NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of AHR Exogenous Ligands on Male Fecundity
2.2. The Effects of Exogenous Ligands and Testis-Specific Chaperone CG5017 on the Expression of AHR Target Genes in Drosophila Testes
3. Materials and Methods
3.1. Fly Stocks, Rearing Conditions, Reagents and Crosses
3.2. Calculation of Undeveloped Eggs Frequency
3.3. Real-Time Reverse-Transcription PCR Analysis
3.4. Immunohistochemistry
3.5. Microscopic Analysis
3.6. Image Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHR | Aryl Hydrocarbon Receptor |
NAP | Nucleosome Assembly Protein |
TJ | Traffic jam |
UAS | Upstream Activating Sequence |
Appendix A
Gene symbol | Title | Sequences (5′–3′) |
---|---|---|
Csas | CSASt1 | GAAATTGGTGGCTCATCGCT |
CSASt2 | GGAACTCCGAAATGGCATGA | |
CSASTAQ | FAM-CGTCTCTGGCGAATTTCTCAGGCCG-BHQ1 | |
Nans | NANSt1 | TGCCCTGCCGAAATAAACTG |
NANSt2 | TCCAAGAAATCCTCCGCTGT | |
NANSTAQ | FAM-AGTCAGTGAACCCAGCGGCCT-BHQ1 | |
Mgat1 | mgat1f | TGATTTCAAGAGCGGTGTTC |
mgat1r | GGCGGTACTCTGTCCTTAGC | |
mgataq | FAM-TACAACAAACGGCGCGTGCA-BHQ1 | |
GstT4 | cg1681f | TTCGCACCCACTCTAGTCAC |
cg1681r | GCTCGATTGGTTCAGGAAAT | |
cg1681taq | FAM- TCAACGAGATGTCGCAGCCACTC- BHQ1 | |
Cyp6g1 | Cyp6g1f | GCGATCCATTGGGCTATAAT |
Cyp6g1r | CCAATCTCCTGCATAAGGGT | |
Cyp6g1taq | FAM- TCGCACCAAGCTGACTCCCG-BHQ1 | |
Rel | Relf | GAAAGTAGCGATGCTGGTCA |
Relr | TGTTGTCCATTTCGGTGTCT | |
Reltaq | FAM-TCCAACTCCACGGAATCCTCGTC-BHQ1 | |
p53 | p53f | GTACTCGATTCCGCTGAACA |
p53r | CACGCAAATTAAGTGGTTGG | |
p53taq | FAM-CTGAACGTCCACGTTGAAGGCC-BHQ1 | |
Myc | dmf | CCGCGCTACAATAACTTCAA |
dmr | GCAGTTCTGATACGGTGTGC | |
dmtaq | FAM-TCGGTGGCCAACTCGCGTTA-BHQ1 | |
dap | dacf | CAGAGATGTACACCCTAA |
dacr | GGAGTCGTAACAAGATTC | |
dactaq | FAM-TTATCCGTGTTCGACTCTAGCG-BHQ1 | |
Jra | jraf | TTCACACTAACTCCCAGGCA |
jrar | CTCGGTCATGTTGGTGTAGG | |
jrataq | FAM-CAACTGCGGCAGCCATGACA-BHQ1 | |
Rbf | Rbf | CTGGCGAAGAGGTAATAGCC |
Rbr | GGACTTCGCTAGTTGGAAGC | |
Rbtaq | FAM-CTTCGCCTCCGTTGACGGGT-BHQ1 | |
Cdc42 | cdc42f | CGAGATTACACACCATTGCC |
cdc42r | ATGGGCTTCTGCTTGTTCTT | |
cdc42taq | FAM-TGCTGTTCTCGTCGCGCAAA-BHQ1 | |
Rpl32 | Rpl32dir | CCAGCATACAGGCCCAAGATC |
Rpl32rev | ACGCACTCTGTTGTCGATACC | |
Rpl32probe | FAM-CGCACCAAGCACTTCATCCGCCAC-BHQ1 |
References
- Israel, D.I.; Whitlock, J.P. Regulation of cytochrome P1–450 gene transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin in wild type and variant mouse hepatoma cells. J. Biol. Chem. 1984, 259, 5400–5402. [Google Scholar]
- Ko, H.P.; Okino, S.T.; Ma, Q.; Whitlock, J.P. Dioxin-induced CYP1A1 transcription in vivo: the aromatic hydrocarbon receptor mediates transactivation, enhancer-promoter communication, and changes in chromatin structure. Mol. Cell. Biol. 1996, 16, 430–436. [Google Scholar] [CrossRef]
- Duncan, D.M.; Burgess, E.A.; Duncan, I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 1998, 12, 1290–1303. [Google Scholar] [CrossRef] [Green Version]
- Nebert, D.W.; Roe, A.L.; Dieter, M.Z.; Solis, W.A.; Yang, Y.; Dalton, T.P. Role of the aromatic hydrocarbon receptor and (Ah) gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharmacol. 2000, 59, 65–85. [Google Scholar] [CrossRef]
- Emmons, R.B.; Duncan, D.; Estes, P.A.; Kiefel, P.; Mosher, J.T.; Sonnenfeld, M.; Ward, M.P.; Duncan, I.; Crews, S.T. The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 1999, 126, 3937–3945. [Google Scholar]
- Tijet, N.; Boutros, P.C.; Moffat, I.D.; Okey, A.B.; Tuomisto, J.; Pohjanvirta, R. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol. Pharmacol. 2006, 69, 140–153. [Google Scholar] [CrossRef]
- Gasiewicz, T.A.; Singh, K.P.; Casado, F.L. The aryl hydrocarbon receptor has an important role in the regulation of hematopoiesis: implications for benzene-induced hematopoietic toxicity. Chem. Biol. Interact. 2010, 184, 246–251. [Google Scholar] [CrossRef]
- Kiss, E.A.; Vonarbourg, C.; Kopfmann, S.; Hobeika, E.; Finke, D.; Esser, C.; Diefenbach, A. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334, 1561–1565. [Google Scholar] [CrossRef]
- Li, Y.; Innocentin, S.; Withers, D.R.; Roberts, N.A.; Gallagher, A.R.; Grigorieva, E.F.; Wilhelm, C.; Veldhoen, M. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147, 629–640. [Google Scholar] [CrossRef]
- Quintana, F.J.; Basso, A.S.; Iglesias, A.H.; Korn, T.; Farez, M.F.; Bettelli, E.; Caccamo, M.; Oukka, M.; Weiner, H.L. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008, 453, 65–71. [Google Scholar] [CrossRef]
- Akahoshi, E.; Yoshimura, S.; Ishihara-Sugano, M. Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study. Environ Health 2006, 5, 24. [Google Scholar] [CrossRef]
- Walisser, J.A.; Glover, E.; Pande, K.; Liss, A.L.; Bradfield, C.A. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types. Proc. Natl. Acad. Sci. USA 2005, 102, 17858–17863. [Google Scholar] [CrossRef] [Green Version]
- Boitano, A.E.; Wang, J.; Romeo, R.; Bouchez, L.C.; Parker, A.E.; Sutton, S.E.; Walker, J.R.; Flaveny, C.A.; Perdew, G.H.; Denison, M.S.; et al. Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells. Science 2010, 329, 1345–1348. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.; Stanford Zulick, E.; Novikov, O.; Parks, A.J.; Schlezinger, J.J.; Wang, Z.; Laroche, F.; Feng, H.; Mulas, F.; Monti, S.; et al. Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor. Int. J. Mol. Sci. 2018, 19, 1388. [Google Scholar] [CrossRef]
- Butler, R.A.; Kelley, M.L.; Powell, W.H.; Hahn, M.E.; Van Beneden, R.J. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene 2001, 278, 223–234. [Google Scholar] [CrossRef]
- Schmidt, J.V.; Su, G.H.; Reddy, J.K.; Simon, M.C.; Bradfield, C.A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA 1996, 93, 6731–6736. [Google Scholar] [CrossRef]
- Fernandez-Salguero, P.; Pineau, T.; Hilbert, D.M.; McPhail, T.; Lee, S.S.; Kimura, S.; Nebert, D.W.; Rudikoff, S.; Ward, J.M.; Gonzalez, F.J. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 1995, 268, 722–726. [Google Scholar] [CrossRef]
- Mimura, J.; Yamashita, K.; Nakamura, K.; Morita, M.; Takagi, T.N.; Nakao, K.; Ema, M.; Sogawa, K.; Yasuda, M.; Katsuki, M.; et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 1997, 2, 645–654. [Google Scholar] [CrossRef]
- Benedict, J.C.; Lin, T.M.; Loeffler, I.K.; Peterson, R.E.; Flaws, J.A. Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicol. Sci. 2000, 56, 382–388. [Google Scholar] [CrossRef]
- Busbee, P.B.; Rouse, M.; Nagarkatti, M.; Nagarkatti, P.S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev. 2013, 71, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Lo, R.; Celius, T.; Forgacs, A.L.; Dere, E.; MacPherson, L.; Harper, P.; Zacharewski, T.; Matthews, J. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 2011, 257, 38–47. [Google Scholar] [CrossRef]
- Nebert, D.W. The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit. Rev. Toxicol. 1989, 20, 153–174. [Google Scholar] [CrossRef]
- Singh, K.P.; Wyman, A.; Casado, F.L.; Garrett, R.W.; Gasiewicz, T.A. Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells. Carcinogenesis 2009, 30, 11–19. [Google Scholar] [CrossRef]
- Stegeman, J.J. and Hahn, M.E. Biochemistry and molecular biology of monooxygenases: current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species. In Aquatic toxicology, molecular, biochemical and cellular perspectives; Malins, D.C., Ostrander, G.K., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 87–206. [Google Scholar]
- Hahn, M.E.; Poland, A.; Glover, E.; Stegeman, J.J. Photoaffinity Labeling of the Ah Receptor: Phylogenetic Survey of Diverse Vertebrate and Invertebrate Species. Arch. Biochem. Biophys. 1994, 310, 218–228. [Google Scholar] [CrossRef]
- Hahn, M.E. The aryl hydrocarbon receptor: a comparative perspective. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 121, 23–53. [Google Scholar] [CrossRef]
- Hahn, M.E. Aryl hydrocarbon receptors: diversity and evolution. Chem. Biol. Interact. 2002, 141, 131–160. [Google Scholar] [CrossRef]
- Céspedes, M.A.; Galindo, M.I.; Couso, J.P. Dioxin toxicity in vivo results from an increase in the dioxin-independent transcriptional activity of the aryl hydrocarbon receptor. PLoS ONE 2010, 5, e15382. [Google Scholar] [CrossRef]
- Jaronen, M.; Quintana, F.J. Immunological Relevance of the Coevolution of IDO1 and AHR. Frontiers in Immunology 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Jin, U.-H.; Lee, S.; Safe, S. Aryl hydrocarbon receptor (AHR)-active pharmaceuticals are selective AHR modulators in MDA-MB-468 and BT474 breast cancer cells. J. Pharmacol. Exp. Ther. 2012, 343, 333–341. [Google Scholar] [CrossRef]
- Murray, I.A.; Morales, J.L.; Flaveny, C.A.; Dinatale, B.C.; Chiaro, C.; Gowdahalli, K.; Amin, S.; Perdew, G.H. Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. Mol. Pharmacol. 2010, 77, 247–254. [Google Scholar] [CrossRef]
- Akishina, A.A.; Vorontsova, J.E.; Cherezov, R.O.; Mertsalov, I.B.; Zatsepina, O.G.; Slezinger, M.S.; Panin, V.M.; Petruk, S.; Enikolopov, G.N.; Mazo, A.; et al. Xenobiotic-induced activation of human aryl hydrocarbon receptor target genes in Drosophila is mediated by the epigenetic chromatin modifiers. Oncotarget 2017, 8. [Google Scholar] [CrossRef]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar]
- Kimura, S. The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis. FEBS Lett. 2013, 587, 922–929. [Google Scholar] [CrossRef]
- Davies, E.L.; Fuller, M.T. Regulation of self-renewal and differentiation in adult stem cell lineages: lessons from the Drosophila male germ line. Cold Spring Harb. Symp. Quant. Biol. 2008, 73, 137–145. [Google Scholar] [CrossRef]
- Li, M.A.; Alls, J.D.; Avancini, R.M.; Koo, K.; Godt, D. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nature Cell Biology 2003, 5, 994–1000. [Google Scholar] [CrossRef]
- Andrews, A.J.; Chen, X.; Zevin, A.; Stargell, L.A.; Luger, K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol. Cell 2010, 37, 834–842. [Google Scholar] [CrossRef]
- Chen, X.; D’Arcy, S.; Radebaugh, C.A.; Krzizike, D.D.; Giebler, H.A.; Huang, L.; Nyborg, J.K.; Luger, K.; Stargell, L.A. Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus. Mol. Cell. Biol. 2016, 36, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Doyen, C.M.; Chalkley, G.E.; Voets, O.; Bezstarosti, K.; Demmers, J.A.; Moshkin, Y.M.; Verrijzer, C.P. A Testis-Specific Chaperone and the Chromatin Remodeler ISWI Mediate Repackaging of the Paternal Genome. Cell Rep. 2015, 13, 1310–1318. [Google Scholar] [CrossRef]
- Aguilar-Gurrieri, C.; Larabi, A.; Vinayachandran, V.; Patel, N.A.; Yen, K.; Reja, R.; Ebong, I.; Schoehn, G.; Robinson, C.V.; Pugh, B.F.; et al. Structural evidence for Nap1-dependent H2A–H2B deposition and nucleosome assembly. The EMBO Journal 2016, 35, 1465–1482. [Google Scholar] [CrossRef]
- Dubnau, J.; Chiang, A.-S.; Grady, L.; Barditch, J.; Gossweiler, S.; McNeil, J.; Smith, P.; Buldoc, F.; Scott, R.; Certa, U.; et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 2003, 13, 286–296. [Google Scholar] [CrossRef]
- Kuzin, B.A.; Nikitina, E.A.; Cherezov, R.O.; Vorontsova, J.E.; Slezinger, M.S.; Zatsepina, O.G.; Simonova, O.B.; Enikolopov, G.N.; Savvateeva-Popova, E.V. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification. PLoS ONE 2014, 9, e94975. [Google Scholar] [CrossRef]
- Kuzin, B.A.; Doszhanov, K.T.; Simonova, O.B.; Gerasimova, T.I.; Guliaev, D.V. A new allele variant of ssa and its participation in regulating the proliferation of the stem elements of the leg and antenna imaginal disks in Drosophila melanogaster. Ontogenez 1991, 22, 212–216. [Google Scholar]
- Kuzin, B.A.; Modestova, E.A.; Vorontsova, I.E.; Zatsepina, O.G.; Mikaelian, A.S.; Slezinger, M.V.; Simonova, O.B. Interaction of the ss and CG5017 genes in the regulation of morphogensis of limbs in Drosophila melanogaster. Ontogenez 2010, 41, 364–369. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Lin, Y.-J.; Lu, P.-C.; Tain, Y.-L. Maternal Resveratrol Therapy Protects Male Rat Offspring against Programmed Hypertension Induced by TCDD and Dexamethasone Exposures: Is It Relevant to Aryl Hydrocarbon Receptor? Int. J. Mol. Sci. 2018, 19, 2459. [Google Scholar] [CrossRef]
- Gunawan, F.; Arandjelovic, M.; Godt, D. The Maf factor Traffic jam both enables and inhibits collective cell migration in Drosophila oogenesis. Development 2013, 140, 2808–2817. [Google Scholar] [CrossRef] [Green Version]
Gene Symbol | Ligand | |||||
---|---|---|---|---|---|---|
Indirubin | beta-Naphthoflavone | Indinol | ||||
Allele of CG5017 | ||||||
+/+ | ssaSc | +/+ | ssaSc | +/+ | ssaSc | |
Mgat1 | 0 | − | − | + | + | + |
GstT4 | + | 0 | 0 | + | + | + |
Cyp6g1 | 0 | + | + | + | − | + |
Csas | + | 0 | 0 | + | + | 0 |
Nans | + | 0 | 0 | + | 0 | 0 |
Rel | + | 0 | + | + | + | 0 |
p53 | + | 0 | 0 | − | + | − |
Myc | 0 | + | + | − | + | − |
dap | + | 0 | − | − | 0 | − |
Rbf | + | 0 | 0 | − | 0 | − |
Jra | + | 0 | 0 | 0 | + | − |
Cdc42 | + | + | 0 | − | 0 | − |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akishina, A.A.; Vorontsova, J.E.; Cherezov, R.O.; Slezinger, M.S.; Simonova, O.B.; Kuzin, B.A. NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis. Int. J. Mol. Sci. 2019, 20, 118. https://doi.org/10.3390/ijms20010118
Akishina AA, Vorontsova JE, Cherezov RO, Slezinger MS, Simonova OB, Kuzin BA. NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis. International Journal of Molecular Sciences. 2019; 20(1):118. https://doi.org/10.3390/ijms20010118
Chicago/Turabian StyleAkishina, Angelina A., Julia E. Vorontsova, Roman O. Cherezov, Mikhail S. Slezinger, Olga B. Simonova, and Boris A. Kuzin. 2019. "NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis" International Journal of Molecular Sciences 20, no. 1: 118. https://doi.org/10.3390/ijms20010118
APA StyleAkishina, A. A., Vorontsova, J. E., Cherezov, R. O., Slezinger, M. S., Simonova, O. B., & Kuzin, B. A. (2019). NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis. International Journal of Molecular Sciences, 20(1), 118. https://doi.org/10.3390/ijms20010118