Lgr5 Does Not Vary Throughout the Menstrual Cycle in Endometriotic Human Eutopic Endometrium
Abstract
:1. Introduction
2. Results
2.1. LGR5 Does Not Vary Throughout the Menstrual Cycle in Women with Endometriosis
2.1.1. Immunofluorescence Analysis
2.1.2. In vitro Studies
2.1.3. Flow Cytometry Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Immunofluorescence
4.3. Tissue Digestion and Primary Culture
4.4. RNA Extraction
4.5. Real Time Quantitative PCR (RT-qPCR)
4.6. Immunocytochemistry and Fluorescence Activated Cell Sorting (FACS)
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DIE | Deep infiltrating endometriosis |
DMEM | Dulbecco’s modified Eagle medium |
ECAD | E-cadherin |
FIM | Fluorescence intensity mean |
ND | Non-determined |
FSH | Follicular stimulating hormone |
DAPI | 4′,6-diamidino-2-phenylindole |
CK | Cytokeratin |
Mϕ | Macrophages |
eSF | Endometrial stromal fibroblasts |
SCM | Serum containing media |
ON | Overnight |
NGS | Normal goat serum |
RT-qPCR | Real time-quantitative PCR |
E2 | Estradiol |
P4 | Progesterone |
LGR5 | Leucine-rich repeat containing G protein-coupled receptor 5 |
IF | Immunofluorescence |
PBS | Phosphate buffered saline |
FBS | Fetal bovine serum |
BSA | Bovine serum albumin |
FC | Flow cytometry |
References
- Giudice, L.C. Clinical Practice: Endometriosis. N. Engl. J. Med. 2010, 362, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; Van Es, J.H.; Jaks, V. Very Long-Term Self-Renewal of Small Intestine, Colon, and Hair Follicles from Cycling Lgr5 + ve Stem Cells; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2008; Volume LXXIII, pp. 351–356. [Google Scholar]
- Haegebarth, A.; Clevers, H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am. J. Pathol. 2009, 174, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; Van Es, J.H.; Kuipers, J.; Kujala, P.; Van Den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Gil-Sanchis, C.; Cervelló, I.; Mas, A.; Faus, A.; Pellicer, A.; Simón, C. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) as a putative human endometrial stem cell marker. Mol. Hum. Reprod. 2013, 19, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Tempest, N.; Baker, A.M.; Wright, N.A.; Hapangama, D.K. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche? Hum. Reprod. 2018, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cervelló, I.; Gil-Sanchis, C.; Santamaría, X.; Faus, A.; Vallvé-Juanico, J.; Díaz-Gimeno, P.; Genolet, O.; Pellicer, A.; Simón, C. Leucine-rich repeat–containing G-protein–coupled receptor 5–positive cells in the endometrial stem cell niche. Fertil. Steril. 2016. [Google Scholar] [CrossRef]
- Vallvé-Juanico, J.; Suárez-Salvador, E.; Castellví, J.; Ballesteros, A.; Taylor, H.S.; Gil-Moreno, A.; Santamaria, X. Aberrant expression of epithelial leucine-rich repeat containing G protein–coupled receptor 5–positive cells in the eutopic endometrium in endometriosis and implications in deep-infiltrating endometriosis. Fertil. Steril. 2017, 108, 858–867. [Google Scholar] [CrossRef]
- Krusche, C.A.; Kroll, T.; Beier, H.M.; Classen-Linke, I. Expression of leucine-rich repeat-containing G-protein-coupled receptors in the human cyclic endometrium. Fertil. Steril. 2007, 87, 1428–1437. [Google Scholar] [CrossRef]
- Salamonsen, L.A.; Zhang, J.; Brasted, M. Leukocyte networks and human endometrial remodelling. J. Reprod. Immunol. 2002, 57, 95–108. [Google Scholar] [CrossRef]
- Berbic, M.; Schulke, L.; Markham, R.; Tokushige, N.; Russell, P.; Fraser, I.S. Macrophage expression in endometrium of women with and without endometriosis. Hum. Reprod. 2009, 24, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Ning, F.; Liu, H.; Lash, G.E. The Role of Decidual Macrophages During Normal and Pathological Pregnancy. Am. J. Reprod. Immunol. 2016, 75, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, K.N.; Masuzaki, H.; Fujishita, A.; Kitajima, M.; Sekine, I.; Ishimaru, T. Differential macrophage infiltration in early and advanced endometriosis and adjacent peritoneum. Fertil. Steril. 2004, 81, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.G.; Rudnicki, M.; Yu, J.; Shu, Y.; Taylor, R.N. Progesterone resistance in endometriosis: Origins, consequences and interventions. Acta Obstet. Gynecol. Scand. 2017, 96, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, X.; Massasa, E.E.; Taylor, H.S. Migration of cells from experimental endometriosis to the uterine endometrium. Endocrinology 2012, 153, 5566–5574. [Google Scholar] [CrossRef] [PubMed]
- Givan, A.L.; White, H.D.; Stern, J.E.; Colby, E.; Gosselin, E.J.; Guyre, P.M.; Wira, C.R. Flow cytometric analysis of leukocytes in the human female reproductive tract: Comparison of fallopian tube, uterus, cervix, and vagina. Am. J. Reprod. Immunol. 1997, 38, 350–359. [Google Scholar] [CrossRef]
- Wira, C.R.; Fahey, J.V.; Sentman, C.L.; Pioli, P.A.; Shen, L. Innate and adaptive immunity in female genital tract: Cellular responses and interactions. Immunol. Rev. 2005, 206, 306–335. [Google Scholar] [CrossRef]
- Starkey, P.M.; Clover, L.M.; Rees, M.C. Variation during the menstrual cycle of immune cell populations in human endometrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991, 39, 203–207. [Google Scholar] [CrossRef]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef]
- Jensen, A.L.; Collins, J.; Shipman, E.P.; Wira, C.R.; Guyre, P.M.; Pioli, P.A. A Subset of Human Uterine Endometrial Macrophages is Alternatively Activated. Am. J. Reprod. Immunol. 2012, 68, 374–386. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5, 953–964. [Google Scholar] [CrossRef]
- Cominelli, A.; Gaide Chevronnay, H.P.; Lemoine, P.; Courtoy, P.J.; Marbaix, E.; Henriet, P. Matrix metalloproteinase-27 is expressed in CD163+/CD206 + M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol. Hum. Reprod. 2014, 20, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Aghajanova, L.; Velarde, M.C.; Giudice, L.C. Altered gene expression profiling in endometrium: Evidence for progesterone resistance. Semin. Reprod. Med. 2010, 28, 51–58. [Google Scholar] [CrossRef] [PubMed]
- E Melo, F.D.; Kurtova, A.V.; Harnoss, J.M.; Kljavin, N.; Hoeck, J.D.; Hung, J.; Anderson, J.E.; Storm, E.E.; Modrusan, Z.; Koeppen, H.; et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 2017, 543, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, G.; Jiang, X.; Sosa, J.A.; Diehl, A.M.; Henderson, B.B. LGR5 is associated with tumor aggressiveness in papillary thyroid cancer. Oncotarget 2015, 6, 34549–34560. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.F.; Chen, P.M.; Chu, P.Y. LGR5 overexpression confers poor relapse-free survival in breast cancer patients. BMC Cancer 2018, 18, 219. [Google Scholar] [CrossRef] [PubMed]
- Schindler, A.J.; Watanabe, A.; Howell, S.B. LGR5 and LGR6 in stem cell biology and ovarian cancer. Oncotarget 2018, 9, 1346–1355. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Gan, X.; Shen, F.; Yang, X.; Du, N.; Xia, D.; Liu, L.; Qiao, L.; Pan, J.; et al. LGR5 promotes epithelial ovarian cancer proliferation, metastasis, and epithelial–mesenchymal transition through the Notch1 signaling pathway. Cancer Med. 2018, 7, 3132–3142. [Google Scholar] [CrossRef]
- Becker, C.M.; Laufer, M.R.; Stratton, P.; Hummelshoj, L.; Missmer, S.A.; Zondervan, K.T.; Adamson, G.D. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research. Fertil. Steril. 2014, 102, 1213–1222. [Google Scholar] [CrossRef]
Patient ID | Type of Patient | Type of Endometriosis | Eutopic Endometrium | Mached Ectopic Endometrium | Technique Used |
---|---|---|---|---|---|
1 | Control | - | yes | - | FC |
2 | Control | - | yes | - | FC |
3 | Control | - | yes | - | FC |
4 | Control | - | yes | - | FC |
5 | Control | - | yes | - | FC |
6 | Control | - | yes | - | FC |
7 | Control | - | yes | - | FC |
8 | Control | - | yes | - | FC |
9 | Control | - | yes | - | FC/CC |
10 | Control | - | yes | - | FC/CC |
11 | Control | - | yes | - | FC/CC |
12 | Control | - | yes | - | FC/CC |
13 | Control | - | yes | - | IF |
14 | Control | - | yes | - | IF |
15 | Control | - | yes | - | IF |
16 | Control | - | yes | - | IF |
17 | Control | - | yes | - | IF |
18 | Control | - | yes | - | IF |
19 | Control | - | yes | - | IF |
20 | Control | - | yes | - | IF |
21 | Control | - | yes | - | IF |
22 | Control | - | yes | - | IF |
23 | Control | - | yes | - | IF |
24 | Control | - | yes | - | IF |
25 | Control | - | yes | - | IF |
26 | Control | - | yes | - | IF |
27 | Control | - | yes | - | IF |
28 | Control | - | yes | - | IF |
29 | Control | - | yes | - | IF |
30 | Control | - | yes | - | IF |
31 | Control | - | yes | - | IF |
32 | Control | - | yes | - | IF |
33 | Control | - | yes | - | IF |
34 | Control | - | yes | - | IF |
35 | Control | - | yes | - | IF |
36 | Control | - | yes | - | IF |
37 | Endometriosis | Ovarian | yes | - | FC |
38 | Endometriosis | Ovarian | yes | - | FC |
39 | Endometriosis | Ovarian | yes | - | FC |
40 | Endometriosis | Ovarian | yes | - | FC |
41 | Endometriosis | Ovarian | yes | yes | FC |
42 | Endometriosis | Ovarian | yes | yes | FC |
43 | Endometriosis | Ovarian | yes | yes | FC |
44 | Endometriosis | Ovarian | yes | yes | FC |
45 | Endometriosis | DIE | yes | yes | FC |
46 | Endometriosis | DIE | yes | yes | FC |
47 | Endometriosis | DIE | yes | yes | FC |
48 | Endometriosis | DIE | yes | yes | FC |
49 | Endometriosis | DIE | yes | yes | FC |
50 | Endometriosis | DIE | yes | yes | FC |
51 | Endometriosis | DIE | yes | - | FC |
52 | Endometriosis | DIE | yes | - | FC |
53 | Endometriosis | DIE | yes | - | FC |
54 | Endometriosis | DIE | yes | - | FC |
55 | Endometriosis | Pelvic | yes | yes | FC |
56 | Endometriosis | Pelvic | yes | - | FC |
57 | Endometriosis | Pelvic | yes | - | FC |
58 | Endometriosis | Adenomyosis | yes | - | FC |
59 | Endometriosis | Adenomyosis | yes | yes | FC |
60 | Endometriosis | Adenomyosis | yes | - | FC |
61 | Endometriosis | Adenomyosis | yes | yes | FC |
62 | Endometriosis | DIE | yes | - | CC |
63 | Endometriosis | DIE | yes | - | CC |
64 | Endometriosis | DIE | yes | - | CC |
65 | Endometriosis | ND | yes | - | IF |
66 | Endometriosis | ND | yes | - | IF |
67 | Endometriosis | ND | yes | - | IF |
68 | Endometriosis | ND | yes | - | IF |
69 | Endometriosis | ND | yes | - | IF |
70 | Endometriosis | ND | yes | - | IF |
71 | Endometriosis | ND | yes | - | IF |
72 | Endometriosis | ND | yes | - | IF |
73 | Endometriosis | ND | yes | - | IF |
74 | Endometriosis | ND | yes | - | IF |
75 | Endometriosis | ND | yes | - | IF |
76 | Endometriosis | ND | yes | - | IF |
77 | Endometriosis | ND | yes | - | IF |
78 | Endometriosis | ND | yes | - | IF |
79 | Endometriosis | ND | yes | - | IF |
80 | Endometriosis | ND | yes | - | IF |
81 | Endometriosis | ND | yes | - | IF |
82 | Endometriosis | ND | yes | - | IF |
83 | Endometriosis | ND | yes | - | IF |
84 | Endometriosis | ND | yes | - | IF |
85 | Endometriosis | ND | yes | - | IF |
86 | Endometriosis | ND | yes | - | IF |
87 | Endometriosis | ND | yes | - | IF |
88 | Endometriosis | ND | yes | - | IF |
Gene | Primer Name | Sequence 5′–3′ | Tm |
---|---|---|---|
CYR61 | hCYR61-For-25 | CTCGCCTTAGTCGTCACCC | 57.6 |
hCYR61-Rev-226 | CGCCGAAGTTGCATTCCAG | 57.1 | |
DKK1 | hDKK1-For507 | ATAGCACCTTGGATGGGTATTCC | 56.6 |
hDKK1-Rev-560 | CTGATGACCGGAGACAAACAG | 55.5 | |
LGR5 | hLGR5-For-71 | CACCTCCTACCTAGACCTCAGT | 57 |
hLGR5-Rev-274 | CGCAAGACGTAACTCCTCCAG | 57.5 | |
GAPDH | hGAPDH-For | CGT CTT CAC CAC CAT GGA GA | 61.1 |
hGAPDH-Rev | CGG CCA TCA CGC CAC AGT TT | 56.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallvé-Juanico, J.; Barón, C.; Suárez-Salvador, E.; Castellví, J.; Ballesteros, A.; Gil-Moreno, A.; Santamaria, X. Lgr5 Does Not Vary Throughout the Menstrual Cycle in Endometriotic Human Eutopic Endometrium. Int. J. Mol. Sci. 2019, 20, 22. https://doi.org/10.3390/ijms20010022
Vallvé-Juanico J, Barón C, Suárez-Salvador E, Castellví J, Ballesteros A, Gil-Moreno A, Santamaria X. Lgr5 Does Not Vary Throughout the Menstrual Cycle in Endometriotic Human Eutopic Endometrium. International Journal of Molecular Sciences. 2019; 20(1):22. https://doi.org/10.3390/ijms20010022
Chicago/Turabian StyleVallvé-Juanico, Júlia, Cristian Barón, Elena Suárez-Salvador, Josep Castellví, Agustín Ballesteros, Antonio Gil-Moreno, and Xavier Santamaria. 2019. "Lgr5 Does Not Vary Throughout the Menstrual Cycle in Endometriotic Human Eutopic Endometrium" International Journal of Molecular Sciences 20, no. 1: 22. https://doi.org/10.3390/ijms20010022
APA StyleVallvé-Juanico, J., Barón, C., Suárez-Salvador, E., Castellví, J., Ballesteros, A., Gil-Moreno, A., & Santamaria, X. (2019). Lgr5 Does Not Vary Throughout the Menstrual Cycle in Endometriotic Human Eutopic Endometrium. International Journal of Molecular Sciences, 20(1), 22. https://doi.org/10.3390/ijms20010022