Ubiquitin System
Acknowledgments
Conflicts of Interest
References
- Goldstein, G.; Scheid, M.; Hammerling, U.; Schlesinger, D.H.; Niall, H.D.; Boyse, E.A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci. 2016, 8, 303. [Google Scholar] [CrossRef] [PubMed]
- Yau, R.; Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 2016, 18, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, P.V. Regulation of ubiquitin enzymes in the TGF-β pathway. Int. J. Mol. Sci. 2017, 18, 877. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.K.; Chang, Y.T.; Korinek, M.; Chen, Y.T.; Yang, Y.T.; Leu, S.; Lin, I.L.; Tang, C.J.; Chiu, C.C. The regulations of deubiquitinase USP15 and its pathophysiological mechanisms in diseases. Int. J. Mol. Sci. 2017, 18, 483. [Google Scholar] [CrossRef] [PubMed]
- Witowsky, J.A.; Johnson, G.L. Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J. Biol. Chem. 2003, 278, 1403–1406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, Y.; Gan, X.; Huang, Z.; Zou, M.; Fu, W.; Xing, W.; Xu, D. SAK-HV decreases the self-ubiquitination of MEKK1 to promote macrophage proliferation via MAPK/ERK and JNK pathways. Int. J. Mol. Sci. 2017, 18, 835. [Google Scholar] [CrossRef] [PubMed]
- Telesio, G.; Scudiero, I.; Pizzulo, M.; Mazzone, P.; Zotti, T.; Voccola, S.; Polvere, I.; Vito, P.; Stilo, R. The E3 ubiquitin ligase RNF7 negatively regulates CARD14/CARMA2sh signaling. Int. J. Mol. Sci. 2017, 18, 2581. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, J.; Arévalo, J.C. A review on ubiquitination of neurotrophin receptors: Facts and perspectives. Int. J. Mol. Sci. 2017, 18, 630. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.; Shenoy, S.K. GPCR desensitization: Acute and prolonged phases. Cell Signal. 2018, 41, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, B.; Bozzaro, S.; Bracco, E. G-protein dependent signal transduction and ubiquitination in Dictyostelium. Int. J. Mol. Sci. 2017, 18, 2180. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.B.; Banaszczak, M.; Ni, Y.; Aretz, I.; Meierhofer, D. ρ0 cells feature de-ubiquitination of SLC transporters and increased levels and fluxes of amino acids. Int. J. Mol. Sci. 2017, 18, 879. [Google Scholar] [CrossRef] [PubMed]
- Aretz, I.; Hardt, C.; Wittig, I.; Meierhofer, D. An impaired respiratory electron chain triggers down-regulation of the energy metabolism and de-ubiquitination of solute carrier amino acid transporters. Mol. Cell. Proteom. 2016, 15, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Yokoe, S.; Asahi, M. Phospholamban is downregulated by pVHL-mediated degradation through oxidative stress in failing heart. Int. J. Mol. Sci. 2017, 18, 2232. [Google Scholar] [CrossRef] [PubMed]
- Dubrez, L. Regulation of E2F1 transcription factor by ubiquitin conjugation. Int. J. Mol. Sci. 2017, 18, 2188. [Google Scholar] [CrossRef] [PubMed]
- Boutouja, F.; Brinkmeier, R.; Mastalski, T.; El Magraoui, F.; Platta, H.W. Regulation of the tumor-suppressor BECLIN 1 by distinct ubiquitination cascades. Int. J. Mol. Sci. 2017, 18, 2541. [Google Scholar] [CrossRef] [PubMed]
- Allan, D.C.; Phillips, J.C. Why ubiquitin has not evolved. Int. J. Mol. Sci. 2017, 18, 1995. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, D.; Walinda, E.; Sugase, K.; Shirakawa, M. Biological and physicochemical functions of ubiquitylation revealed by synthetic chemistry approaches. Int. J. Mol. Sci. 2017, 18, 1145. [Google Scholar] [CrossRef] [PubMed]
- McDowell, G.S.; Philpott, A. Non-canonical ubiquitylation: Mechanisms and consequences. Int. J. Biochem. Cell Biol. 2013, 45, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lanzas, R.; Castaño, J.G. Lysine-less variants of spinal muscular atrophy SMN and SMNΔ7 proteins are degraded by the proteasome pathway. Int. J. Mol. Sci. 2017, 18, 2667. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Maldonado, M.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol. 2006, 3, 255–261. [Google Scholar] [PubMed]
- Rossi, S.; Gesualdo, C.; Maisto, R.; Trotta, M.C.; Di Carluccio, N.; Brigida, A.; Di Iorio, V.; Testa, F.; Simonelli, F.; D’Amico, M.; et al. High levels of serum ubiquitin and proteasome in a case of HLA-B27 uveitis. Int. J. Mol. Sci. 2017, 18, 505. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, S.; Satoh, M.; Takiwaki, M.; Nomura, F. Ubiquitination in periodontal disease: A review. Int. J. Mol. Sci. 2017, 18, 1476. [Google Scholar] [CrossRef] [PubMed]
- Wilck, N.; Fechner, M.; Dan, C.; Stangl, V.; Stangl, K.; Ludwig, A. The effect of low-dose proteasome inhibition on pre-existing atherosclerosis in LDL receptor-deficient mice. Int. J. Mol. Sci. 2017, 18, 781. [Google Scholar] [CrossRef] [PubMed]
- Wilck, N.; Fechner, M.; Dreger, H.; Hewing, B.; Arias, A.; Meiners, S.; Baumann, G.; Stangl, V.; Stangl, K.; Ludwig, A. Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Roselló, A.; Verde, E.; Amine Zaouali, M.; Flores, M.; Alva, N.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Hotter, G.; Adam, R.; et al. The relevance of the UPS in fatty liver graft preservation: A new approach for IGL-1 and HTK solutions. Int. J. Mol. Sci. 2017, 18, 2287. [Google Scholar] [CrossRef] [PubMed]
- Mikamo, M.; Kitagawa, K.; Sakai, S.; Uchida, C.; Ohhata, T.; Nishimoto, K.; Niida, H.; Suzuki, S.; Nakayama, K.I.; Inui, N.; et al. Inhibiting Skp2 E3 ligase suppresses bleomycin-induced pulmonary fibrosis. Int. J. Mol. Sci. 2018, 19, 474. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, N. Ubiquitin System. Int. J. Mol. Sci. 2018, 19, 1080. https://doi.org/10.3390/ijms19041080
Nakamura N. Ubiquitin System. International Journal of Molecular Sciences. 2018; 19(4):1080. https://doi.org/10.3390/ijms19041080
Chicago/Turabian StyleNakamura, Nobuhiro. 2018. "Ubiquitin System" International Journal of Molecular Sciences 19, no. 4: 1080. https://doi.org/10.3390/ijms19041080
APA StyleNakamura, N. (2018). Ubiquitin System. International Journal of Molecular Sciences, 19(4), 1080. https://doi.org/10.3390/ijms19041080