Zinc Supplementation Stimulates Red Blood Cell Formation in Rats
Abstract
:1. Introduction
2. Results
2.1. Zinc-Stimulated Erythropoiesis in PHZ-Induced Anemic Rats
2.1.1. Induction of Anemia in Rats by PHZ Treatment and the Effects of ZnSO4 on Their Hematology
2.1.2. Microscopic Observation of Blood Cells of Normal Rats, Saline-Injected Rats, and ZnSO4-Injected PHZ-Induced Anemic Rats
2.1.3. Measurement of Reticulocytes of Normal Rats, Saline-Injected PHZ-Induced Anemic Rats, and ZnSO4-Injected PHZ-Induced Anemic Rats with an Automatic Hematology Analyzer
2.2. Biochemical Properties of the Blood of the ZnSO4-Injected PHZ-Induced Anemic Rats
2.2.1. Change in the Zinc Level in the Blood of the ZnSO4-Injected PHZ-Induced Anemic Rats
2.2.2. Isolation and Identification of Zinc-Binding Protein from the Blood Cells of the ZnSO4-Injected PHZ-Induced Anemic Rats
2.3. Zinc Salts Stimulated Erythropoiesis in Rat Bone Marrow Cells In Vitro
2.3.1. Microscopic Observation of the Cultured Rat Bone Marrow Cells before and after ZnCl2 Supplementation
2.3.2. Cell Size and Number in Rat Bone Marrow Cell Suspension Culture before and after ZnCl2 Supplementation
2.3.3. Effects of ZnCl2 Levels in the Presence of Rat Serum on Cell Growth
2.3.4. Effect of the Soluble EPO Receptor or a Rat EPO-Neutralizing Antibody on ZnCl2-Induced Erythropoiesis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. PHZ-Induced Anemic Rats and ZnSO4 Injections after Anemia Was Induced
4.3. Blood Sampling and Analysis
4.4. Measurement of Reticulocytes in Rat Blood
4.5. Microscopic Observation of Rat Blood Cells by Giemsa, New Methylene Blue, and o-Dianisidine Staining
4.6. Isolation and Identification of the Active Substance in Rat Blood that Stimulates the Proliferation of RBC Cells in Rats
4.7. Determination of Zinc Concentration in Different Blood Fractions
4.8. Suspension Culture of Rat Bone Marrow Cells with or without ZnCl2 Supplementation
4.9. Suspension Culture of Rat Bone Marrow Cells in Rat Serum-Free Medium with or without Transferrin or ZnCl2 Supplementation
4.10. Microscopic Observation of Rat Bone Marrow Cells with Giemsa Staining
4.11. Fluorescence Staining of CD71 (Transferrin Receptor) in Rat Blood and Bone Marrow Cells
4.12. Effects of ZnCl2, FeCl3, and/or Transferrin on the Growth of RBC from the Rat Bone Marrow Cells
4.13. Effects of EPO Antibody or Soluble EPO Receptor on Erythropoiesis
4.14. Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EPO | Erythropoietin |
IGF-1 | Insulin-like growth factor-1 |
IMAC | Immobilized metal affinity chromatography |
PHZ | Phenylhydrazine |
RBC | Red blood cell |
References
- Solomons, N.W. Update on zinc biology. Ann Nutr. Metab. 2013, 62, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, M.J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Impact of the discovery of human zinc deficiency on health. J. Trace. Elem Med. Biol. 2014, 28, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Organization, W.H. Environment Health Criteria 221: Zinc; Environmental Health Criteria: Geneva, Switzerland, 2000. [Google Scholar]
- Hayden, S.J.; Albert, T.J.; Watkins, T.R.; Swenson, E.R. Anemia in critical illness: Insights into etiology, consequences, and management. Am. J. Respir. Crit. Care Med. 2012, 185, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Jameson, S. Effects of zinc deficiency in human reproduction. Acta Med. Scand. Suppl. 1976, 593, 1–89. [Google Scholar] [PubMed]
- Nishiyama, S.; Kiwaki, K.; Miyazaki, Y.; Hasuda, T. Zinc and IGF-I concentrations in pregnant women with anemia before and after supplementation with iron and/or zinc. J. Am. Coll. Nutr. 1999, 18, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.-G.; Chen, X.-C.; Xu, R.-X.; Zheng, M.-C.; Wang, Y.; Li, J.-S. Comparison of serum levels of iron, zinc and copper in anaemic and non-anaemic pregnant women in China. Asia Pac, J. Clin. Nutr. 2004, 13, 348–352. [Google Scholar]
- Gibson, R.S.; Abebe, Y.; Stabler, S.; Allen, R.H.; Westcott, J.E.; Stoecker, B.J.; Krebs, N.F.; Hambidge, K.M. Zinc, gravida, infection, and iron, but not vitamin B-12 or folate status, predict hemoglobin during pregnancy in Southern Ethiopia. J. Nutr. 2008, 138, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Bushra, M.; Elhassan, E.M.; Ali, N.I.; Osman, E.; Bakheit, K.H.; Adam, I.I. Anaemia, zinc and copper deficiencies among pregnant women in central Sudan. Biol. Trace Elem. Res. 2010, 137, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Ugwuja, E.; Ejikeme, B.; Ugwu, N.; Obidoa, O. A comparative study of plasma trace elements (copper, iron and zinc) status in anaemic and non-anaemic pregnant women in Abakaliki, Nigeria. Online J. Health Allied Sci. 2011, 10, 7966. [Google Scholar]
- Graham, R.D.; Knez, M.; Welch, R.M. How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? Adv. Agron. 2012, 115, 1–40. [Google Scholar]
- Wieringa, F.T.; Dahl, M.; Chamnan, C.; Poirot, E.; Kuong, K.; Sophonneary, P.; Sinuon, M.; Greuffeille, V.; Hong, R.; Berger, J. The high prevalence of anemia in Cambodian children and women cannot be satisfactorily explained by nutritional deficiencies or hemoglobin disorders. Nutrients 2016, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Ece, A.; Uyamik, B.S.; IŞcan, A.; Ertan, P.; Yiğitolu, M.R. Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia. Biol. Trace Elem. Res. 1997, 59, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Makdani, D.; Hegar, A.; Rao, D.; Douglass, L.W. Vitamin A and zinc supplementation of preschool children. J. Am. Coll. Nutr. 1999, 18, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Gürgöze, M.K.; Ölçücü, A.; Aygün, A.D.; Taşkin, E.; Kiliç, M. Serum and hair levels of zinc, selenium, iron, and copper in children with iron-deficiency anemia. Biol. Trace Elem. Res. 2006, 111, 23–29. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.-F.; Gong, M.; Jiang, W.; Fan, Z.; Qu, P.; Chen, J.; Liu, Y.-X.; Li, T.-Y. Effects of vitamin A., vitamin A. plus zinc, and multiple micronutrients on anemia in preschool children in Chongqing, China. Asia Pac. J. Clin Nutr. 2012, 21, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A. Role of Zinc, Copper and Selenium in Nutritional Anemia. In Nutritional Anemia in Preschool Children; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 185–199. [Google Scholar]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Nodera, M. Zinc Physiology and Clinical Practice. Biomed. Res. Trace Elem. 2007, 18, 3–9. [Google Scholar]
- Yanagisawa, H. Zinc deficiency and clinical practice-validity of zinc preparations. Yakugaku Zasshi 2008, 128, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Haase, H.; Overbeck, S.; Rink, L. Zinc supplementation for the treatment or prevention of disease: Current status and future perspectives. Exp. Gerontol. 2008, 43, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, S.; Irisa, K.; Matsubasa, T.; Higashi, A.; Matsuda, I. Zinc status relates to hematological deficits in middle-aged women. J. Am. Coll. Nutr. 1998, 17, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Kolsteren, P.; Rahman, S.R.; Hilderbrand, K.; Diniz, A. Treatment for iron deficiency anaemia with a combined supplementation of iron, vitamin A and zinc in women of Dinajpur, Bangladesh. Eur. J. Clin. Nutr. 1999, 53, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, K.; Kolsteren, P.W.; Prada, A.M.; Chian, A.M.; Velarde, R.E.; Pecho, I.L.; Hoerée, T.F. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia. J. Am. Clin. Nutr. 2004, 80, 1276–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunn, H.F. Erythropoietin. Cold Spring Harb. Perspect. Med. 2013, 3, a011619. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, W. Physiology and pharmacology of erythropoietin. Transfus. Med. Hemother 2013, 40, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; Hemmelgarn, B.; Klarenbach, S.; Field, C.; Manns, B.; Thadhani, R.; Gill, J. Trace elements in hemodialysis patients: A systematic review and meta-analysis. BMC Med. 2009, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, T.; Horike, H.; Fujiki, S.; Kitada, S.; Sasaki, T.; Kashihara, N. Zinc deficiency anemia and effects of zinc therapy in maintenance hemodialysis patients. Ther. Apher. Dial. 2009, 13, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Abe, M.; Okada, K.; Tei, R.; Maruyama, N.; Kikuchi, F.; Higuchi, T.; Soma, M. Oral zinc supplementation reduces the erythropoietin responsiveness index in patients on hemodialysis. Nutrients 2015, 7, 3783–3795. [Google Scholar] [CrossRef] [PubMed]
- Neto, L.C.; Bacci, M.R.; Sverzutt, L.C.; Costa, M.G.; Alves, B.C.A.; Fonseca, F.L. The Role of Zinc in Chronic Kidney Disease Patients on Hemodialysis: A. Systematic Review. Health 2016, 8, 344–352. [Google Scholar] [CrossRef]
- Sharifian, M.; Roozbeh, J.; Sagheb, M.M.; Shabani, S.; Jahromi, A.H.; Afsharinai, R.; Salehi, O.; Jalali, G.R. Does zinc supplementation help in the treatment of anemia in patients on hemodialysis? Saudi J. Kidney Dis. Transplant. 2012, 23, 836–837. [Google Scholar] [CrossRef] [PubMed]
- Argani, H.; Mahdavi, R.; Ghorbani-haghjo, A.; Razzaghi, R.; Nikniaz, L.; Gaemmaghami, S.J. Effects of zinc supplementation on serum zinc and leptin levels, BMI, and body composition in hemodialysis patients. J. Trace Elem. Med. Biol. 2014, 28, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.L.; Cousins, R.J. Zinc metabolism and metallothionein expression in bone marrow during erythropoiesis. Am. J. Physiol. 1993, 264, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.N.; Wehr, C.M.; MacGregor, J.T.; Woodhouse, L.R.; King, J.C. Zinc deficiency, erythrocyte production, and chromosomal damage in pregnant rats and their fetuses. J. Nutr. Biochem. 1995, 6, 263–268. [Google Scholar] [CrossRef]
- King, L.E.; Fraker, P.J. Zinc Deficiency in Mice Alters Myelopoiesis and Hematopoiesis. J. Nutr. 2002, 132, 3301–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, L.E.; Frentzel, J.W.; Mann, J.J.; Fraker, P.J. Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintained. J. Am Coll. Nutr. 2005, 24, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Konomi, A.; Yokoi, K. Zinc deficiency decreses plasma erythropoietin concentration in rats. Biol. Trace Elem. Res. 2005, 107, 289–292. [Google Scholar] [CrossRef]
- Konomi, A.; Yokoi, K. Zinc deficiency depresses red cell production in rats. FASEB J. 2007, 21. Available online: https://www.fasebj.org/doi/abs/10.1096/fasebj.21.5.A719-b (accessed on 14 September 2018).
- Konomi, A.; Yokoi, K. Effects of iron and/or zinc deficiency in rats. Trace Nutr. Res. 2007, 24, 82–89. [Google Scholar]
- Oliveira, D.C.; Nogueira-Pedro, A.; Santos, E.W.; Hastreiter, A.; Silva, G.B.; Borelli, P.; Fock, R.A. A review of select minerals influencing the haematopoietic process. Nutr. Res. Rev. 2018, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.P.; Lessler, M.A. Controlled Phenylhydrazine-Induced Reticulocytosis in the Rat. Ohin. J. Sci. 1970, 70, 300–304. [Google Scholar]
- Biswas, S.; Bhattacharyya, J.; Dutta, A.G. Oxidant induced injury of erythrocyte—Role of green tea leaf and ascorbic acid. Mol. Cell. Biochem. 2005, 276, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Berger, J. Phenylhydrazine haemotoxicity. J. Appl. Biomed. 2007, 5, 125–130. [Google Scholar]
- Kono, M.; Kondo, T.; Takagi, Y.; Wada, A.; Fujimoto, K. Morphological definition of CD71 positive reticulocytes by various staining techniques and electron microscopy compared to reticulocytes detected by an automated hematology analyzer. Clin. Chim. Acta 2009, 404, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, J.; Heck, S.; Chasis, J.A.; An, X.; Mohandas, N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA 2009, 106, 17413–17418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serke, S.; Huhn, D. Identification of CD71 (transferrin receptor) expressing erythrocytes by multiparameter-flow-cytometry (MP-FCM): Correlation to the quantitation of reticulocytes as determined by conventional microscopy and by MP-FCM using a RNA-staining dye. Br. J. Haematol. 1992, 81, 432–439. [Google Scholar] [CrossRef] [PubMed]
- UniProKB/Swiss-Prot: p12346. Available online: https://www.uniprot.org/uniprot/?query=accession:p12346 (accessed on 9 August 2018).
- O’Brien, B.R.A. Identification of Haemoglobin by its Catalase Reaction with Peroxide and o-Dianisidine. Stain Technol 1961, 36, 57–61. [Google Scholar] [CrossRef]
- Lin, T.Y.; Chen, Y.H.; Liu, C.L.; Jeng, S.S. Role of high zinc levels in the stress defense of common carp. Fish Sci. 2011, 77, 557–574. [Google Scholar] [CrossRef]
- Chen, Y.H.; Fang, S.W.; Jeng, S.S. Zinc transferrin stimulates red blood cell formation in the head kidney of common carp (Cyprinus carpio). Comp. Biochem. Physiol. A 2013, 166, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Chen, H.H.; Jeng, S.S. Rapid renewal of red blood cells in the common carp following prolonged exposure to air. Fish Sci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.H.; Shiu, J.R.; Ho, C.L.; Jeng, S.S. Zinc as a Signal to Stimulate Red Blood Cell Formation in Fish. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Roque, M.; D’Anna, C.; Gatti, C.; Veuthey, T. Hematological and morphological analysis of the erythropoietic regenerative response in phenylhydrazine-induced hemolytic anemia in mice. Scand. J. Lab Anim. Sci. 2008, 35, 181–190. [Google Scholar]
- Williams, T.D.; Fronstin, R.B.; Otomo, A.; Wagner, E. Validation of the use of phenylhydrazine hydrochloride (PHZ) for experimental manipulation of haematocrit and plasma haemoglobin in birds. Ibis 2012, 154, 21–29. [Google Scholar] [CrossRef]
- Domingo, J.L.; Llobet, J.M.; Paternain, J.L.; Corbella, J. Acute zinc intoxication: Comparison of the antidotal efficacy of several chelating agents. Vet. Hum. Toxicol. 1988, 30, 224–228. [Google Scholar] [PubMed]
- Fukada, T.; Kambe, T. Welcome to the world of zinc signaling. Int. J. Mol Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed]
- Haboubi, N.Y.; Baker, M.A.; Gyde, O.H.; Small, N.A.; Haboubi, N. Zinc supplementation and erythropoiesis in the elderly. J. Clin. Pathol. 1988, 41, 706. [Google Scholar] [CrossRef] [PubMed]
- Deicher, R.; Hörl, W. Hormonal adjuvants for the treatment of renal anaemia. Eur. J. Clin. Investig. 2005, 35, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Maekawa, T.; Watanabe, S.; Tsuji, K.; Nakahata, T. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. J. Clin. Investig. 2000, 106, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermine, O.; Beru, N.; Pech, N.; Goldwasser, E. An autocrine role for erythropoietin in mouse hematopoietic cell differentiation. Blood 1991, 78, 2253–2260. [Google Scholar] [PubMed]
- Villeval, J.L.; Mitjavila, M.T.; Dusanter-Fourt, I.; Wendling, F.; Mayeux, P.; Vainchenker, W. Autocrine stimulation by erythropoietin (Epo) requires Epo secretion. Blood 1994, 84, 2649–2662. [Google Scholar] [PubMed]
- Stopka, T.; Zivny, J.H.; Stopkova, P.; Prchal, J.F.; Prchal, J.T. Human hematopoietic progenitors express erythropoietin. Blood 1998, 91, 3766–3772. [Google Scholar] [PubMed]
- Freshney, R.I. Culture of Animal Cells, 4th ed.; Wiley-Liss: New York, NY, USA, 2000. [Google Scholar]
- Sugihara, T.; Sawada, S.; Hakura, A.; Hori, Y.; Uchida, K.; Sagami, F. A staining procedure for micronucleus test using new methylene blue and acridine orange: Specimens that are supravitally stained with possible long-term storage. Mutat. Res. 2000, 470, 103–108. [Google Scholar] [CrossRef]
- Jeng, S.S.; Yau, J.Y.; Chen, Y.H.; Lin, T.Y.; Chung, Y.Y. High zinc in the erythrocyte plasma membranes of common carp Cyprinus carpio. Fish Sci. 2007, 73, 421–428. [Google Scholar] [CrossRef]
RBC Count (106 Cell/mm3) | |||||
---|---|---|---|---|---|
Total RBC | Mature Erythrocytes | Reticulocytes | |||
Total | Fraction * | ||||
LFR | MFR | HFR | |||
(A) Normal rats (n = 6) † | |||||
6.91 ± 0.91 ‡,a | 6.37 ± 0.12 a | 0.54 ± 0.12 a | 0.22 ± 0.03 a | 0.14 ± 0.04 a | 0.18 ± 0.08 a |
(B) Saline-injected PHZ-induced anemic rats (n = 6) | |||||
3.58 ± 0.95 b | 2.30 ± 0.43 b | 1.28 ± 0.43 b | 0.28 ± 0.03 b | 0.17 ± 0.01 a | 0.83 ± 0.04 b |
(C) 2.8 mg Zn/kg bd wt ZnSO4-injected PHZ-induced anemic rats (n = 6) | |||||
6.08 ± 0.69 c | 4.29 ± 0.42 c | 1.79 ± 0.42 c | 0.43 ± 0.05 c | 0.29 ± 0.04 b | 1.08 ± 0.06 c |
Plasma Zn (μg Zn/mL Plasma) | Blood Cell Zn (μg Zn/106 Bloodcells) * | ||
---|---|---|---|
Outer Plasma Membrane | Inside Blood Cells | ||
(A) Normal rats (n = 6) † | 2.16 ± 0.48 ‡ | 48 ± 4 a | 80 ± 14 a |
(B) Saline-injected PHZ-induced anemic rats (n = 6) | 2.13 ± 0.18 c | 79 ± 11 b | 134 ± 51 b |
(C) 2.8 mg Zn/kg bdwt ZnSO4-injected PHZ-induced anemic rats (n = 6) | 2.00 ± 0.10 c | 105 ± 22 c | 200 ± 42 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Feng, H.-L.; Jeng, S.-S. Zinc Supplementation Stimulates Red Blood Cell Formation in Rats. Int. J. Mol. Sci. 2018, 19, 2824. https://doi.org/10.3390/ijms19092824
Chen Y-H, Feng H-L, Jeng S-S. Zinc Supplementation Stimulates Red Blood Cell Formation in Rats. International Journal of Molecular Sciences. 2018; 19(9):2824. https://doi.org/10.3390/ijms19092824
Chicago/Turabian StyleChen, Yen-Hua, Hui-Lin Feng, and Sen-Shyong Jeng. 2018. "Zinc Supplementation Stimulates Red Blood Cell Formation in Rats" International Journal of Molecular Sciences 19, no. 9: 2824. https://doi.org/10.3390/ijms19092824
APA StyleChen, Y. -H., Feng, H. -L., & Jeng, S. -S. (2018). Zinc Supplementation Stimulates Red Blood Cell Formation in Rats. International Journal of Molecular Sciences, 19(9), 2824. https://doi.org/10.3390/ijms19092824