Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals
Abstract
:1. Introduction
2. Transepithelial Ion Transport Mechanism
3. cGK2 Regulation of ENaC
4. CFTR
5. Na+/H+ Exchanger (NHE)
6. Acute Lung Injury (ALI)
7. cGK2 Signals in Drug Discovery
8. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Francis, S.H.; Corbin, J.D. Cyclic nucleotide-dependent protein kinases: Intracellular receptors for cAMP and cGMP action. Crit. Rev. Clin. Lab. Sci. 1999, 36, 275–328. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, F.; Bernhard, D. cGMP regulated protein kinases (cGK). Handb. Exp. Pharmacol. 2009, 137–162. [Google Scholar] [CrossRef]
- Ji, H.-L.; Nie, H.-G. CPT-cGMP is a new ligand of epithelial sodium channels. Int. J. Biol. Sci. 2016, 12, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmann, S.M.; Vaandrager, A.B. Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem. Sci. 1997, 22, 307–312. [Google Scholar] [CrossRef]
- Gambaryan, S.; Butt, E. CGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J. Biol. Chem. 2003, 278, 29640–29648. [Google Scholar] [CrossRef] [PubMed]
- Kulaksiz, H.; Schmid, A. Clara cell impact in air-side activation of CFTR small pulmonary airways. Proc. Natl. Acad. Sci. USA 2002, 99, 6796–6801. [Google Scholar] [CrossRef] [PubMed]
- Schramm, A.; Schinner, E. Function of cGMP-dependent protein kinase II in volume load-induced diuresis. Pflugers Arch. 2014, 466, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Vaandrager, A.B.; Tilly, B.C. cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl-channels co-expressed with cGMP-dependent protein kinase type II but not type Iβ. J. Biol. Chem. 1997, 272, 4195–4200. [Google Scholar] [CrossRef] [PubMed]
- Markert, T.; Vaandrager, A.B. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator. J. Clin. Investig. 1995, 96, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Talts, J.F.; Pfeifer, A. Endochondral ossification is dependent on the mechanical properties of cartilage tissue and on intracellular signals in chondrocytes. Ann. N. Y. Acad. Sci. 1998, 857, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Nagamatsu, Y. cGMP and a germ-line signal control body size in C-elegans through cGMP-dependent protein kinase EGL-4. Genes Cells 2004, 9, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Wegener, J.W.; Schulla, V. An essential role of Ca(v)1.2 L-type calcium channel for urinary bladder function. FASEB J. 2004, 18, 1159–1161. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Song, Y. Novel role for cystic fibrosis transmembrane conductance regulator in alveolar fluid clearance in lipopolysaccharide-induced acute lung injury in mice. Respirology 2013, 18, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.-J.; Alli, A.A. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. Am. J. Physiol. Ren. Physiol. 2013, 304, F930–F937. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.-G.; Zhang, W. 8-pCPT-cGMP stimulates alpha beta gamma-ENaC activity in oocytes as an external ligand requiring specific nucleotide moieties. Am. J. Physiol. Ren. Physiol. 2010, 298, F323–F334. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, H. Epithelial sodium channel enhanced osteogenesis via cGMP/PKGII/ENaC signaling in rat osteoblast. Mol. Biol. Rep. 2014, 41, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.-G.; Chen, L. Regulation of epithelial sodium channels by cGMP/PKGII. J. Physiol. 2009, 587, 2663–2676. [Google Scholar] [CrossRef] [PubMed]
- Han, D.-Y.; Nie, H.-G. 8-(4-chlorophenylthio)-guanosine-3′,5′-cyclic monophosphate-Na stimulates human alveolar fluid clearance by releasing external Na+ self-inhibition of epithelial Na+ channels. Am. J. Respir. Cell Mol. Biol. 2011, 45, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.-G.; Tucker, T. Expression and regulation of epithelial Na+ channels by nucleotides in pleural mesothelial cells. Am. J. Respir. Cell Mol. Biol. 2009, 40, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Forte, L.R.; London, R.M. Mechanisms of guanylin action via cyclic GMP in the kidney. Annu. Rev. Physiol. 2000, 62, 673–695. [Google Scholar] [CrossRef] [PubMed]
- Hamoir, C.; Pepermans, X.; Piessevaux, H.; Jouret-Mourin, A.; Weynand, B.; Habyalimana, J.B.; Leal, T.; Geubel, A.; Gigot, J.F.; Deprez, P.H. Clinical and morphological characteristics of sporadic cenetically determined pancreatitis as compared to idiopathic pancreatitis: Higher risk of pancreatic cancer in CFTR variants. Digestion 2013, 87, 229–239. [Google Scholar] [CrossRef] [PubMed]
- French, P.J.; Bijman, J.; Edixhoven, M.; Vaandrager, A.B.; Scholte, B.J.; Lohmann, S.M.; Nairn, A.C.; de Jonge, H.R. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II. J. Biol. Chem. 1995, 270, 26626–26631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaandrager, A.B.; Bot, A.G. Guanosine 3′,5′-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology 1997, 112, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Golin-Bisello, F.; Bradbury, N.; Ameen, N. STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am. J. Physiol. Cell Physiol. 2005, 289, C708–C716. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.K.; Tchernychev, B.; Kessler, M.M.; Solinga, R.M.; Arthur, D.; Linde, C.I.; Silos-Santiago, I.; Hannig, G.; Ameen, N.A. Linaclotide activates guanylate cyclase-C/cGMP/protein kinase-II-dependent trafficking of CFTR in the intestine. Physiol. Rep. 2017, 5, e13299. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, A.; Aszodi, A.; Seidler, U.; Ruth, P.; Hofmann, F.; Fässler, R. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 1996, 274, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Vaandrager, A.B.; Bot, A.G.M. Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 2000, 118, 108–114. [Google Scholar] [CrossRef]
- Vaandrager, A.B.; Smolenski, A. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc. Natl. Acad. Sci. USA 1998, 95, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Lazrak, A.; Thome, U. Alveolar epithelial ion and fluid transport—cAMP regulation of Cl- and HCO3-secretion across rat fetal distal lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 282, L650–L658. [Google Scholar] [CrossRef] [PubMed]
- Brochiero, E.; Dagenais, A. Evidence of a functional CFTR Cl- channel in adult alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 287, L382–L392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Z.; Zhang, Y.; Naren, A.P. CFTR-NHERF2-LPA(2) complex in the airway and gut epithelia. Int. J. Mol. Sci. 2017, 18, 1896. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bosworth, C.A.; Pico, T.; Collawn, J.F.; Varga, K.; Gao, Z.; Clancy, J.P.; Fortenberry, J.A.; Lancaster, J.R., Jr.; Matalon, S. Detano and nitrated lipids increase chloride secretion across lung airway cells. Am. J. Respir. Cell Mol. Biol. 2008, 39, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Slepkov, E.R.; Rainey, J.K.; Sykes, B.D.; Fliegel, L. Structural and functional analysis of the Na+/H+ exchanger. Biochem. J. 2007, 401, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Hisamitsu, T.; Ben Ammar, Y. Dimerization is crucial for the function of the Na+/H+ exchanger NHE1. Biochemistry 2006, 45, 13346–13355. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.; Roux, D. Differential localization of Na+/H+ exchanger isoforms (NHE1 and NHE3) in polarized epithelial cell lines. J. Cell Sci. 1996, 109 Pt 5, 929–939. [Google Scholar] [PubMed]
- Orlowski, J.; Kandasamy, R.A.; Shull, G.E. Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J. Biol. Chem. 1992, 267, 9331–9339. [Google Scholar] [PubMed]
- Wu, Y.; Zhang, M. Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells. Yonsei Med. J. 2016, 57, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.A.; Hohendahl, A.; Stegemann, H.; Hirsch, J.R.; Saleh, H.; Schlatter, E. Natriuretic peptides and diadenosine polyphosphates modulate pH regulation of rat mesangial cells. Cell. Physiol. Biochem. 1999, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.; Kim, J.H.; Hut, H.; Hogema, B.M.; Nadarja, J.; Zizak, M.; Cavet, M.; Lee-Kwon, W.; Lohmann, S.M.; Smolenski, A.; et al. cGMP inhibition of Na+/H+ antiporter 3 (NHE3) requires PDZ domain adapter NHERF2, a broad specificity protein kinase G-anchoring protein. J. Biol. Chem. 2005, 280, 16642–16650. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Romero, M.F. Regulation of electroneutral NaCl absorption by the small intestine. Annu. Rev. Physiol. 2011, 73, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Kocinsky, H.S.; Cha, B.; Murtazina, R.; Yang, J.; Tse, C.M.; Singh, V.; Cole, R.; Aronson, P.S.; De Jonge, H.; et al. Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites identification of a multifunctional phosphorylation site. J. Biol. Chem. 2015, 290, 1952–1965. [Google Scholar] [CrossRef] [PubMed]
- Bopp, C.; Hofer, S.; Busch, C.; Spöhr, F.; Weigand, M.A.; Martin, E.; Klein, A. Time-limited hyporesponsiveness to inhaled nitric oxide and pulmonary phosphodiesterase activity in endotoxemic rats. J. Surg. Res. 2008, 150, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Holzmann, A.; Manktelow, C.; Weimann, J.; Bloch, K.D.; Zapol, W.M. Inhibition of lung phosphodiesterase improves responsiveness to inhaled nitric oxide in isolated-perfused lungs from rats challenged with endotoxin. Intensive Care Med. 2001, 27, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Pearse, D.B.; Shimoda, L.A.; Verin, A.D.; Bogatcheva, N.; Moon, C.; Ronnett, G.V.; Welsh, L.E.; Becker, P.M. Effect of cGMP on lung microvascular endothelial barrier dysfunction following hydrogen peroxide. Endothelium 2003, 10, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Stephens, R.S.; Rentsendorj, O.; Servinsky, L.E.; Moldobaeva, A.; Damico, R.; Pearse, D.B. cGMP increases antioxidant function and attenuates oxidant cell death in mouse lung microvascular endothelial cells by a protein kinase G-dependent mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 299, L323–L333. [Google Scholar] [CrossRef] [PubMed]
- Schwede, F.; Maronde, E.; Genieser, H.G.; Jastorff, B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol. Ther. 2000, 87, 199–226. [Google Scholar] [CrossRef]
- Lawson, C.A.; Smerling, A.J.; Naka, Y.O.; Burkhoff, D.A.; Dickstein, M.L.; Stern, D.M.; Pinsky, D.J. Selective reduction of PVR by inhalation of a cGMP analogue in a porcine model of pulmonary hypertension. Am. J. Physiol. 1995, 268, H2056–H2062. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Murase, N.; Subbotin, V.; Sakamoto, T.; Yamada, T.; Terakura, M.; Todo, S. Analogs of cyclic nucleotides in rat liver preservation. Transplantation 1998, 66, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.H.; Song, Y.L. Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L242–L249. [Google Scholar] [CrossRef] [PubMed]
- Kemp, P.J.; Kim, K.J.; Borok, Z.; Crandall, E.D. Re-evaluating the Na+ conductance of adult rat alveolar type II pneumocytes: Evidence for the involvement of cGMP-activated cation channels. J. Physiol. 2001, 536, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Matsuda, K. Frog ANP increases the amiloride-sensitive Na+ channel activity in urinary bladder cells of Japanese tree frog, Hyla japonica. Gen. Comp. Endocrinol. 2007, 152, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Novaira, H.J.; Ornellas, D.S.; Ortiga-Carvalho, T.M.; Zhang, X.M.; Souza-Menezes, J.; Guggino, S.E.; Guggino, W.B.; Morales, M.M. Atrial natriuretic peptide modulates cystic fibrosis transmembrane conductance regulator chloride channel expression in rat proximal colon and human intestinal epithelial cells. J. Endocrinol. 2006, 189, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kelley, T.J.; Al-Nakkash, L.; Drumm, M.L. C-type natriuretic peptide increases chloride permeability in normal and cystic fibrosis airway cells. Am. J. Respir. Cell Mol. Biol. 1997, 16, 464–470. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, H.R.; Tilly, B.C. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland. Am. J. Physiol. Cell Physiol. 2014, 306, C343–C353. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.; Huang, Y.; Mun, K.; Yarlagadda, S.; Sundaram, N.; Kessler, M.M.; Hannig, G.; Kurtz, C.B.; Silos-Santiago, I.; Helmrath, M.; et al. Guanylate cyclase 2C agonism corrects CFTR mutants. JCI Insight 2017, 2, 93686. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Tanaka, R.; Harada, S.; Kohda, Y.; Matsumura, H.; Shimamoto, C.; Sawabe, Y.; Marunaka, Y.; Kuwabara, H.; Takahashi, Y. A PKG inhibitor increases Ca2+-regulated exocytosis in guinea pig antral mucous cells: CAMP accumulation via PDE2A inhibition. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G773–G780. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Marq, J.-B.; Bisio, H.; Jacot, D.; Mueller, C.; Yu, L.; Choudhary, J.; Brochet, M.; Soldati-Favre, D. Crosstalk between PKA and PKG controls pH-dependent host cell egress of Toxoplasma gondii. EMBO J. 2017, 36, 3250–3267. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Ding, Y.; Zhou, Z.; Nie, H.-G.; Ji, H.-L. Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int. J. Mol. Sci. 2018, 19, 881. https://doi.org/10.3390/ijms19030881
Chang J, Ding Y, Zhou Z, Nie H-G, Ji H-L. Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. International Journal of Molecular Sciences. 2018; 19(3):881. https://doi.org/10.3390/ijms19030881
Chicago/Turabian StyleChang, Jianjun, Yan Ding, Zhiyu Zhou, Hong-Guang Nie, and Hong-Long Ji. 2018. "Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals" International Journal of Molecular Sciences 19, no. 3: 881. https://doi.org/10.3390/ijms19030881
APA StyleChang, J., Ding, Y., Zhou, Z., Nie, H. -G., & Ji, H. -L. (2018). Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. International Journal of Molecular Sciences, 19(3), 881. https://doi.org/10.3390/ijms19030881