The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro
Abstract
:1. Introduction
2. Results
2.1. XRD Measurement
2.2. DSC Analysis
2.3. Surface and Fracture Morphologies of Sample Films after Degradation
2.4. The pH Values of the Immersing Solution, the Weight Loss and Mechanical Properties of Sample Films after Degradation
2.5. Cell Experiments Results of Sample Films with Different Whisker Contents
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of MgO Whiskers and Their Modification
4.3. Preparation of Sa–w-MgO/PLLA Composite Films
4.4. Degradation of the Composite Material in PBS
4.5. Characterization
4.6. Cytotoxicity Testing
4.6.1. Preparation of Material Extracts
4.6.2. Culture of Murine Fibroblast Cells (L929)
4.6.3. Cell Behavior and Viability
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Alsberg, E.; Kong, H.J.; Hirano, Y.; Smith, M.K.; Albeiruti, A.; Mooney, D.J. Regulating bone formation via controlled scaffold degradation. J. Dent. Res. 2003, 82, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Kakinoki, S.; Uchida, S.; Ehashi, T.; Murakami, A.; Yamaoka, T. Surface Modification of Poly(l-lactic acid) Nanofiber with Oligo(d-lactic acid) Bioactive-Peptide Conjugates for Peripheral Nerve Regeneration. Polymers 2011, 3, 820–832. [Google Scholar] [CrossRef]
- Rogina, A.; Pribolšan, L.; Hanžek, A.; Gόmez-Estrada, L.; Ferrer, G.G.; Marijanović, I.; Ivanković, M.; Ivanković, H. Macroporous poly(lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering. Polymer 2016, 98, 172–181. [Google Scholar] [CrossRef]
- Wang, X.J.; Song, G.J.; Lou, T. Fabrication and characterization of nano composite scaffold of poly(l-lactic acid)/hydroxyapatite. J. Mater. Sci. 2010, 21, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Zhao, Y.H.; Tang, G.W.; Li, H.; Yuan, X.Y.; Fan, Y.B. In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym. Degrad. Stab. 2008, 93, 1838–1845. [Google Scholar] [CrossRef]
- Liao, L.; Chen, L.; Chen, A.Z.; Pu, X.M.; Kang, Y.Q.; Yao, Y.D.; Liao, X.M.; Huang, Z.B.; Yin, G.F. Preparation and characteristics of novel poly-l-lactide/β-calcium metaphosphate fracture fixation composite rods. J. Mater. Res. 2007, 22, 3324–3329. [Google Scholar] [CrossRef]
- Shikinami, Y.; Matsusue, Y.; Nakamura, T. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA). Biomaterials 2005, 26, 5542–5551. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chu, C.L.; Liu, L.; Liu, X.K.; Bai, J.; Guo, C.; Xue, F.; Lin, P.H.; Chu, P.K. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials 2015, 49, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Zou, Z.P.; Luo, B.H.; Zhou, C.R. In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites. J. Mater. Sci. 2017, 52, 2329–2344. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Y.; Xiong, C.D.; Jiang, L.X.; Xu, L.J. Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Compos. Sci. Technol. 2014, 93, 61–67. [Google Scholar]
- Cifuentes, S.C.; Gavilán, R.; Lieblich, M.; Benavente, R.; González-Carrasco, J.L. In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape. Acta Biomater. 2016, 32, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalumon, K.T.; Sheu, C.; Fong, Y.T.; Liao, H.T.; Chen, J.P. Microsphere-Based Hierarchically Juxtapositioned Biphasic Scaffolds Prepared from Poly(Lactic-co-Glycolic Acid) and Nanohydroxyapatite for Osteochondral Tissue Engineering. Polymers 2016, 8, 429. [Google Scholar] [CrossRef]
- Kothapalli, C.R.; Shaw, M.T.; Wei, M. Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties. Acta Biomater. 2005, 1, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Loher, S.; Reboul, V.; Brunner, T.J.; Simonet, M.; Dora, C.; Neuenschwander, P.; Stark, W.J. Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co-glycolide). Nanotechnology 2006, 17, 2054–2061. [Google Scholar] [CrossRef]
- Yun, H.; Kim, S.; Park, E.K. Bioactive glass-poly(ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Mater. Sci. Eng. C 2016, 31, 198–205. [Google Scholar] [CrossRef]
- Fernandes, J.S.; Gentile, P.; Martins, M.; Neves, N.M.; Miller, C.; Crawford, A.; Pires, R.A.; Hatton, P.; Reis, R.L. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomater. 2016, 44, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.W.; Herschler, B.A. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011, 7, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.Q.; Lu, X.L.; Wang, Z.M.; Sun, Z.J.; Zhang, F.F.; Zheng, Y.F. Nanocomposites of poly(l-lactide) and surface modified magnesia nanoparticles: Fabrication, mechanical property and biodegradability. J. Phys. Chem. Solids 2011, 72, 111–116. [Google Scholar] [CrossRef]
- Kum, C.H.; Cho, Y.; Seo, S.H.; Joung, Y.K.; Ahn, D.J.; Han, D.K. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation. Small 2014, 10, 3783–3794. [Google Scholar] [CrossRef] [PubMed]
- Kum, C.H.; Cho, Y.; Joung, Y.K.; Choi, J.; Park, K.; Seo, S.H.; Park, Y.S.; Ahn, D.J.; Han, D.K. Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. J. Mater. Chem. B 2013, 1, 2764–2772. [Google Scholar] [CrossRef]
- Yang, J.J.; Cao, X.X.; Zhao, Y.; Wang, L.; Liu, B.; Jia, J.P.; Liang, H.; Chen, M.F. Enhanced pH stability, cell viability and reduced degradation rate of poly(l-lactide)-based composite in vitro: Effect of modified magnesium oxide nanoparticles. J. Biomater. Sci. Polym. Ed. 2017, 28, 486–503. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Luo, B.; Qin, X.; Li, C.; Liu, M.; Ding, S.; Zhou, C. Strengthening and toughening of poly(l-lactide) composites by surface modified MgO whiskers. Appl. Surf. Sci. 2015, 332, 215–223. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.; You, C.; Chen, M.F. Effects of MgO whiskers on mechanical properties and crystallization behavior of PLLA/MgO composites. Mater. Des. 2016, 89, 573–581. [Google Scholar] [CrossRef]
- Chen, H.M.; Chen, J.W.; Chen, J.; Yang, J.H.; Huang, T.; Zhang, N.; Wan, Y. Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(l-lactide). Polym. Degrad. Stab. 2012, 97, 2273–2283. [Google Scholar] [CrossRef]
- Paul, M.A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym.Degrad. Stab. 2005, 87, 535–542. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Dottori, M.; Armentano, I.; Kenny, J.M.; Gamino, G. Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym. Degrad. Stab. 2011, 96, 2120–2129. [Google Scholar] [CrossRef]
- Chen, H.M.; Feng, C.X.; Zhang, W.B.; Yang, J.H.; Huang, T.; Zhang, N.; Wang, Y. Hydrolytic degradation behavior of poly(l-lactide)/carbon nanotubes nanocomposites. Polym. Degrad. Stab. 2013, 98, 198–208. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012, 8, 1401–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.B.; Weng, W.J. Surface modification of hydroxyapatite by stearic acid: Characterization and in vitro behaviors. J. Mater. Sci. Mater. Med. 2008, 19, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Wan, H.Q.; Chen, J.M.; Zhou, H.D. Synthesis and Tribological Properties of Stearic Acid-Modified Anatase (TiO2) Nanoparticles. Tribol. Lett. 2011, 41, 409–416. [Google Scholar] [CrossRef]
- Barry, M.; Pearce, H.; Cross, L.; Tatullo, M.; Gaharwar, A.K. Advances in Nanotechnology for the Treatment of Osteoporosis. Curr. Osteoporos. Rep. 2016, 14, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W. Scafolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529–2543. [Google Scholar] [CrossRef]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Shen, Y.; Yang, J.H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z.W. Molecular ordering and α’-form formation of poly(l-lactide) during the hydrolytic degradation. Polymer 2013, 54, 6644–6653. [Google Scholar] [CrossRef]
- Tsuji, H.; Nakahara, K. Poly(l-lactide). IX. Hydrolysis in Acid Media. J. Appl. Polym. Sci. 2002, 86, 186–194. [Google Scholar] [CrossRef]
- Li, S.M. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res. 1999, 48, 342–353. [Google Scholar] [CrossRef]
- Ning, N.Y.; Fu, S.R.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog. Polym. Sci. 2012, 37, 1425–1455. [Google Scholar] [CrossRef]
Sample | Diffraction Plane | ||||||||
---|---|---|---|---|---|---|---|---|---|
(010) | (110/200) | (203) | (204) | (015) | (016) | (206) | (207) | (018) | |
2θ(°) | |||||||||
PLLA | 14.69 | 17.76 | 18.68 | 21.36 | 22.45 | 23.78 | 24.82 | 26.62 | 28.71 |
PLLA1 | 14.63 | 16.48 | 18.96 | 21.36 | 22.28 | 23.72 | 24.87 | 26.60 | 28.78 |
PLLA2 | 14.63 | 16.67 | 19.02 | 21.39 | 22.43 | 23.83 | 24.09 | 26.64 | 28.93 |
PLLA3 | 14.74 | 16.67 | 19.06 | 21.43 | 22.34 | 23.79 | 24.94 | 26.64 | 28.82 |
Degradation Time | Tm/°C | |||
---|---|---|---|---|
PLLA | PLLA1 | PLLA2 | PLLA3 | |
0 | 179.8 | 178.2 | 179.2 | 179.1 |
7 | 180.0 | 178.5 | 178.1 | 177.9 |
14 | 178.6 | 174.9/179.4 | 171.4/176.4 | 172.4 |
28 | 179.6 | 164.6 | 166.3 | 166.8/170.4 |
Abbreviation | Sample | Whisker Content (w/w) |
---|---|---|
PLLA | PLLA | 0 |
PLLA1 | 1 wt% Sa–w-MgO/PLLA | 1/100 |
PLLA2 | 2 wt% Sa–w-MgO/PLLA | 2/100 |
PLLA3 | 3 wt% Sa–w-MgO/PLLA | 3/100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, B.; Bi, H.; Yang, J.; Li, W.; Liang, H.; Liang, Y.; Jia, Z.; Shi, S.; Chen, M. The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro. Int. J. Mol. Sci. 2018, 19, 2740. https://doi.org/10.3390/ijms19092740
Zhao Y, Liu B, Bi H, Yang J, Li W, Liang H, Liang Y, Jia Z, Shi S, Chen M. The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro. International Journal of Molecular Sciences. 2018; 19(9):2740. https://doi.org/10.3390/ijms19092740
Chicago/Turabian StyleZhao, Yun, Bei Liu, Hongwei Bi, Jinjun Yang, Wei Li, Hui Liang, Yue Liang, Zhibin Jia, Shuxin Shi, and Minfang Chen. 2018. "The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro" International Journal of Molecular Sciences 19, no. 9: 2740. https://doi.org/10.3390/ijms19092740
APA StyleZhao, Y., Liu, B., Bi, H., Yang, J., Li, W., Liang, H., Liang, Y., Jia, Z., Shi, S., & Chen, M. (2018). The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro. International Journal of Molecular Sciences, 19(9), 2740. https://doi.org/10.3390/ijms19092740