Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection
Abstract
:1. Introduction
2. Calcium, Calcium Channel, Vitamin D Mechanisms Associated with Sepsis
2.1. Positive Results
2.2. Negative Results
3. Antibiotic-Resistant Pathogens May Utilize Channels Sensitive to Calcium Channel Blockers
3.1. Treatment Resistance through Antibiotic Extrusion by the Pathogen or Host Cell
3.2. Other Mechanisms of Pathogen Resistance Involving Calcium Ion Channels
3.3. Store Operated Calcium Entry (SOCE)
3.4. Hyperglycemia and Calcium Ion Channels
4. Loss of Regulation of Inflammatory Response to Infection: Mechanisms Associated with the Sepsis Shock Syndrome
Sepsis Leads to Capillary Leaking
5. Vitamin D, Parathyroid Hormone, Fibroblast Growth Factor, and Klotho Interact with Sepsis Defense Mechanisms in Which Movement of Calcium and Phosphorus Are Part of the Process
6. Conclusions
Funding
Conflicts of Interest
References
- Dial, S.; Nessim, S.J.; Kezouh, A.; Benisty, J.; Suissa, S. Antihypertensive agents acting on the renin-angiotensin system, and the risk of sepsis. Br. J. Clin. Pharmacol. 2014, 78, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Hunter, K.; Gaughan, J.; Podder, S. Preadmission use of calcium channel blockers and outcomes after hospitalization with pneumonia: A retrospective propensity-matched cohort study. Am. J. Ther. 2017, 24, e30–e38. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, L.A.; D’Elia, J.A.; Gleason, R.E.; Shaffer, D.; Monaco, A.P. Role of calcium channel blockers in diabetic renal transplant patients: Preliminary observations on protection from sepsis. Clin. Nephrol. 1995, 44, 185–192. [Google Scholar] [PubMed]
- Meldrum, D.R.; Ayala, A.; Chaudry, I.H. Mechanism of diltiazem’s immunomodulatory effects after hemorrhage and resuscitation. Am. J. Physiol. 1993, 265, C412–C421. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Baumann, H.; Tahques, G.P.; Sayeed, M.M. Diltiazem and superoxide dismutase modulate hepatic acute phase response in gram-negative sepsis. Shock 1994, 1, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R. Therapeutic benefits of calcium channel blockers in cyclosporine-treated organ transplant recipients: Blood pressure control and immunosuppression. Am. J. Med. 1991, 90, 32S–36S. [Google Scholar] [CrossRef]
- Chrysostomou, A.; Walker, R.G.; Russ, G.R.; D’Apice, A.J.F.; Kincaid-Smith, I.; Mathew, T.H. Diltiazem in renal allograft recipients receiving cyclosporine. Transplantation 1993, 55, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Van Riemsdijk, I.C.; Mulder, P.; deFijter, J.W.; Bruijn, J.A.; van Hoof, J.P.; Hoitsma, A.J.; Tegzess, A.M.; Weimar, W. Addition of isradipine (Lomir) results in better renal function after renal transplantation: A double blind randomized placebo controlled multicenter study. Transplantation 2000, 70, 122–126. [Google Scholar] [PubMed]
- Kuypers, D.R.; Neumayer, H.H.; Fritsche, K.; Rodicio, J.L.; Vanrenterghem, Y. Lacidipine Study Group. Calcium channel blockade and preservation of renal graft function in cyclosporine-treated recipients: A prospective randomized placebo-controlled 2-year study. Transplantation 2004, 78, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Michael, B.; Burk, J.F. Effects of isradipine on renal hemodynamics in renal transplant patients treated with cyclosporine. Clin. Nephrol. 1997, 48, 307–310. [Google Scholar] [PubMed]
- Neumayer, H.-H.; Kunzendorf, U.; Schreiber, M. Protective effects of calcium antagonists in human renal transplantation. Kidney Int. 1992, 36, S87–S93. [Google Scholar]
- Varley, K.G.; Dhalla, N.S. Excitation-contraction coupling in heart. XII. Subcellular calcium transport in isoproterenol-induced myocardial necrosis. Exp. Mol. Pathol. 1973, 19, 94–105. [Google Scholar] [CrossRef]
- Judah, J.D.; McLean, A.E.; McLean, E.K. Biochemical mechanisms of liver injury. Am. J. Med. 1970, 49, 609–616. [Google Scholar] [CrossRef]
- Ellrodt, G.; Chew, C.Y.; Singh, B.N. Therapeutic implications of slow-channel blockade in cardio-circulatory disorders. Circulation 1980, 62, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Akizuki, O.; Inayoshi, A.; Kitayama, T.; Yao, K.; Shirakura, S.; Saski, K.; Kusaka, H.; Marshbara, M. Blockade of T-type voltage-dependent Ca2+ by benidipine, a dihydropyridine calcium channel blocker, inhibits aldosterone production in human adreno-cortical cell line NCI-H 295 R. Eur. J. Pharmacol. 2008, 584, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Dietz, J.D.; Du, S.; Bolten, C.W.; Payne, M.A.; Xia, C.; Blinn, J.R.; Funder, J.W.; Hu, X. A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Hypertension 2008, 51, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Bellien, J.; Joannides, R.; Iacob, M.; Anaud, P.; Thuillez, C. Calcium activated potassium channels and nitric oxide regulate human peripheral conduit artery mechanics. Hypertension 2005, 46, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Doerschug, K.C.; Delsing, A.S.; Schmidt, G.A.; Ashare, A. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Crit. Care 2010, 14, R24. [Google Scholar] [CrossRef] [PubMed]
- Lund, D.D.; Brooks, R.M.; Faraci, F.M.; Heistad, D.D. Role of angiotensin II in endothelial dysfunction by lipopolysaccharide in mice. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3726–H3731. [Google Scholar] [CrossRef] [PubMed]
- Laesser, M.; Oi, Y.; Ewert, J.; Fandriks, L.; Aneman, A. The angiotensin II receptor blocker candesartan improves survival and mesenteric perfusion in an acute porcine endotoxic model. Acta Anaethesiol. Scand. 2004, 48, 198–204. [Google Scholar] [CrossRef]
- Bukoski, R.D.; Xua, H. On the vascular inotropic action of 1,25(OH) vitamin D3. Am. J. Hypertens. 1993, 6, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Walthers, M.R.; Wicker, D.C.; Riggle, P.C. 1,25-dihydroxy D3 receptors identified in the rat heart. J. Mol. Cell Cardiol. 1986, 18, 67–72. [Google Scholar] [CrossRef]
- Horiuchi, H.; Nagata, I.; Komorlya, K. Protective effect of vitamin D analogues on endotoxin shock in mice. Agents Action 1991, 33, 343–348. [Google Scholar] [CrossRef]
- Asakura, H.; Aoshima, K.; Suga, Y.; Yamazaki, M.; Morishita, E.; Saito, M.; Miyamoto, K.-I.; Nakao, S. Beneficial effect of the active form of vitamin D3 against LPS-induced DIC, but not against tissue-factor-induced DIC in rats. Thromb. Haemost. 2001, 85, 287–290. [Google Scholar] [PubMed]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-medicated human antimicrobial response. Science 2008, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Moller, S.; Laigaard, F.; Olgaard, K.; Hemmingsen, C. Effect of 1,25-dihydroxy-vitaminD3 in experimental sepsis. Int. J. Med. Sci. 2007, 4, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Ramires, F.J.A.; Sun, Y.; Weber, K.T. Myocardial fibrosis associated with aldosterone or angiotensin ll administration: Attenuation by calcium channel blockade. J. Mol. Cell. Cardiol. 1998, 30, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, J.; Odlind, B.; Tufveson, G.; Wahlberg, J. Improvement of renal preservation by adding lidoflazine to University of Wisconsin solution. An experimental study in the rat. Cryobiology 1992, 29, 305–309. [Google Scholar] [CrossRef]
- Grgic, H.; Wulff, I.; Eichler, C.; Flothmann, R.; Kohler, R.; Hoyer, J. Blockade of T-lymphocyte Kca 3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent allograft rejection. Transplant. Proc. 2009, 41, 2601–2606. [Google Scholar] [CrossRef] [PubMed]
- Roach, J.W.; Sublett, J.; Gao, G.; Wang, Y.-D.; Tuomanen, E.I. Calcium efflux is essential for bacterial survival in the eukaryotic host. Mol. Microbiol. 2008, 70, 435–444. [Google Scholar] [Green Version]
- Weinrauch, L.A.; Kaldany, A.; Miller, D.G.; Yoburn, D.C.; Belok, S.; Healy, R.W.; Leland, O.S.; D’Elia, J.A. Cardio-renal failure: Treatment of refractory biventricular failure by peritoneal dialysis. Uremia Investig. 1984, 8, 1–8. [Google Scholar] [CrossRef]
- Cooper, G.; White, J.; D’Elia, J.; DeGirolami, P.; Arkin, C.; Kaldany, A.; Platt, R. Lack of utility of routine screening tests for early detection of peritonitis in patients requiring intermittent peritoneal dialysis. Infect. Control 1984, 5, 321–325. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, J.A.; Weinrauch, L.A.; Paine, D.F.; Domey, P.E.; Smith-Ossman, S.; Williams, M.E.; Kaldany, A. Increased infection rate in diabetic dialysis patients exposed to cocaine. Am. J. Kidney Dis. 1991, 17, 349–352. [Google Scholar] [CrossRef]
- Lindley, E.M.; Hall, A.K.; Hess, J.; Abraham, J.; Smith, B.; Hopkins, P.N.; Shihab, F.; Welt, F.; Owan, T.; Fang, J.C. Cardiovascular risk assessment and management in pre-renal transplant candidates. Am. J. Cardiol. 2016, 117, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Cecka, J.M.; Terasaki, P.I. The UNOS Scientific Renal Transplant Registry. Clin. Transpl. 1993, 1, 1–18. [Google Scholar]
- Almond, P.S.; Matas, A.; Gillingham, K.; Dunn, D.L.; Payne, W.D.; Gores, P.; Gruessner, R.; Nagarian, J.S. Risk factors for chronic rejection in renal allograft recipients. Transplantation 1993, 55, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, L.A.; D’Elia, J.A.; Weir, M.R.; Bunnapradist, S.; Finn, P.; Liu, J.; Claggett, B.; Monaco, A.P. Infection and malignancy outweigh cardiovascular mortality in kidney transplant recipients: Post-hoc analysis of the FAVORIT trial. Am. J. Med. 2018, 131, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Hayer, M.K.; Ferrugia, D.; Begaj, I.; Ray, D.; Sharif, A. Infection-related mortality for kidney allograft recipients with pre-transplant diabetes mellitus. Diabetologia 2014, 57, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, L.A.; Liu, J.; Claggett, B.; Finn, P.V.; Weir, M.R.; D’Elia, J.A. Calcium channel blockade and survival in recipients of successful renal transplant: An analysis of the FAVORIT trial results. Int. J. Nephrol. Renov. Dis. 2018, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Clunn, G.F.; Sever, P.S.; Hughes, A.D. Calcium channel regulation in vascular smooth muscle cells: Synergistic effects of statins and calcium channel blockers. Int. J. Cardiol. 2010, 139, 2–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexiewicz, J.M.; Smogorzewski, M.; Klin, M.; Akmal, M.; Massry, S.G. Effective treatment of hemodialysis patients with nifedipine on metabolism and function of polymorphonuclear leukocytes. Am. J. Kidney Dis. 1995, 25, 440–444. [Google Scholar] [CrossRef]
- Obialo, C.I.; Conner, A.C.; Lebon, L.F. Calcium blocking agents do not ameliorate hemodialysis catheter bacteremia. Dial. Transplant. 2002, 31, 848–854. [Google Scholar]
- Nanni, G.; Pannochia, N.; Tacchino, R.; Foco, M.; Piccioni, E.; Castagneto, M. Increased incidence of Infection in verapamil-treated kidney transplant recipients. Transpl. Proc. 2000, 32, 551–553. [Google Scholar] [CrossRef]
- Seyrek, N.; Markinkowski, W.; Smorgorzewski, M.; Demerdash, T.M.; Massry, S.G. Amlodipine prevents and reverses the elevation in [Ca2+] and the impaired phagocytosis of PMNL of diabetic rats. Nephrol. Dial. Transpl. 1997, 12, 265–272. [Google Scholar] [CrossRef]
- Krol, E.; Agueel, R.; Smorgorzewski, M.; Kumar, D.; Massry, S.G. Amlodipine reverses the elevation in [Ca2+] and the impairment in PMNLs of NIDDM patients. Kidney Int. 2003, 64, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Xu, D.Z.; Feketova, E.; Nemeth, Z.; Kannan, K.B.; Hasko, G.; Deitch, E.A.; Hauser, C.J. Calcium entry inhibition during resuscitation from shock attenuates inflammatory lung injury. Shock 2008, 30, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Karl, I.E. Ca2+, a regulator of the inflammatory response—The good, the bad, and the possibilities. Shock 1997, 7, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Pletz, M.W.; Mikhaylov, N.; Schumacher, U.; van der Liden, M.; Duesberg, C.B.; Fuehner, T.; Klugman, C.P.; Welte, T.; Makarewicz, O. Antihypertensives suppress the emergence of fluoroquinolone-resistant mutants in pneumococci: An in vitro study. Int. J. Med. Microbiol. 2013, 303, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Cui, R.; Yang, Y.; Wu, X. Role of calcium channels in cellular anti-tuberculosis effects: Potential of voltage-gated calcium-channel blockers in tuberculosis therapy. J. Microbiol. Immunol. Infect. 2015, 48, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Scheibel, L.W.; Colambani, P.M.; Hess, A.D.; Aikawa, M.; Atkinson, T.; Milhous, W.K. Calcium and calmodulin antagonists inhibit human malaria parasites (Plasmodium falciparum): Implications for drug design. Proc. Natl. Acad. Sci. USA 1987, 84, 7311–7314. [Google Scholar] [CrossRef]
- Martins, Y.C.; Clemmer, L.; Orjuela-Sanchez, P.; Zanini, G.M.; Ong, P.K.; Frangos, J.A.; Carvalho, L.J. Slow and continuous delivery of a low dose of nimodipine improves survival and electrocardiogram parameters in rescue therapy of mice with experimental cerebral malaria. Malar. J. 2013, 12, 138–154. [Google Scholar] [CrossRef] [PubMed]
- Gryseels, B.; Mbaye, A.; DeVias, S.J.; Stelma, F.F.; Guisse, F.; Van Lieshout, L.; Faye, D.; Diop, M.; Ly, A.; Tchuem-Tchuente, L.A.; et al. Are poor responses to praziquantel for treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop. Med. Int. Health 2001, 6, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Silva-Mores, V.; Couto, F.F.; Vasconcelos, M.M.; Araujo, N.; Coelho, P.M.; Katyz, N.; Grnfell, R.F. Anti-Schistosomal activity of a calcium channel antagonist on Schistosoma and adult Schistosoma Mansoni worms. Memorias do Instituo Oswaldo Cruz 2013, 108, 600–604. [Google Scholar] [CrossRef]
- Kashif, M.; Manna, P.P.; Akhter, Y.; Alaidarous, M.; Rub, A. Screening of novel inhibitors against Leishmania donovani calcium channel ion channel to fight Leishmaniasis. Infect. Disord. Drug Targets 2017, 17, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Pollo, L.A.E.; deMoraes, M.H.; Cisilotto, J.; Creczynski-Pasa, T.B.; Biavatti, M.W.; Steindel, M.; Sandjo, L.P. Synthesis and in vitro evaluation of Ca2+ channel blockers 1,4-dihydropyridines analogues against Trypanosoma cruzi and Leishmania amazonensis: SAR analysis. Parasitol. Int. 2017, 66, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Kanatani, S.; Fuks, J.M.; Olafsson, E.B.; Westermark, L.; Chambers, B.; Varas-Godoy, M.; Ulen, P.; Barrigan, A. Voltage-dependent calcium channel signaling mediates GABA a receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii. PLoS Pathog. 2017, 13, e1006739. [Google Scholar] [CrossRef] [PubMed]
- Liz, X.-Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: An update. Drugs 2009, 69, 1555–1623. [Google Scholar]
- Adams, K.N.; Szumowski, J.D.; Ramakrishnan, L. Verapamil and its metabolite nor-verapamil inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J. Infect. Dis. 2014, 210, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.N.; Takaki, K.; Connolly, L.E. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011, 145, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Cohen, K.A.; Winglee, K.; Maiga, M.; Diarra BBishai, W.R. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Srikrishna, G.; Gupta, S.; Dooley, K.E.; Bishai, W.R. Can the addition of verapamil to bedaquiline-containing regimens improve tuberculosis treatment outcomes? A novel approach to optimizing TB treatment. Future Microbiol. 2015, 10, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; DeMarez, R.; van Heeswijk, R.; et al. Randomized pilot trial of eight weeks of bedaquiline (tme207) treatment for multidrug-resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob. Agents Chemother. 2012, 56, 3271–3276. [Google Scholar] [CrossRef] [PubMed]
- Siroy, A.; Mailaender, C.; Harder, D.; Koerber, S.; Wolschendorph, F.; Danilchanka, O.; Wang, Y.; Heinz, C.; Niederweis, M. RV 1698 of microtubular proteins, a new class of channel-forming outer membrane proteins. J. Biol. Chem. 2008, 283, 17827–17837. [Google Scholar] [CrossRef] [PubMed]
- Danichanka, O.; Sun, J.; Pavlemok, M.; Maueroder, C.; Speer, A.; Siroy, A.; Mayhew, N.; Doomlos, K.S.; Munez, L.E.; Herrmann, M.; et al. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc. Natl. Acad. Sci. USA 2014, 111, 6750–6755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, J.M.; Grogono, D.M.; Greaves, D.; Foweraker, J.; Roddick, I.; Inns, T.; Reacher, M.; Haworth, C.S.; Curran, M.D.; Harris, S.R.; et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: A prospective cohort study. Lancet 2013, 9877, 1551–1560. [Google Scholar] [CrossRef]
- Borahay, M.A.; Killic, G.S.; Yallampalli, C.; Snyder, R.R.; Hankins, G.D.V.; Al-Hendry, A.; Boehning, D. Simvastatin potentially induces calcium-dependent apoptosis of human leiomyoma cells. J. Biol. Chem. 2014, 289, 35075–35086. [Google Scholar] [CrossRef] [PubMed]
- Gangola, P.; Rosen, B.P. Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 1987, 262, 12570–12574. [Google Scholar] [PubMed]
- Orlandi, V.T.; Martegani, E.; Bolognese, F. Catalase A is involved in the response to photo-oxidative stress in Pseudomonas aeruginosa. Photodiagn. Photodyn. Ther. 2018, 22, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Khelef, N.; DeShager, D.; Friedman, R.L. In vitro and in vivo analogue of Bordetella pertussis catalase and Fe-superoxide dismutase mutants. FEMS Lett. 1996, 142, 231–235. [Google Scholar] [CrossRef]
- DiMarco, T.M.; Freitas, F.Z.; Almeida, R.S.; Brown, N.A.; des Reis, T.F.; Zambelli-Ramalho, L.N.; Savoldi, M.; Goldman, M.H.S. Functional characterization of an Aspergillus fumigatus calcium transporter (PmcA) that is essential for fungal infection. PLoS ONE 2012, 7, e37591. [Google Scholar] [CrossRef] [Green Version]
- Krauss, P.R.; Nichols, C.B.; Heitman, J. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot. Cell 2005, 4, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Ding, X.; Bing, Z.; Xu, N.; Jia, C.; Mao, J.; Zhang, B.; Xing, L.; Li, M. Inhibitory effect of verapamil on Candida albicans hyphal development, adhesion, and gastrointestinal colonization. FEMS Yeast Res. 2014, 14, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Casciano, J.C.; Duchemin, N.J.; Lamontagne, J.; Steel, L.F.; Bouchard, M.J. Hepatitis B virus modulates store operated calcium entry to enhance viral replication in primary hepatocytes. PLoS ONE 2017, 12, e0168328. [Google Scholar] [CrossRef] [PubMed]
- Casciano, J.C.; Bouchard, M.J. Hepatitis virus X protein modulates cytosolic Ca+ signaling in primary human hepatocytes. Virus Res. 2018, 246, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, E.B.; Kaiser, P.K.; Offermann, J.T.; Lipton, S.A. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 1990, 248, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Reddish, F.N.; Miller, C.L.; Gorkhali, R.; Yang, J.J. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases. Int. J. Mol. Sci. 2017, 18, 1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Rodriguez, A.V.; Tosteson, M.T. Role of simvastatin and beta cyclodextrin on inhibition of poliovirus infection. Biochem. Biophys. Res. Commun. 2006, 347, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Pan, H.; Yao, J.; Han, W. SOCE and cancer: Recent progress and new perspectives. Int. J. Cancer 2016, 138, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Should we be combining GLP-1 receptor agonists and SGLT2 inhibitors in treating diabetes? Am. J. Med. 2018, 131, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Zannad, F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: Proposal of a novel mechanism of action. J. Am. Med. Assoc. 2017, 2, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Byrne, N.J.; Parajuli, N.; Levasseur, J.L.; Boisvenue, J.; Becker, D.I.; Masson, G.; Fedak, P.W.M.; Verma, S.; Dyck, J.R.B. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. J. Am. Coll. Cardiol. Basic Transl. Sci. 2017, 2, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Brault, M.; Ray, J.; Gomez, Y.H.; Mantzoros, C.S.; Daskalopoulou, S.S. Statin treatment and new onset diabetes: A review of proposed mechanisms. Metabolism 2014, 63, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Kumar, M.; Pavodai, E.; Naran, K.; Warner, D.F.; Rominski, P.G.; Chibale, K. Synthesis of new verapamil analogues and their evaluation in combination with rifampicin analogues against Mycobacterium tuberculosis and molecular docking studies in the binding of efflux protein Rv1258c. Bioorgan. Med. Chem. Lect. 2014, 14, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.M.; Mammoto, T.; Schultz, A.; Yuan, H.T.; Christiani, D.; Karamuchi, S.A.; Sukhatme, V.P. Excess Angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med. 2006, 3, e46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.; Kumpers, P.; van Slyke, P.; Parikh, S.M. Mending leaky blood vessels: The angiopoietin-Tie2 pathway in sepsis. J. Pharmacol. Exp. Ther. 2013, 345, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Retzlaff, J.; Thamm, K.; Ghosh, C.C.; Ziegler, W.; Haller, H.; Parikh, S.M.; David, S. Flunarizine suppresses endothelial angiopoietin-2 in a calcium-dependent fashion. Science 2017, 7, 44113. [Google Scholar] [CrossRef] [PubMed]
- Grinde, A.A.; Mansbach, J.M.; Carmargo, C.A., Jr. Association between serum 25-hydroxyvitamin D Level and upper respiratory infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009, 169, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Laaksi, I.; Ruohola, J.P.; Tuohimaa, P.; Auviven, A.; Haataja, R.; Pihlajamaki, H.; Yikomi, T. An association of serum vitamin D concentrations <40 nmol/L, with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr. 2007, 86, 714–717. [Google Scholar] [PubMed]
- Jengh, L.; Yamshchikov, A.V.; Judd, S.E.; Blumberg, H.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med. 2009, 7, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Chonchol, M.; Greene, T.; Zang, Y.; Hoofnagle, A.N.; Cheung, A.K. Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study. J. Am. Soc. Nephrol. 2016, 27, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Nykjaer, A.; Dragun, D.; Walther, D.; Vorum, H.; Jacobsen, C.; Herz, J.; Mersen, F.; Christensen, E.I.; Willnow, T.E. An endocytic pathway essential for renal uptake of the steroid 25-(OH) vitamin D. Cell 1999, 96, 507–515. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Fliser, D.; Kolleritis, B.; Neyer, U.; Ankerst, D.P.; Lhotta, K.; Lingenhel, A.; Rita, E.; Kronenberg, F.; Kuen, E.; Konig, P.; et al. Fibroblast growth factor (FGF 23) predicts progression of chronic kidney disease: The mile to moderate kidney disease (MMKD) study. J. Am. Soc. Nephrol. 2007, 18, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. The FGF 23-Klotho axis: Endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol. 2009, 5, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Lin, K.-D.; Hsu, W.-H.; Chang, H.-L.; Yang, Y.-H.; Hsiao, P.-J.; Shin, S.-J. Statin, calcium channel blocker and beta blocker therapy may decrease the incidence of tuberculosis infection in elderly Taiwanese patients with type 2 diabetes. Int. J. Mol. Sci. 2015, 16, 11369–11384. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Begum RFaisal, M.S.; Khan, A.; Mabi, M.; Shehzadi, G.; Ullah, S.; Ali, W. Current statin show calcium channel blocking activity through voltage gated channels. BioMed. Cent. Pharmacol. Toxicol. 2016, 17, 43–50. [Google Scholar] [CrossRef] [PubMed]
Pathogenic Organism | Calcium Ion Channel Effect |
Organ specific toxicity | Envelope protein increases toxic level of cytosolic calcium in host cell |
Cell membrane or wall | Antibiotic efflux may be diminished by calcium channel blockade |
Organism replication | Interference with calcium dependent RNA transcription |
Cytoplasm (mitochondria) | Potential to interrupt intracellular calcium shifts and interrupt calcium efflux |
Host Defense | Calcium Ion Channel Effect |
Immunocompetence | Calcium activated potassium channels regulate Lymphocyte activation Mitogenesis Cell volume |
Cellular Immunity Permeability, necrosis, apoptosis | Release of intracellular calcium leads to mitochondrial permeability and influx of extracellular calcium and permeability, necrosis, apoptosis |
Humoral Immunity | Calcium controls antibody formation |
Inflammasome | Calcium has a role in the production of TNF alpha, IL-1 beta |
I. Relationship of clinical infections to calcium channels (retrospective studies)
|
II. Role of calcium movement in white blood cell defense against pathogens
|
III. Sepsis with shock following trauma
|
IV. Pathogen colony growth mechanisms may or may not involve calcium
|
V. Mechanisms of Calcium balance in kidney failure
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Elia, J.A.; Weinrauch, L.A. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int. J. Mol. Sci. 2018, 19, 2465. https://doi.org/10.3390/ijms19092465
D’Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. International Journal of Molecular Sciences. 2018; 19(9):2465. https://doi.org/10.3390/ijms19092465
Chicago/Turabian StyleD’Elia, John A., and Larry A. Weinrauch. 2018. "Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection" International Journal of Molecular Sciences 19, no. 9: 2465. https://doi.org/10.3390/ijms19092465
APA StyleD’Elia, J. A., & Weinrauch, L. A. (2018). Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. International Journal of Molecular Sciences, 19(9), 2465. https://doi.org/10.3390/ijms19092465