Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy
Abstract
:1. Introduction
2. Kruppel-Like Factor 15 and Cardiac Hypertrophy
2.1. Mouse Models of KLF15 Gene Deletion, Overexpression and Cardiac Hypertrophy
2.2. Rat Models of Cardiac Hypertrophy and KLF15
2.3. In Vitro KLF15 and LVH Studies
2.4. KLF15 Knock Down or Overexpression
2.5. Hypertrophy Induced by Stimulation with Pro-Hypertrophic Factors
3. Human Studies of KLF15
3.1. KLF15 Expression in Human Cardiac Tissue
3.2. Genetic Studies of KLF15 in Patients with LVH
4. Proposed Mechanisms: KLF15 and Cardiac Hypertrophy
5. Summary
Conflicts of Interest
References
- Levy, D.; Garrison, R.J.; Savage, D.D.; Kannel, W.B.; Castelli, W.P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 1990, 322, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.M.; Calafiore, P.; Macisaac, R.J.; Patel, S.K.; Thomas, M.C.; Jerums, G.; Burrell, L.M. Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with Type 2 diabetes. Clin. Sci. 2008, 114, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Modin, D.; Biering-Sørensen, S.R.; Mogelvang, R.; Landler, N.; Jensen, J.S.; Biering-Sørensen, T. Prognostic Value of Echocardiography in Hypertensive Versus Nonhypertensive Participants From the General Population. Hypertension 2018, 71, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Kearney, L.; Ord, M.; Buxton, B.; Matalanis, G.; Patel, S.; Burrell, L.; Srivastava, P. Usefulness of the Charlson co-morbidity index to predict outcomes in patients >60 years old with aortic stenosis during 18 years of follow-up. Am. J. Cardiol. 2012, 110, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.M.; Keane, P.; Delafontaine, D.; Dries, E.; Foster, C.A.; Gadegbeku, A.S.; Go, L.L.; Hamm, J.W.; Kusek, A.O.; Ojo, M.; et al. A longitudinal study of left ventricular function and structure from CKD to ESRD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2013, 8, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Roman, M.J.; De Simone, G.; O’Grady, M.J.; Paranicas, M.; Yeh, J.; Fabsitz, R.R.; Howard, B.V. Relations of left ventricular mass to demographic and hemodynamic variables in American Indians: The Strong Heart Study. Circulation 1997, 96, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Dahlof, B.R.B.; Devereux, S.E.; Kjeldsen, S.; Julius, G.; Beevers, U.; de Faire, F.; Fyhrquist, H.; Ibsen, K.; Kristiansson, O.; Lederballe-Pedersen, L.H.; et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 2002, 359, 995–1003. [Google Scholar] [CrossRef]
- Diez, J.B.; Lopez, A.; Gonzalez, A.; Querejeta, R. Clinical aspects of hypertensive myocardial fibrosis. Curr. Opin. Cardiol. 2001, 16, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 2006, 7, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.M.Y.; Lu, D.; Jeyaraj, D.; Kawanami, Y.; Cui, S.J.; Eapen, C.; Hao, Y.; Li, Y.Q.; Doughman, M.; Watanabe, K.; et al. KLF15 deficiency is a molecular link between heart failure and aortic aneurysm formation. Sci. Transl. Med. 2010, 2. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, D.T.; Hoey, T.; Levine, M. Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Kruppel in Drosophila. Nature 1989, 341, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.S.M.; Haldar, Y.; Lu, O.A.; Ibrahim, S.; Fisch, S.; Gray, A.; Leask, A.; Jain, M.K. The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J. Mol. Cell Cardiol. 2008, 45, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Fisch, S.S.; Gray, S.; Heymans, S.M.; Haldar, B.; Wang, O.; Pfister, L.; Cui, A.; Kumar, Z.; Lin, S.; Sen-Banerjee, H.; et al. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 2007, 104, 7074–7079. [Google Scholar] [CrossRef] [PubMed]
- Prosdocimo, D.A.P.; Anand, X.; Liao, H.; Zhu, S.; Shelkay, P.; Artero-Calderon, L.; Zhang, J.; Kirsh, D.; Moore, M.G.; Rosca, E.; et al. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J. Biol. Chem. 2014, 289, 5914–5924. [Google Scholar] [CrossRef] [PubMed]
- Leenders, J.J.W.J.; Wijnen, M.; Hiller, I.; van der Made, V.; Lentink, R.E.; van Leeuwen, V.; Herias, S.; Pokharel, S.; Heymans, L.J.; de Windt, M.A.; et al. Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity. J. Biol. Chem. 2010, 285, 27449–27456. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.Y.; Guo, X.; Liu, D.; Shang, D.; Du, Y. KLF15 protects against isoproterenol-induced cardiac hypertrophy via regulation of cell death and inhibition of Akt/mTOR signaling. Biochem. Biophys. Res. Commun. 2017, 487, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ma, J.; Xiao, Y.; Yang, Q.; Kang, H.; Zhen, J.; Chen, L. KLF15 is an essential negative regulatory factor for the cardiac remodeling response to pressure overload. Cardiology 2015, 130, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Leenders, J.J.; Wijnen, W.J.; van Der Made, I.; Hiller, M.; Swinnen, M.; Vandendriessche, T.; Chuah, M.; Pinto, Y.M.; Creemers, E.E. Repression of cardiac hypertrophy by KLF15: Underlying mechanisms and therapeutic implications. PLoS ONE 2012, 7, e36754. [Google Scholar] [CrossRef] [PubMed]
- Horie, T.; Ono, K.; Nishi, H.; Iwanaga, Y.; Nagao, K.; Kinoshita, M.; Kuwabara, Y.; Takanabe, R.; Hasegawa, K.; Kita, T.; et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem. Biophys. Res. Commun. 2009, 389, 315–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langheinrich, M.; Ae Lee, M.; Böhm, M.; Pinto, Y.M.; Ganten, D.; Paul, M. The hypertensive Ren-2 transgenic rat TGR (mREN2)27 in hypertension research. Characteristics and functional aspects. Am. J. Hypertens. 1996, 9, 506–512. [Google Scholar] [CrossRef]
- Heymans, S.B.; Schroen, P.; Vermeersch, H.; Milting, F.; Gao, A.; Kassner, H.; Gillijns, P.; Herijgers, W.; Flameng, P.; Carmeliet, F.; et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005, 112, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, A.K.; Drosatos, F.H.; Cheema, R.; Ji, T.; Khawaja, S.; Yu, T.; Kato, R.; Khan, H.; Takayama, R.; Knoll, H.; et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 2012, 125, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Bella, J.N.; Goring, H.H. Genetic epidemiology of left ventricular hypertrophy. Am. J. Cardiovasc. Dis. 2012, 2, 267–278. [Google Scholar] [PubMed]
- Patel, S.K.; Wai, B.; Lang, C.C.; Levin, D.; Palmer, C.N.; Parry, H.M.; Velkoska, E.; Harrap, S.B.; Srivastava, P.M.; Burrell, L.M. Genetic variation in Kruppel like factor 15 is associated with left ventricular hypertrophy in patients with type 2 diabetes: Discovery and replication cohorts. EBioMedicine 2017, 18, 171–178. [Google Scholar] [CrossRef] [PubMed]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar]
- Ferreira, K.K.; de Morais Gomes, E.R.; de Lima Filho, J.L.; Castelletti, C.H.; Martins, D.B. Bioinformatics analysis of non-synonymous variants in the KLF genes related to cardiac diseases. Gene 2018, 650, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Varga, J. The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. J. Cell. Physiol. 2007, 213, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Candido, R.; Forbes, J.M.; Thomas, M.C.; Thallas, V.; Dean, R.G.; Burns, W.C.; Tikellis, C.; Ritchie, R.H.; Twigg, S.M.; Cooper, M.E.; et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ. Res. 2003, 92, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Tandler, B.; Fujioka, H.; Hoppel, C.L.; Haldar, S.M.; Jain, M.K. Megamitochondria in Cardiomyocytes of a Knockout (KLF15−/−) Mouse. Ultrastruct. Pathol. 2015, 39, 336–339. [Google Scholar] [CrossRef] [PubMed]
Experiment | Model/Animal Strain | Control Group | Summary of Main Findings | References |
---|---|---|---|---|
Genetic models | Ascending aortic constriction in KLF15 (−/−) and KLF15 (+/+) C57BL/6 mice | Sham-operation | KLF15 (−/−) vs. (+/+) - ↓ LV FS, ↑ cavity size; AAC in KLF15 (−/−) led to ↑ LV cavity dilation, ↓ systolic function,↑ cardiac mass, ↑ cardiomyocyte cell size, ↑ ANF and BNP mRNA | Fisch S et al., 2007 [13] |
Ascending aortic constriction in KLF15 (−/−) and KLF15 (+/+) C57BL/6 mice | Sham-operation | AAC led to ↑ cardiac CTGF mRNA in KLF15 (−/−); no change in controls | Wang B et al., 2008 [12] | |
Ang II infusion in KLF15 (−/−) C57BL/6 mice | Saline infusion in KLF15 (+/+) mice | Ang II led to ↑ cardiac mass and cavity dilation, ↓ systolic function, ↓ LV KLF15 mRNA, ↑ ANF expression vs. control | Halder et al., 2010 [10] | |
Hypertension induced LVH | High salt diet in Dahl salt-sensitive rats; LVH at 11 weeks and heart failure at 17 weeks | Age-matched low salt diet | Further ↓ cardiac KLF15 mRNA as LVH progressed to heart failure; ↑ ANP with LVH and further ↓ with heart failure | Horie T et al., 2009 [19] |
Time course of cardiac biopsies in hypertensive transgenic TGR(mRen2)27 rats (Ren-2) | Wildtype littermates | Cardiac KLF15 mRNA ↓ with progression from LVH to heart failure | Leenders et al., 2010 [15] | |
14-day Ang II infusion in C57BL/6 male mice. | Saline infusion | ↓ KLF15 mRNA expression in ventricle | Halder et al., 2010 [10] | |
Adenoviral (AAV9) KLF15 or GFP (control vector) over-expression in 8-week-old C57BL/6 mice + 28-day Ang II infusion | Saline infusion | ↑ Interstitial fibrosis in both groups compared to controls; ↓ cardiac hypertrophy and cardiomyocyte area in AAV9-KLF15/Ang II vs. AAV9-GFP/Ang II | Leenders et al., 2012 [18] | |
5-week isoproterenol or vehicle infusion in KLF15 (−/−) C57BL/6 mice | KLF15 (+/+) mice | ↑ Cardiac mass, ↑ cardiomyocyte cross-sectional area, ↑ fibrosis in KLF15 (−/−) isoproterenol vs. vehicle; ↔ cardiac mass, cell size and fibrosis in KLF15 (+/+) isoproterenol vs. vehicle | Gao et al., 2017 [16] | |
Surgical induction of LVH | Pressure-overload hypertrophy induced by TAC in adult male Sprague-Dawley rats | No control group | ↓ KLF15 LV mRNA expression at 2-days post-TAC and further ↓ at 7-days post-TAC | Fisch S et al., 2007 [13] |
Aortic banding in Sprague-Dawley rats with debanding at 3 and 6-weeks post-surgery | Time-matched sham-operated rats | ↓ Cardiac KLF15 mRNA, ↑ interstitial fibrosis, ↑ CTGF and ↑ TGFβ mRNA at 3- and 6-week post-banding; debanding led to ↑ cardiac KLF15 and ↓ TGFβ mRNA | Yu et al., 2014 [17] |
Experiment Type | Experimental Model/Cell | Control Group | Summary of Main Findings | References |
---|---|---|---|---|
KLF15 gene silencing | Neonatal rat (Lewis) and mouse (FBV mice) cardiomyocytes treated with 2 siRNAs against KLF15 | Cells with non-targeted control siRNA | ↑ Cardiomyocyte size, ↑ANP mRNA | Leender et al., 2010 [15] |
Neonatal Sprague-Dawley rat primary cardiac fibroblasts with viral KLF15 gene silencing. Hypertrophy induced with TGFβ | Fibroblasts either without TGFβ stimulation or control virus | ↓ KLF15 mRNA | Yu et al., 2014 [17] | |
KLF15 overexpression | Adenoviral overexpression of KLF15 in NRVM | GFP control vector | ↓ ANP and BNP mRNA; ↓ cardiomyocyte size under basal and phenylephrine stimulated hypertrophy | Fisch S et al., 2007 [13] |
Lentiviral overexpression of KLF15 in neonatal rat (Lewis) cardiomyocytes | Cells with control vector | ↓ ANP mRNA, ↔ cardiomyocyte size | Leender et al., 2010 [15] | |
Neonatal Sprague-Dawley rat primary cardiac fibroblasts with adenoviral KLF15 overexpression. Hypertrophy induced with TGFβ. | Fibroblasts either without TGFβ stimulation or control virus | ↑ KLF15 protein, ↓ fibrosis and hypertrophy, ↓ CTGF mRNA with TGFβ stimulation and KLF15 overexpression | Yu et al., 2014 [17] | |
Adenoviral overexpression of KLF15 in NRVF | GFP control vector | Inhibits basal and TGFβ induced CTGF expression | Wang et al., 2008 [12] | |
Cardiac hypertrophy induced by pro-hypertrophic stimuli | Isolated NRVM. Stimulation of hypertrophy with phenylephrine, endothelin-1. | No controls | ↓ KLF15 and ↑ANP and BNP mRNA expression with pro-hypertrophic stimuli | Fisch S et al., 2007 [13] |
Isolated NRVF 2 day old Sprague-Dawley rats stimulated with TGFβ | NRVF under basal conditions | ↓ KLF15 and ↓ CTGF mRNA post TGFβ1 stimulation | Wang et al., 2008 [12] | |
Neonatal rat (Lewis) LV cardiomyocytes. Stimulation of hypertrophy (phenylephrine, endothelin-1, TGFβ) or by stimuli known to stimulate physiological hypertrophy (insulin, IGF-1, IGF-2) | Control cells | ↓ KLF15 expression with all hypertrophic stimuli. ↔ KLF15 expression with physiological growth. TGFβ knockdown abolished ↓ KLF15 | Leender et al., 2010 [15] | |
Neonatal rat (Lewis) and mouse (FBV mice) cardiomyocytes, treated with two p38 MAPK inhibitors and TGFβ stimulation | Cells without p38 MAPK inhibitor or TGFβ stimulation. | TGFβ – induced ↓ KLF15 expression abolished by p38 MAPK inhibitors | Leender et al. 2010 [15] |
Population Group and Sample Size (n) | Summary of Main Findings | References |
---|---|---|
LV tissue from patients with LVH due to aortic stenosis (n = 8) and control subjects undergoing CABG without LVH (n = 6). | KLF15 protein detected in nuclei of myocytes from control patients. ↓ cardiac KLF15 protein in LVH due to aortic stenosis | Fisch S et al. 2007 [13] |
LV tissue from heart transplant patients with systolic heart failure (non-ischemic cardiomyopathy, n = 36) and non-failing control hearts (n = 30). | ↓ cardiac KLF15 mRNA in failing hearts | Halder et al. 2010 [10] |
LV tissue taken pre- and post-LVAD implantation/explantation in end-stage heart failure patients and non-failing hearts. (n = 3–4/group) | ↓ cardiac KLF15 mRNA pre-LVAD compared to control non-failing hearts. ↑ cardiac KLF15 mRNA expression post LVAD | Prosdocimo et al. 2014 [14] |
Type 2 diabetes patients (n = 318) with LVH and heart failure outcomes; replication LVH cohort (n = 5631) | ↑ LV mass and LVH with KLF15 SNP rs9838915 A allele; finding replicated in independent cohort. KLF15 rs9838915 A allele predicted development of first hospitalization with heart failure | Patel et al. 2017 [24] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.K.; Ramchand, J.; Crocitti, V.; Burrell, L.M. Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. Int. J. Mol. Sci. 2018, 19, 1303. https://doi.org/10.3390/ijms19051303
Patel SK, Ramchand J, Crocitti V, Burrell LM. Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. International Journal of Molecular Sciences. 2018; 19(5):1303. https://doi.org/10.3390/ijms19051303
Chicago/Turabian StylePatel, Sheila K., Jay Ramchand, Vincenzo Crocitti, and Louise M. Burrell. 2018. "Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy" International Journal of Molecular Sciences 19, no. 5: 1303. https://doi.org/10.3390/ijms19051303
APA StylePatel, S. K., Ramchand, J., Crocitti, V., & Burrell, L. M. (2018). Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. International Journal of Molecular Sciences, 19(5), 1303. https://doi.org/10.3390/ijms19051303