Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses
Abstract
:1. Introduction
2. Results
2.1. Nucleotide Composition
2.2. Codon Usage Bias Analysis
2.3. Codon Usage Indices Analysis
2.4. Trends in Codon Usage Variations
2.5. Identification of the Forces Influencing Codon Usage Patterns
2.6. Natural Selection Plays a Major Role in the Codon Usage Pattern of Lyssaviruses
2.7. Dinucleotide Abundance Influences the Codon Usage Bias of Lyssaviruses
3. Discussion
4. Materials and Methods
4.1. Database
4.2. Nucleotide Composition Analysis
4.3. Relative Synonymous Codon Usage (RSCU) Analysis
4.4. Principal Component (PCA) Analysis
4.5. Effective Number of Codons (ENC) Analysis
4.6. Parity Rule 2 (PR2) Analysis
4.7. Correlation Analysis
4.8. Neutrality Plot Analysis
4.9. Dinucleotide Frequency Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Streicker, D.G.; Altizer, S.M.; Velasco-Villa, A.; Rupprecht, C.E. Variable evolutionary routes to host establishment across repeated rabies virus host shifts among bats. Proc. Natl. Acad. Sci. USA 2012, 109, 19715–19720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finke, S.; Conzelmann, K.K. Replication strategies of rabies virus. Virus Res. 2005, 111, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Hemachudha, T.; Ugolini, G.; Wacharapluesadee, S.; Sungkarat, W.; Shuangshoti, S.; Laothamatas, J. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013, 12, 498–513. [Google Scholar] [CrossRef]
- Bourhy, H.; Dautry-Varsat, A.; Hotez, P.J.; Salomon, J. Rabies, Still Neglected after 125 Years of Vaccination. PLoS Negl. Trop. Dis. 2010, 4, e839. [Google Scholar] [CrossRef] [PubMed]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M. Selected highlights from other journals: Estimating the global burden of canine rabies. Vet. Rec. 2015, 178, 599. [Google Scholar]
- Huang, A.S.E.; Chen, W.C.; Huang, W.T.; Huang, S.T.; Lo, Y.C.; Wei, S.H.; Kuo, H.W.; Chan, P.C.; Hung, M.N.; Liu, Y.L.; et al. Public Health Responses to Reemergence of Animal Rabies, Taiwan, July 16–December 28, 2013. PLoS ONE 2015, 10, e0132160. [Google Scholar] [CrossRef] [PubMed]
- Badrane, H.; Bahloul, C.; Perrin, P.; Tordo, N. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J. Virol. 2001, 75, 3268–3276. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Amarasinghe, G.K.; Banyai, K.; Bao, Y.M.; Basler, C.F.; Bavari, S.; Bejerman, N.; Blasdell, K.R.; Briand, F.X.; Briese, T.; et al. Taxonomy of the order Mononegavirales: Update 2016. Arch. Virol. 2016, 161, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, N.A.; Moron, S.V.; Berciano, J.M.; Nicolas, O.; Lopez, C.A.; Juste, J.; Nevado, C.R.; Setien, A.A.; Echevarria, J.E. Novel Lyssavirus in Bat, Spain. Emerg. Infect. Dis. 2013, 19, 793–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunawardena, P.S.; Marston, D.A.; Ellis, R.J.; Wise, E.L.; Karawita, A.C.; Breed, A.C.; McElhinney, L.M.; Johnson, N.; Banyard, A.C.; Fooks, A.R. Lyssavirus in Indian Flying Foxes, Sri Lanka. Emerg. Infect. Dis. 2016, 22, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.C.; Hsu, C.L.; Lee, M.S.; Tu, Y.C.; Chang, J.C.; Wu, C.H.; Lee, S.H.; Ting, L.J.; Tsai, K.R.; Cheng, M.C.; et al. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg. Infect. Dis. 2018, 24, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Nokireki, T.; Tammiranta, N.; Kokkonen, U.M.; Kantala, T.; Gadd, T. Tentative novel lyssavirus in a bat in Finland. Transbound. Emerg. Dis. 2018, 65, 593–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourhy, H.; Kissi, B.; Audry, L.; Smreczak, M.; Sadkowskatodys, M.; Kulonen, K.; Tordo, N.; Zmudzinski, J.F.; Holmes, E.C. Ecology and evolution of rabies virus in Europe. J. Gen. Virol. 1999, 80, 2545–2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollentze, N.; Biek, R.; Streicker, D.G. The role of viral evolution in rabies host shifts and emergence. Curr. Opin. Virol. 2014, 8, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Turmelle, A.; Kuzmin, I.V. A perspective on lyssavirus emergence and perpetuation. Curr. Opin. Virol. 2011, 1, 662–670. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, L.M.; Marston, D.A.; Wise, E.L.; Freuling, C.M.; Bourhy, H.; Zanoni, R.; Moldal, T.; Kooi, E.A.; Neubauer-Juric, A.; Nokireki, T.; et al. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2. Int. J. Mol. Sci. 2018, 19, E156. [Google Scholar] [CrossRef] [PubMed]
- Vicario, S.; Moriyama, E.N.; Powell, J.R. Codon usage in twelve species of Drosophila. BMC Evol. Biol. 2007, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.C.; Zheng, H.; Xu, A.Y.; Yan, D.H.; Jiang, Z.J.; Qi, Q.; Sun, J.C. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution. BMC Genom. 2016, 17, 677. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ji, S.; Zhai, X.; Zhang, Y.; Liu, J.; Zhu, M.; Zhou, J.; Su, S. Evolutionary and genetic analysis of the VP2 gene of canine parvovirus. BMC Genom. 2017, 18, 534. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Uddin, A.; Choudhury, M.N. Factors affecting the codon usage bias of SRY gene across mammals. Gene 2017, 630, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.K.; Kundu, S.; Das, R.; Roy, S. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes. J. Biomol. Struct. Dyn. 2016, 34, 1649–1666. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ma, X.S.; Luo, X.N.; Ling, H.J.; Zhang, X.C.; Cai, X.P. Codon Usage Bias and Determining Forces in Taenia solium Genome. Korean J. Parasitol. 2015, 53, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; He, J.; Jia, X.; Qi, Q.; Liang, Z.S.; Zheng, H.; Ping, Y.; Liu, S.Y.; Sun, J.C. Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol. Biol. 2014, 14, 262. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Nevado, C.; Lam, T.T.; Holmes, E.C.; Pagan, I. The impact of host genetic diversity on virus evolution and emergence. Ecol. Lett. 2018, 21, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Deviatkin, A.A.; Lukashev, A.N. Recombination in the rabies virus and other lyssaviruses. Infect. Genet. Evol. 2018, 60, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Buthelezi, S.G.; Dirr, H.W.; Chakauya, E.; Chikwamba, R.; Martens, L.; Tsekoa, T.L.; Stoychev, S.H.; Vandermarliere, E. The Lyssavirus glycoprotein: A key to cross-immunity. Virology 2016, 498, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Desmaris, N.; Bosch, A.; Salaun, C.; Petit, C.; Prevost, M.C.; Tordo, N.; Perrin, P.; Schwartz, O.; de Rocquigny, H.; Heard, J.M. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol. Ther. 2001, 4, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Sabeta, C. Role of the glycoprotein G in lyssavirus pathogenicity. Future Virol 2015, 10, 1177–1184. [Google Scholar] [CrossRef]
- Nel, L.H.; Rupprecht, C.E. Emergence of Lyssaviruses in the old world: The case of Africa. Curr. Top. Microbiol. Immunol. 2007, 315, 161–193. [Google Scholar] [PubMed]
- Hayman, D.T.; Fooks, A.R.; Marston, D.A.; Garcia, R.J. The Global Phylogeography of Lyssaviruses-Challenging the “Out of Africa” Hypothesis. PLoS Negl. Trop. Dis. 2016, 10, e0005266. [Google Scholar] [CrossRef] [PubMed]
- Streicker, D.G. Science & SciLifeLab Prize. From persistence to cross-species emergence of a viral zoonosis. Science 2013, 342, 1185–1186. [Google Scholar] [PubMed]
- He, W.; Zhang, H.; Zhang, Y.; Wang, R.; Lu, S.; Ji, Y.; Liu, C.; Yuan, P.; Su, S. Codon usage bias in the N gene of rabies virus. Infect. Genet. Evol. 2017, 54, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Morla, S.; Makhija, A.; Kumar, S. Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene 2016, 584, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Gu, W.; Ma, J.; Sun, X.; Lu, Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 2005, 81, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bera, B.C.; Greenbaum, B.D.; Bhatia, S.; Sood, R.; Selvaraj, P.; Anand, T.; Tripathi, B.N.; Virmani, N. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses. PLoS ONE 2016, 11, e0154376. [Google Scholar] [CrossRef] [PubMed]
- Cristina, J.; Moreno, P.; Moratorio, G.; Musto, H. Genome-wide analysis of codon usage bias in Ebolavirus. Virus Res. 2015, 196, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.S.; Wang, Q.Q.; Zhang, J.; Chen, H.T.; Xu, Z.W.; Zhu, L.; Ding, Y.Z.; Ma, L.N.; Xu, K.; Gu, Y.X.; et al. The characteristic of codon usage pattern and its evolution of hepatitis C virus. Infect. Genet. Evol. 2011, 11, 2098–2102. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, Y.; Deng, H.; Gu, T.; Xu, J.; Ou, J.; Jiang, Z.; Jiao, Y.; Zou, T.; Wang, C. Characterization of the porcine epidemic diarrhea virus codon usage bias. Infect. Genet. Evol. 2014, 28, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.M.; Nasrullah, I.; Qamar, R.; Tong, Y.G. Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg. Microbes Infect. 2016, 5, e107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yan, B.; Chen, S.; Wang, M.S.; Jia, R.Y.; Cheng, A.C. Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns. Infect. Genet. Evol. 2015, 35, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Knuefermann, P.; Baumgarten, G.; Koch, A.; Schwederski, M.; Velten, M.; Ehrentraut, H.; Mersmann, J.; Meyer, R.; Hoeft, A.; Zacharowski, K.; et al. CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir. Res. 2007, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorn, A.; Kippenberger, S. Clinical application of CpG-, non-CpG-, and antisense oligodeoxynucleotides as immunomodulators. Curr. Opin. Mol. Ther. 2008, 10, 10–20. [Google Scholar] [PubMed]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Gu, M.; Liu, D.; Cui, J.; Gao, G.F.; Zhou, J.; Liu, X. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends Microbiol. 2017, 25, 713–728. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Fu, X.; Li, G.; Kerlin, F.; Veit, M. Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics. Virulence 2017, 8, 1580–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gene. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, P.M.; Li, W.H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.H.M.; Smith, D.K.; Rabadan, R.; Peiris, M.; Poon, L.L.M. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol. Biol. 2010, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishisato, S. Theory and Applications of Correspondence-Analysis-Greenacre,Mj. Psychometrika 1985, 50, 376–377. [Google Scholar]
- Bera, B.C.; Virmani, N.; Kumar, N.; Anand, T.; Pavulraj, S.; Rash, A.; Elton, D.; Rash, N.; Bhatia, S.; Sood, R.; et al. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genom. 2017, 18, 652. [Google Scholar] [CrossRef] [PubMed]
- Wright, F. The Effective Number of Codons Used In a Gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Yin, X.; Lin, Y.Z.; Cai, W.G.; Wei, P.; Wang, X.J. Comprehensive analysis of the overall codon usage patterns in equine infectious anemia virus. Virol. J. 2013, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sueoka, N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene. 1999, 238, 53–58. [Google Scholar] [CrossRef]
- Sueoka, N. Intrastrand Parity Rules of DNA-Base Composition and Usage Biases of Synonymous Codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 1988, 85, 2653–2657. [Google Scholar] [CrossRef] [PubMed]
- Karlin, S.; Burge, C. Dinucleotide relative abundance extremes: A genomic signature. Trends Genet. 1995, 11, 283–290. [Google Scholar] [PubMed]
- Nasrullah, I.; Butt, A.M.; Tahir, S.; Idrees, M.; Tong, Y.G. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evol. Biol. 2015, 15, 174. [Google Scholar] [CrossRef] [PubMed]
Amino Acid | Codon | RABV | ABLV | EBLV | LBV | DUVV | MOKV |
---|---|---|---|---|---|---|---|
Phe | UUU | 0.95 | 1.08 | 0.86 | 1.01 | 0.87 | 0.93 |
UUC | 1.05 | 0.92 | 1.14 | 0.99 | 1.13 | 1.07 | |
Leu | UUA | 0.68 | 0.69 | 0.66 | 0.88 | 0.87 | 0.89 |
UUG | 1.38 | 1.37 | 1.83 | 1.68 | 1.57 | 1.45 | |
CUU | 0.92 | 1.05 | 0.84 | 0.76 | 0.91 | 0.80 | |
CUC | 0.89 | 0.93 | 0.88 | 0.71 | 0.96 | 0.88 | |
CUA | 0.88 | 0.83 | 0.61 | 0.85 | 0.58 | 0.77 | |
CUG | 1.25 | 1.13 | 1.18 | 1.12 | 1.12 | 1.22 | |
Ile | AUU | 0.80 | 0.89 | 0.83 | 1.02 | 0.96 | 0.82 |
AUC | 1.16 | 1.06 | 1.05 | 0.88 | 1.03 | 1.00 | |
AUA | 1.04 | 1.04 | 1.12 | 1.10 | 1.01 | 1.19 | |
Val | GUU | 1.02 | 1.09 | 0.85 | 1.12 | 1.01 | 0.92 |
GUC | 1.15 | 1.17 | 1.03 | 0.87 | 1.21 | 1.16 | |
GUA | 0.65 | 0.62 | 0.69 | 0.86 | 0.67 | 0.63 | |
GUG | 1.18 | 1.12 | 1.44 | 1.14 | 1.11 | 1.29 | |
Ser | UCU | 1.80 | 1.76 | 1.51 | 2.09 | 1.76 | 2.05 |
UCC | 1.14 | 1.13 | 1.30 | 0.84 | 1.35 | 1.03 | |
UCA | 1.38 | 1.43 | 1.37 | 1.42 | 1.37 | 1.24 | |
UCG | 0.49 | 0.45 | 0.46 | 0.32 | 0.26 | 0.34 | |
AGU | 0.64 | 0.69 | 0.76 | 0.78 | 0.80 | 0.64 | |
AGC | 0.55 | 0.53 | 0.60 | 0.55 | 0.46 | 0.69 | |
Pro | CCU | 1.49 | 1.48 | 1.58 | 1.57 | 1.43 | 1.61 |
CCC | 1.07 | 0.81 | 0.83 | 0.89 | 0.95 | 1.01 | |
CCA | 0.87 | 1.15 | 0.95 | 1.06 | 1.09 | 0.88 | |
CCG | 0.56 | 0.55 | 0.64 | 0.48 | 0.53 | 0.50 | |
Thr | ACU | 1.13 | 1.22 | 1.29 | 1.18 | 1.08 | 1.29 |
ACC | 1.32 | 1.12 | 1.18 | 1.02 | 1.15 | 1.06 | |
ACA | 1.21 | 1.38 | 1.16 | 1.53 | 1.47 | 1.44 | |
ACG | 0.35 | 0.28 | 0.36 | 0.27 | 0.30 | 0.21 | |
Ala | GCU | 1.20 | 1.17 | 1.03 | 1.17 | 1.33 | 1.13 |
GCC | 1.12 | 1.18 | 1.25 | 0.96 | 0.95 | 1.07 | |
GCA | 1.31 | 1.37 | 1.43 | 1.55 | 1.38 | 1.42 | |
GCG | 0.37 | 0.27 | 0.29 | 0.32 | 0.34 | 0.38 | |
Tyr | UAU | 1.11 | 1.16 | 1.14 | 1.36 | 1.11 | 1.12 |
UAC | 0.89 | 0.84 | 0.86 | 0.64 | 0.89 | 0.88 | |
His | CAU | 1.13 | 1.21 | 1.15 | 1.27 | 0.99 | 1.13 |
CAC | 0.87 | 0.79 | 0.85 | 0.73 | 1.01 | 0.87 | |
Gln | CAA | 0.97 | 0.95 | 0.73 | 1.09 | 1.06 | 1.06 |
CAG | 1.03 | 1.05 | 1.27 | 0.91 | 0.94 | 0.94 | |
Asn | AAU | 0.89 | 0.90 | 0.94 | 1.14 | 0.86 | 0.91 |
AAC | 1.11 | 1.10 | 1.06 | 0.86 | 1.14 | 1.09 | |
Lys | AAA | 0.93 | 0.94 | 0.83 | 0.95 | 0.88 | 0.84 |
AAG | 1.07 | 1.06 | 1.17 | 1.05 | 1.12 | 1.17 | |
Asp | GAU | 1.00 | 1.13 | 1.06 | 1.15 | 1.02 | 1.04 |
GAC | 1.00 | 0.87 | 0.94 | 0.85 | 0.98 | 0.96 | |
Glu | GAA | 0.80 | 0.73 | 0.72 | 0.90 | 0.90 | 0.78 |
GAG | 1.20 | 1.27 | 1.28 | 1.10 | 1.10 | 1.22 | |
Arg | CGU | 0.23 | 0.36 | 0.17 | 0.24 | 0.27 | 0.42 |
CGC | 0.27 | 0.17 | 0.18 | 0.16 | 0.18 | 0.18 | |
CGA | 0.63 | 0.52 | 0.47 | 0.70 | 0.60 | 0.55 | |
CGG | 0.40 | 0.24 | 0.46 | 0.30 | 0.47 | 0.33 | |
AGA | 2.72 | 2.69 | 2.88 | 2.77 | 3.03 | 2.64 | |
AGG | 1.74 | 2.02 | 1.84 | 1.83 | 1.46 | 1.87 | |
Gly | GGU | 0.60 | 0.86 | 0.50 | 0.73 | 0.75 | 0.56 |
GGC | 0.59 | 0.52 | 0.55 | 0.47 | 0.41 | 0.53 | |
GGA | 1.37 | 1.47 | 1.42 | 1.49 | 1.43 | 1.49 | |
GGG | 1.44 | 1.15 | 1.53 | 1.31 | 1.42 | 1.42 | |
Cys | UGU | 1.20 | 1.26 | 1.26 | 1.22 | 1.34 | 1.20 |
UGC | 0.80 | 0.74 | 0.74 | 0.78 | 0.66 | 0.80 |
A% | C% | G% | U% | A3s | C3s | G3s | T3s | AU | GC | GC1s | GC2s | GC12s | ENC | Axis1 | Axis2 | Gravy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A% | |||||||||||||||||
C% | −0.060 NS | ||||||||||||||||
G% | −0.814 ** | 0.068 NS | |||||||||||||||
U% | −0.018 NS | −0.906 ** | −0.243 ** | ||||||||||||||
A3s | 0.877 ** | 0.190 NS | −0.750 ** | −0.209 ** | |||||||||||||
C3s | −0.065 NS | 0.951 ** | 0.089 NS | −0.874 ** | 0.124 ** | ||||||||||||
G3s | −0.738 ** | −0.072 NS | 0.889 ** | −0.090 NS | −0.853 ** | −0.009 NS | |||||||||||
T3s | −0.040 NS | −0.895 ** | −0.200 ** | 0.973 ** | −0.246 ** | −0.910 ** | −0.061 NS | ||||||||||
AU | 0.535 ** | −0.793 ** | −0.653 ** | 0.828 ** | 0.307 ** | −0.769 ** | −0.483 ** | 0.795 ** | |||||||||
GC | −0.535 ** | 0.793 ** | 0.653 ** | −0.828 ** | −0.307 ** | 0.769 ** | 0.483 ** | −0.795 ** | −1.000 ** | ||||||||
GC1s | 0.020 NS | 0.496 ** | −0.008 | −0.451 ** | 0.345 ** | 0.282 ** | −0.307 ** | −0.342 ** | −0.367 ** | 0.367 ** | |||||||
GC2s | −0.312 ** | 0.308 ** | 0.353 ** | −0.323 ** | −0.002 | 0.171 ** | 0.018 NS | −0.274 ** | −0.437 ** | 0.437 ** | 0.289 ** | ||||||
GC12s | −0.149 ** | 0.515 ** | 0.178 ** | −0.491 ** | 0.246 ** | 0.291 ** | −0.210 ** | −0.388 ** | −0.490 ** | 0.490 ** | 0.868 ** | 0.726 ** | |||||
ENC | −0.222 ** | 0.507 ** | 0.283 ** | −0.513 ** | −0.042 NS | 0.504 ** | 0.190 ** | −0.528 ** | −0.562 ** | 0.562 ** | 0.295 ** | 0.115 * | 0.272 ** | ||||
Axis1 | −0.521 ** | 0.105 * | 0.686 ** | −0.244 ** | −0.555 ** | 0.173 ** | 0.679 ** | −0.226 ** | −0.494 ** | 0.494 ** | −0.162 ** | 0.188 ** | −0.018 NS | 0.170 ** | |||
Axis2 | −0.041 NS | −0.644 ** | 0.121 ** | 0.518 ** | −0.323 ** | −0.632 ** | 0.197 ** | 0.594 ** | 0.417 ** | −0.417 ** | −0.238 ** | −0.212 ** | −0.282 ** | −0.427 ** | 0.006 NS | ||
Gravy | −0.030 NS | −0.286 ** | −0.004 NS | 0.280 ** | −0.038 NS | −0.297 ** | −0.090 NS | 0.282 ** | 0.230 ** | −0.230 ** | 0.116 * | −0.057 NS | 0.053 NS | −0.254 ** | 0.053 NS | 0.430 ** | |
Aromo | −0.043 NS | −0.104 * | −0.002 NS | 0.124 ** | −0.071 NS | −0.081 NS | 0.034 NS | 0.115 * | 0.089 NS | −0.089 NS | −0.134 ** | −0.019 NS | −0.106 * | −0.140 ** | −0.006 NS | 0.041 NS | −0.162 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Cai, Y.; Zhai, X.; Liu, J.; Zhao, W.; Ji, S.; Su, S.; Zhou, J. Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses. Int. J. Mol. Sci. 2018, 19, 2397. https://doi.org/10.3390/ijms19082397
Zhang X, Cai Y, Zhai X, Liu J, Zhao W, Ji S, Su S, Zhou J. Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses. International Journal of Molecular Sciences. 2018; 19(8):2397. https://doi.org/10.3390/ijms19082397
Chicago/Turabian StyleZhang, Xu, Yuchen Cai, Xiaofeng Zhai, Jie Liu, Wen Zhao, Senlin Ji, Shuo Su, and Jiyong Zhou. 2018. "Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses" International Journal of Molecular Sciences 19, no. 8: 2397. https://doi.org/10.3390/ijms19082397
APA StyleZhang, X., Cai, Y., Zhai, X., Liu, J., Zhao, W., Ji, S., Su, S., & Zhou, J. (2018). Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses. International Journal of Molecular Sciences, 19(8), 2397. https://doi.org/10.3390/ijms19082397