. J. Bone Miner. Res. 2011, 26, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Eulalio, A.; Huntzinger, E.; Nishihara, T.; Rehwinkel, J.; Fauser, M.; Izaurralde, E. Deadenylation is a widespread effect of miRNA regulation. RNA 2009, 15, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-J.; Reyes, J.L.; Chua, N.-H.; Gaasterland, T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 2004, 5, R65. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Li, L.H.; Cai, H.; Nguyen, V.H.; Min, J.J.; Shin, B.A.; Choi, S.Y.; Koh, Y.S. miRNA-105 and -128 function as rheostats modulating MMP-2 activities by downregulation of TIMP-2 and upregulation of MT1-MMP. Genes Genom. 2016, 38, 217–223. [Google Scholar] [CrossRef]
- Giangregorio, L.M.; Leslie, W.D.; Lix, L.M.; Johansson, H.; Oden, A.; McCloskey, E.; Kanis, J.A. FRAX underestimates fracture risk in patients with diabetes. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2012, 27, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Kurra, S.; Siris, E. Diabetes and bone health: The relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab. Res. Rev. 2011, 27, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Rubin, M.R.; Schwartz, A.V.; Kanis, J.A. Type 2 diabetes and bone. J. Bone Miner. Res. 2012, 27, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Gjesdal, C.G.; Vollset, S.E.; Ueland, P.M.; Refsum, H.; Meyer, H.E.; Tell, G.S. Plasma homocysteine, folate, and vitamin B12 and the risk of hip fracture: The Hordaland Homocysteine Study. J. Bone Miner. Res. 2007, 22, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Ravn, P.; Cizza, G.; Bjarnason, N.H.; Thompson, D.; Daley, M.; Wasnich, R.D.; McClung, M.; Hosking, D.; Yates, A.J.; Christiansen, C. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. J. Bone Miner. Res. 1999, 14, 1622–1627. [Google Scholar] [CrossRef] [PubMed]
- Barrera, G.; Bunout, D.; Gattás, V.; de la Maza, M.P.; Leiva, L.; Hirsch, S. A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects. Nutrition 2004, 20, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Devoto, M.; Shimoya, K.; Caminis, J.; Ott, J.; Tenenhouse, A.; Whyte, M.P.; Sereda, L.; Hall, S.; Considine, E.; Williams, C.J.; et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur. J. Hum. Genet. 1998, 6, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.G.; Reed, P.W.; Bansal, A.; Chiano, M.; Lindersson, M.; Langdown, M.; Prince, R.L.; Thompson, D.; Thompson, E.; Bailey, M.; et al. Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am. J. Hum. Genet. 2003, 72, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, H.L.; Madsen, J.S.; Madsen, B.; Saleh, M.M.; Abrahamsen, B.; Fenger, M.; Lauritzen, J.B. Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women. Calcif. Tissue Int. 2002, 71, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lau, E.M.C.; Woo, J. Methylenetetrahydrofolate reductase polymorphism (MTHFR C677T) and bone mineral density in Chinese men and women. Bone 2004, 35, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, C. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: An updated meta-analysis. Osteoporos. Int. 2012, 23, 2625–2634. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Beilby, J.; Dick, I.M.; Devine, A.; Soós, M.; Prince, R.L. The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women. Osteoporos. Int. 2009, 20, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.O.; Han, S.H.; Lee, Y.H.; Ahn, T.K.; Lim, J.J.; Chung, Y.S. Association of Plasminogen Activator Inhibitor-1 (PAI-1) Gene Polymorphisms with Osteoporotic Vertebral Compression Fractures (OVCFs) in Postmenopausal Women. Int. J. Mol. Sci. 2017, 17, 2062. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef]
Characteristic | Controls (n = 158) | Osteoporosis (n = 143) | p 1 | OVCF (n = 74) | p 2 | Non-OVCF (n = 69) | p 3 |
---|---|---|---|---|---|---|---|
Age (years, mean ± SD) | 69 ± 6 | 69 ± 7 | 0.983 | 70 ± 9 | 0.282 | 71 ± 7 | 0.207 |
Hypertension (%) | 79 | 52 | 0.134 | 32 | 0.001 | 20 | <0.0001 |
SBP (mmHg, mean ± SD) | 136 ± 19 | 127 ± 14 | <0.0001 | 128 ± 15 | 0.003 | 127 ± 14 | 0.0002 |
DBP (mmHg, mean ± SD) | 81 ± 12 | 76 ± 10 | 0.0001 | 77 ± 10 | 0.012 | 74 ± 10 | 0.0001 |
Diabetes mellitus (%) | 22 | 26 | 0.392 | 9 | 0.050 | 17 | 0.645 |
FBS (mg/dL, mean ± SD) | 111.78 ± 28.12 | 123.56 ± 43.20 | 0.006 | 132.56 ± 54.01 | 0.0002 | 114.70 ± 26.41 | 0.466 |
tHcy (μmol/L, mean ± SD) | 9.74 ± 3.04 | 9.83 ± 4.09 | 0.830 | 10.11 ± 3.84 | 0.441 | 9.54 ± 4.35 | 0.690 |
Folate (nmol/L, mean ± SD) | 9.51 ± 6.48 | 8.28 ± 4.87 | 0.074 | 6.57 ± 4.11 | 0.001 | 10.27 ± 4.95 | 0.408 |
BMI (kg/m2, mean ± SD) | 24.52 ± 3.11 | 23.48 ± 3.81 | 0.045 | 21.37 ± 6.98 | 0.005 | 23.88 ± 2.77 | 0.173 |
HDL-chol (mg/dL, mean ± SD) | 47.67 ± 12.13 | 44.78 ± 14.24 | 0.223 | 45.16 ± 16.19 | 0.385 | 44.42 ± 12.27 | 0.180 |
LDL-chol (mg/dL, mean ± SD) | 130.30 ± 44.64 | 107.31 ± 39.55 | 0.002 | 120.64 ± 42.64 | 0.281 | 95.18 ± 32.38 | <0.0001 |
TG (mg/dL, mean ± SD) | 152.85 ± 87.54 | 146.81 ± 81.90 | 0.567 | 159.05 ± 74.81 | 0.633 | 133.89 ± 87.61 | 0.169 |
BMD (g/cm2, mean ± SD) | ≥−1.0 | −3.04 ± 0.94 | - | −2.93 ± 1.21 | - | −3.13 ± 0.62 | - |
Genotypes | Control | Case | ORs Adjusted Age, HTN, and DM (95% CI) 1 | p 2 | p 5 | OVCF | ORs Adjusted Age, HTN, and DM (95% CI) 1 | p 3 | p 5 | Non-OVCF | ORs Adjusted Age, HTN, and DM (95% CI) 1 | p 4 | p 5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 158) | (n = 143) | (n = 74) | (n = 69) | ||||||||||
MTHFR 2572C>A | |||||||||||||
CC | 103 (65.2) | 111 (77.6) | 1.000 (reference) | 62 (83.8) | 1.000 (reference) | 49 (71.0) | 1.000 (reference) | ||||||
CA | 52 (32.9) | 29 (20.3) | 0.494 (0.285–0.857) | 0.012 | 0.024 | 11 (14.9) | 0.382 (0.179–0.813) | 0.013 | 0.026 | 18 (26.1) | 0.682 (0.354–1.314) | 0.253 | 0.337 |
AA | 3 (1.9) | 3 (2.1) | N/A | N/A | 1 (1.4) | N/A | N/A | 2 (2.9) | N/A | N/A | |||
Dominant (CC vs. CA+AA) | 0.516 (0.303–0.880) | 0.015 | 0.030 | 0.397 (0.191–0.825) | 0.013 | 0.026 | 0.709 (0.375–1.340) | 0.29 | 0.387 | ||||
Recessive (CC+CA vs. AA) | N/A | N/A | N/A | N/A | N/A | N/A | |||||||
HWE-P | 0.288 | 0.885 | |||||||||||
MTHFR 4869C>G | |||||||||||||
CC | 135 (85.4) | 132 (92.3) | 1.000 (reference) | 68 (91.9) | 1.000 (reference) | 64 (92.8) | 1.000 (reference) | ||||||
CG | 23 (14.6) | 11 (7.7) | 0.454 (0.201–1.026) | 0.058 | 0.077 | 6 (8.1) | 0.503 (0.181–1.395) | 0.187 | 0.187 | 5 (7.2) | 0.487 (0.173–1.367) | 0.172 | 0.337 |
GG | 0 (0.0) | 0 (0.0) | N/A | N/A | 0 (0.0) | N/A | N/A | 0 (0.0) | N/A | N/A | |||
Dominant (CC vs. CG+GG) | 0.454 (0.201–1.026) | 0.058 | 0.077 | 0.503 (0.181–1.395) | 0.187 | 0.187 | 0.487 (0.173–1.367) | 0.172 | 0.344 | ||||
Recessive (CC+CG vs. GG) | N/A | N/A | N/A | N/A | N/A | N/A | |||||||
HWE-P | 0.324 | 0.632 | |||||||||||
TS 1100C>T | |||||||||||||
CC | 92 (58.2) | 95 (66.4) | 1.000 (reference) | 56 (75.7) | 1.000 (reference) | 39 (56.5) | 1.000 (reference) | ||||||
CT | 58 (36.7) | 40 (28.0) | 0.886 (0.314–2.497) | 0.819 | 0.819 | 17 (23.0) | 0.492 (0.252–0.961) | 0.038 | 0.051 | 23 (33.3) | 0.952 (0.503–1.804) | 0.881 | 0.887 |
TT | 8 (5.1) | 8 (5.6) | 0.625 (0.215–1.820) | 0.389 | 0.389 | 1 (1.4) | 0.249 (0.030–2.067) | 0.198 | 0.198 | 7 (10.1) | 2.417 (0.784–7.454) | 0.125 | 0.125 |
Dominant (CC vs. CT+TT) | 0.781 (0.283–2.158) | 0.634 | 0.634 | 0.462 (0.241–0.886) | 0.02 | 0.027 | 1.114 (0.615–2.021) | 0.721 | 0.721 | ||||
Recessive (CC+CT vs. TT) | 1.355 (0.835–2.200) | 0.219 | 0.219 | 0.303 (0.037–2.485) | 0.266 | 0.266 | 2.433 (0.817–7.245) | 0.11 | 0.110 | ||||
HWE-P | 0.497 | 0.280 | |||||||||||
TS 1170A>G | |||||||||||||
AA | 64 (40.5) | 104 (72.7) | 1.000 (reference) | 48 (64.9) | 1.000 (reference) | 56 (81.2) | 1.000 (reference) | ||||||
AG | 76 (48.1) | 34 (23.8) | 0.276 (0.165–0.460) | <0.0001 | 0.0004 | 24 (32.4) | 0.413 (0.221–0.774) | 0.006 | 0.024 | 10 (14.5) | 0.147 (0.068–0.320) | <0.0001 | 0.0004 |
GG | 18 (11.4) | 5 (3.5) | 0.168 (0.059–0.475) | 0.001 | 0.002 | 2 (2.7) | 0.086 (0.011–0.672) | 0.019 | 0.038 | 3 (4.3) | 0.137 (0.035–0.527) | 0.004 | 0.008 |
Dominant (AA vs. AG+GG) | 0.255 (0.157–0.415) | <0.0001 | 0.0004 | 0.354 (0.192–0.653) | 0.001 | 0.004 | 0.146 (0.072–0.298) | <0.0001 | 0.0004 | ||||
Recessive (AA+AG vs. GG) | 0.281 (0.101–0.778) | 0.015 | 0.030 | 0.129 (0.017–0.994) | 0.049 | 0.098 | 0.275 (0.075–1.007) | 0.051 | 0.102 | ||||
HWE-P | 0.520 | 0.267 |
Variables | MTHFR 2572 (CC vs. CA+AA) | MTHFR 4869 (CC vs. CG+GG) | TS 1100 (CC vs. CT+CC) | TS 1170 (AA vs. AG+GG) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ORs Adjusted Age, HTN, and DM (95% CI) 1 | p | p 4 | ORs Adjusted Age, HTN, and DM (95% CI) 1 | p | p 4 | ORs Adjusted Age, HTN, and DM (95% CI) 1 | p | p 4 | ORs Adjusted Age, HTN, and DM (95% CI) 1 | p | p 4 | |
Hypertension | ||||||||||||
No (n = 170) | 0.417 (0.204–0.856) | 0.017 | 0.034 | 0.426 (0.141–1.283) | 0.129 | 0.152 | 0.620 (0.322–1.193) | 0.152 | 0.152 | 0.238 (0.122–0.465) | <0.0001 | 0.0004 |
Yes (n = 131) | 0.773 (0.352–1.697) | 0.521 | 0.695 | 0.649 (0.211–1.997) | 0.451 | 0.695 | 1.042 (0.504–2.153) | 0.912 | 0.912 | 0.252 (0.118–0.539) | 0.0004 | 0.002 |
Diabetes mellitus | ||||||||||||
No (n = 253) | 0.597 (0.337–1.060) | 0.078 | 0.156 | 0.567 (0.254–1.264) | 0.165 | 0.22 | 0.724 (0.429–1.224) | 0.228 | 0.228 | 0.262 (0.151–0.454) | <0.0001 | 0.0004 |
Yes (n = 48) | 0.381 (0.099–1.474) | 0.162 | 0.243 | N/A | N/A | 1.169 (0.302–4.521) | 0.821 | 0.821 | 0.142 (0.039–0.522) | 0.003 | 0.009 | |
Folate 2 | ||||||||||||
>4.6 nmol/L (n = 244) | 0.709 (0.404–1.245) | 0.232 | 0.233 | 0.554 (0.240–1.280) | 0.167 | 0.233 | 0.724 (0.426–1.231) | 0.233 | 0.233 | 0.240 (0.138–0.417) | <0.0001 | 0.0004 |
≤4.6 nmol/L (n = 57) | 0.057 (0.006–0.520) | 0.011 | 0.023 | N/A | N/A | 1.339 (0.368–4.867) | 0.658 | 0.658 | 0.204 (0.057–0.734) | 0.015 | 0.023 | |
Total homocysteine 3 | ||||||||||||
≥12.7 μmol/L (n = 48) | 0.306 (0.063–1.489) | 0.143 | 0.286 | 1.052 (0.054–20.670) | 0.973 | 0.973 | 0.852 (0.239–3.034) | 0.805 | 0.973 | 0.278 (0.066–1.166) | 0.08 | 0.286 |
<12.7 μmol/L (n = 253) | 0.599 (0.338–1.062) | 0.042 | 0.084 | 0.457 (0.193–1.082) | 0.075 | 0.1 | 0.745 (0.439–1.265) | 0.276 | 0.276 | 0.263 (0.155–0.446) | <0.0001 | 0.0004 |
Age | ||||||||||||
≥69 | 0.467 (0.231–0.945) | 0.034 | 0.068 | 0.619 (0.210–1.820) | 0.383 | 0.511 | 0.878 (0.449–1.717) | 0.704 | 0.704 | 0.131 (0.064–0.269) | <0.0001 | 0.0004 |
<69 | 0.669 (0.303–1.476) | 0.319 | 0.319 | 0.407 (0.124–1.333) | 0.138 | 0.276 | 0.646 (0.320–1.305) | 0.224 | 0.299 | 0.509 (0.259–1.002) | 0.051 | 0.204 |
Haplotypes | Control (2n = 316) | Case (2n = 286) | OR (95% CI) 1 | p | p 2 | OVCF (2n = 148) | OR (95% CI) 1 | p | p 2 | Non-OVCF (2n = 138) | OR (95% CI) 1 | p | p 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MTHFR 2572/4869 | |||||||||||||
C-C | 258 (81.7) | 216 (87.0) | 1.000 (reference) | 125 (84.2) | 1.000 (reference) | 116 (84.2) | 1.000 (reference) | ||||||
A-C | 35 (11.1) | 23 (9.2) | 0.785 (0.450–1.369) | 0.393 | 0.393 | 18 (12.3) | 1.061 (0.578–1.949) | 0.876 | 0.876 | 17 (12.3) | 1.080 (0.581–2.007) | 0.873 | 0.873 |
A-G | 23 (7.3) | 8 (3.1) | 0.416 (0.182–0.948) | 0.032 | 0.064 | 5 (3.5) | 0.449 (0.167–1.208) | 0.140 | 0.280 | 5 (3.5) | 0.484 (0.179–1.304) | 0.199 | 0.398 |
TS 1100/1170 | |||||||||||||
C-A | 74 (23.4) | 49 (19.6) | 1.000 (reference) | 34 (22.8) | 1.000 (reference) | 31 (22.8) | 1.000 (reference) | ||||||
T-A | 130 (41.1) | 161 (65.0) | 1.870 (1.218–2.872) | 0.004 | 0.008 | 95 (64.0) | 1.578 (0.972–2.562) | 0.072 | 0.072 | 88 (64.0) | 1.604 (0.974–2.641) | 0.066 | 0.066 |
T-G | 112 (35.4) | 38 (15.4) | 0.512 (0.306–0.858) | 0.011 | 0.032 | 19 (13.2) | 0.373 (0.198–0.702) | 0.003 | 0.006 | 18 (13.2) | 0.387 (0.202–0.742) | 0.006 | 0.012 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, T.-K.; Kim, J.O.; Kim, H.W.; Park, H.S.; Shim, J.H.; Ropper, A.E.; Han, I.B.; Kim, N.K. 3′-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women. Int. J. Mol. Sci. 2018, 19, 824. https://doi.org/10.3390/ijms19030824
Ahn T-K, Kim JO, Kim HW, Park HS, Shim JH, Ropper AE, Han IB, Kim NK. 3′-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women. International Journal of Molecular Sciences. 2018; 19(3):824. https://doi.org/10.3390/ijms19030824
Chicago/Turabian StyleAhn, Tae-Keun, Jung Oh Kim, Hyun Woo Kim, Han Sung Park, Jeong Hyun Shim, Alexander E. Ropper, In Bo Han, and Nam Keun Kim. 2018. "3′-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women" International Journal of Molecular Sciences 19, no. 3: 824. https://doi.org/10.3390/ijms19030824
APA StyleAhn, T. -K., Kim, J. O., Kim, H. W., Park, H. S., Shim, J. H., Ropper, A. E., Han, I. B., & Kim, N. K. (2018). 3′-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women. International Journal of Molecular Sciences, 19(3), 824. https://doi.org/10.3390/ijms19030824