Recent Advances in Inflammation and Treatment of Small Airways in Asthma
Abstract
:1. Introduction
2. Small Airways Pathology
3. Small Airways Inflammation and Assessment
3.1. Inflammation and Biomarkers
3.2. Functional Assessments
3.2.1. Spirometry and Plethysmography
3.2.2. Pulmonary Resistance Measurements
3.2.3. Nitrogen Washout Tests
3.3. Imaging
4. Treatment: How Could We Reach the Peripheral Airways?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2018. Available online: www.ginasthma.org (accessed on 25 February 2019).
- Sims, E.J.; Price, D.; Haughney, J.; Ryan, D.; Thomas, M. Current control and future risk in asthma management. Allergy Asthma Immunol. Res. 2011, 3, 217–225. [Google Scholar] [CrossRef]
- Dima, A.L.; Hernandez, G.; Cunillera, O.; Ferrer, M.; de Bruin, M. ASTRO-LAB group. Asthma inhaler adherence determinants in adults: Systematic review of observational data. Eur. Respir. J. 2015, 45, 994–1018. [Google Scholar] [CrossRef]
- Lavorini, F.; Usmani, O.S. Correct inhalation technique is critical in achieving good asthma control. Prim. Care Respir. J. 2013, 22, 383–392. [Google Scholar] [CrossRef]
- Brusselle, G.; Bracke, K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2014, 11, S322–S328. [Google Scholar] [CrossRef] [PubMed]
- Boulet, L.P. Influence of comorbid conditions on asthma. Eur. Respir. J. 2009, 33, 897–906. [Google Scholar] [CrossRef]
- Claxton, A.J.; Cramer, J.; Pierce, C. A systematic review of the associations between dose regimens and medication compliance. Clin. Ther. 2001, 23, 1296–1310. [Google Scholar] [CrossRef]
- Bender, B.; Zhang, L. Negative affect, medication adherence, and asthma control in children. J. Allergy Clin. Immunol. 2008, 122, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.C.; Jain, M.; Ragab, S.; Malik, N. Acquisition and short-term retention of inhaler techniques require intact executive function in elderly subjects. Age Ageing 2003, 32, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Van der Wiel, E.; ten Hacken, N.H.; Postma, D.S.; van den Berge, M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: A systematic review. J. Allergy Clin. Immunol. 2013, 131, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.R.; Jabbal, S.; Lipworth, B. Is small airways dysfunction related to asthma control and type 2 inflammation? Ann. Allergy Asthma Immunol. 2018, 121, 631–632. [Google Scholar] [CrossRef]
- Weibel, E.R. Geometry and dimensions of airways of conductive and transitory zones. In Morphometry of the Human Lung; Springer: Berlin/Heidelberg, Germany, 1963; pp. 110–135. [Google Scholar]
- Bonini, M.; Usmani, O.S. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 2015, 9, 281–293. [Google Scholar] [CrossRef]
- Mead, J. The lung’s “quiet zone.”. N. Engl. J. Med. 1970, 282, 1318–1319. [Google Scholar] [CrossRef]
- Hogg, J.C.; Macklem, P.T.; Thurlbeck, W.M. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl. J. Med. 1968, 278, 1355–1360. [Google Scholar] [CrossRef]
- Macklem, P.T.; Mead, J. Resistance of central and peripheral airways measured by a retrograde catheter. J. Appl. Physiol. 1967, 22, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Mead, J.; Takishima, T.; Leith, D. Stress distribution in lungs: A model of pulmonary elasticity. J. Appl. Physiol. 1970, 28, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Yanai, M.; Sekizawa, K.; Ohrui, T.; Sasaki, H.; Takishima, T. Site of airway obstruction in pulmonary disease: Direct measurement of intrabronchial pressure. J. Appl. Physiol. 1992, 72, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Tashkin, D.P. The role of small airway inflammation in asthma. Allergy Asthma Proc. 2002, 23, 233–242. [Google Scholar] [PubMed]
- Andersson, C.K.; Bergqvist, A.; Mori, M.; Mauad, T.; Bjermer, L.; Erjefält, J.S. Mast cell-associated alveolar inflammation in patients with atopic uncontrolled asthma. J. Allergy Clin. Immunol. 2011, 127, 905–912. [Google Scholar] [CrossRef]
- Balzar, S.; Chu, H.W.; Strand, M.; Wenzel, S. Relationship of small airway chymase-positive mast cells and lung function in severe asthma. Am. J. Respir. Crit. Care Med. 2005, 171, 431–439. [Google Scholar] [CrossRef]
- Hamid, Q.; Song, Y.; Kotsimbos, T.C.; Minshall, E.; Bai, T.R.; Hegele, R.G.; Hogg, J.C. Inflammation of small airways in asthma. J. Allergy Clin. Immunol 1997, 100, 44–51. [Google Scholar] [CrossRef]
- Carroll, N.; Cooke, C.; James, A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur. Respir J. 1997, 10, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Minshall, E.M.; Hogg, J.C.; Hamid, Q.A. Cytokine mRNA expression in asthma is not restricted to the large airways. J. Allergy Clin. Immunol. 1998, 101, 386–390. [Google Scholar] [CrossRef]
- Kraft, M.; Djukanovic, R.; Wilson, S.; Holgate, S.T.; Martin, R.J. Alveolar tissue inflammation in asthma. Am. J. Respir. Crit. Care Med. 1996, 154, 1505–1510. [Google Scholar] [CrossRef]
- Barnes, P.J.; Dweik, R.A.; Gelb, A.F.; Gibson, P.G.; George, S.C.; Grasemann, H.; Pavord, I.D.; Ratjen, F.; Silkoff, P.E.; Taylor, D.R.; et al. Exhaled nitric oxide in pulmonary diseases: A comprehensive review. Chest 2010, 138, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Mummadi, S.R.; Hahn, P.Y. Update on Exhaled Nitric Oxide in Clinical Practice. Chest 2016, 149, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.; Knight, D.; Burgess, S.; Franklin, P.; Horak, F.; Legg, J.; Moeller, A.; Stick, S. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 2004, 59, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Alving, K.; Weitzberg, E.; Lundberg, J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993, 6, 1368–1370. [Google Scholar] [PubMed]
- Tsoukias, N.M.; George, S.C. A two-compartment model of pulmonary nitric oxide exchange dynamics. J. Appl. Physiol. 1998, 85, 653–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredi, P.; Kharitonov, S.A.; Meah, S.; Barnes, P.J.; Usmani, O.S. A novel approach to partition central and peripheral airway nitric oxide. Chest 2014, 145, 113–119. [Google Scholar] [CrossRef]
- Lázár, Z.; Horváth, P.; Puskás, R.; Gálffy, G.; Losonczy, G.; Horváth, I.; Bikov, A. A suitable protocol for measuring alveolar nitric oxide in asthma with differing severity to assess peripheral airways inflammation. J. Asthma 2019, 56, 584–593. [Google Scholar] [CrossRef]
- Mahut, B.; Delacourt, C.; Zerah-Lancner, F.; De Blic, J.; Harf, A.; Delclaux, C. Increase in alveolar nitric oxide in the presence of symptoms in childhood asthma. Chest 2004, 125, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Paraskakis, E.; Brindicci, C.; Fleming, L.; Krol, R.; Kharitonov, S.A.; Wilson, N.M.; Barnes, P.J.; Bush, A. Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. Am. J. Respir. Crit. Care Med. 2006, 174, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Lehtimaki, L.; Kankaanranta, H.; Saarelainen, S.; Turjanmaa, V.; Moilanen, E. Peripheral inflammation in patients with asthmatic symptoms but normal lung function. J. Asthma 2005, 42, 605–609. [Google Scholar] [CrossRef]
- Lehtimaki, L.; Kankaanranta, H.; Saarelainen, S.; Turjanmaa, V.; Moilanen, E. Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur. Respir. J. 2002, 20, 841–845. [Google Scholar] [CrossRef]
- Puckett, J.L.; Taylor, R.W.; Leu, S.Y.; Guijon, O.L.; Aledia, A.S.; Galant, S.P.; George, S.C. Clinical patterns in asthma based on proximal and distal airway nitric oxide categories. Respir. Res. 2010, 11, 47. [Google Scholar] [CrossRef]
- Scichilone, N.; Battaglia, S.; Taormina, S.; Modica, V.; Pozzecco, E.; Bellia, V. Alveolar nitric oxide and asthma control in mild untreated asthma. J. Allergy Clin. Immunol 2013, 131, 1513–1517. [Google Scholar] [CrossRef]
- Brindicci, C.; Ito, K.; Barnes, P.J.; Kharitonov, S.A. Differential flow analysis of exhaled nitric oxide in patients with asthma of differing severity. Chest 2007, 131, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Hargadon, B.; Morgan, A.; Shelley, M.; Richter, J.; Shaw, D.; Green, R.H.; Brightling, C.; Wardlaw, A.J.; Pavord, I.D. Alveolar nitric oxide in adults with asthma: Evidence of distal lung inflammation in refractory asthma. Eur. Respir. J. 2005, 25, 986–991. [Google Scholar] [CrossRef]
- Van Veen, I.H.; Sterk, P.J.; Schot, R.; Gauw, S.A.; Rabe, K.F.; Bel, E.H. Alveolar nitric oxide versus measures of peripheral airway dysfunction in severe asthma. Eur. Respir. J. 2006, 27, 951–956. [Google Scholar] [CrossRef]
- Battaglia, S.; den Hertog, H.; Timmers, M.C.; Lazeroms, S.P.; Vignola, A.M.; Rabe, K.F.; Bellia, V.; Hiemstra, P.S.; Sterk, P.J. Small airways function and molecular markers in exhaled air in mild asthma. Thorax 2005, 60, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Crooks, S.W.; Stockley, R.A. Leukotriene B4. Int. J. Biochem. Cell. Biol. 1998, 30, 173–178. [Google Scholar] [CrossRef]
- Trischler, J.; Müller, C.M.; Könitzer, S.; Prell, E.; Korten, I.; Unverzagt, S.; Lex, C. Elevated exhaled leukotriene B₄ in the small airway compartment in children with asthma. Ann. Allergy Asthma Immunol. 2015, 114, 111–116. [Google Scholar] [CrossRef]
- Bartoli, M.L.; Di Franco, A.; Vagaggini, B.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Tonelli, M.; Paggiaro, P.L. Biological markers in induced sputum of patients with different phenotypes of chronic airway obstruction. Respiration 2009, 77, 265–272. [Google Scholar] [CrossRef]
- Gershman, N.H.; Liu, H.; Wong, H.H.; Liu, J.T.; Fahy, J.V. Fractional analysis of sequential induced sputum samples during sputum induction: Evidence that different lung compartments are sampled at different time points. J. Allergy Clin. Immunol. 1999, 104, 322–328. [Google Scholar] [CrossRef]
- Kanazawa, H.; Kyoh, S.; Asai, K.; Hirata, K. Validity of measurement of two specific biomarkers for the assessment of small airways inflammation in asthma. J. Asthma 2010, 47, 400–406. [Google Scholar] [CrossRef]
- Okazaki, S.; Murai, H.; Kidoguchi, S.; Nomura, E.; Itoh, N.; Hashimoto, N.; Hamada, T.; Kawakita, A.; Yasutomi, M.; Ohshima, Y. The Biomarker Salivary SP-D May Indicate Small Airway Inflammation and Asthma Exacerbation. J. Investig. Allergol. Clin. Immunol. 2017, 27, 305–312. [Google Scholar] [CrossRef]
- Soares, M.; Mirgorodskaya, E.; Koca, H.; Viklund, E.; Richardson, M.; Gustafsson, P.; Olin, A.C.; Siddiqui, S. Particles in exhaled air (PExA): Non-invasive phenotyping of small airways disease in adult asthma. J. Breath Res. 2018, 12, 046012. [Google Scholar] [CrossRef]
- Lapp, N.L.; Hyatt, R.E. Some factors affecting the relationship of maximal expiratory flow to lung volume in health and disease. Dis. Chest 1967, 51, 475–481. [Google Scholar] [CrossRef]
- Hansen, J.E.; Sun, X.G.; Wasserman, K. Discriminating measures and normal values for expiratory obstruction. Chest 2006, 129, 369–377. [Google Scholar] [CrossRef]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Burgel, P.R.; de Blic, J.; Chanez, P.; Delacourt, C.; Devillier, P.; Didier, A.; Dubus, J.C.; Frachon, I.; Garcia, G.; Humbert, M.; et al. Update on the roles of distal airways in asthma. Eur. Respir. Rev. 2009, 18, 80–95. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, R.; Brusasco, V. On the causes of lung hyperinflation during bronchoconstriction. Eur. Respir. J. 1997, 10, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Gelb, A.F.; Zamel, N.; Hogg, J.C.; Müller, N.L.; Schein, M.J. Pseudophysiologic emphysema resulting from severe small-airways disease. Am. J. Respir. Crit. Care Med. 1998, 158, 815–819. [Google Scholar] [CrossRef]
- Sorkness, R.L.; Bleecker, E.R.; Busse, W.W.; Calhoun, W.J.; Castro, M.; Chung, K.F.; Curran-Everett, D.; Erzurum, S.C.; Gaston, B.M.; Israel, E.; et al. Lung function in adults with stable but severe asthma: Air trapping and incomplete reversal of obstruction with bronchodilation. J. Appl. Physiol. (1985) 2008, 104, 394–403. [Google Scholar] [CrossRef]
- Papi, A.; Paggiaro, P.; Nicolini, G.; Vignola, A.M.; Fabbri, L.M. Beclomethasone/formoterol vs. fluticasone/salmeterol inhaled combination in moderate to severe asthma. Allergy 2007, 62, 1182–1188. [Google Scholar] [CrossRef]
- Anderson, W.J.; Zajda, E.; Lipworth, B.J. Are we overlooking persistent small airways dysfunction in community-managed asthma? Ann. Allergy Asthma Immunol. 2012, 109, 185–189.e2. [Google Scholar] [CrossRef]
- Cosio, M.; Ghezzo, H.; Hogg, J.C.; Corbin, R.; Loveland, M.; Dosman, J.; Macklem, P.T. The relations between structural changes in small airways and pulmonary-function tests. N. Engl. J. Med. 1978, 298, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, S.; Schuermans, D.; Meysman, M.; Paiva, M.; Vincken, W. Noninvasive assessment of airway alterations in smokers: The small airways revisited. Am. J. Respir. Crit. Care Med. 2004, 170, 414–419. [Google Scholar]
- Deepak, D.; Prasad, A.; Atwal, S.S.; Agarwal, K. Recognition of Small Airways Obstruction in Asthma and COPD—The Road Less Travelled. J. Clin. Diagn. Res. 2017, 11, TE01–TE05. [Google Scholar] [CrossRef]
- Laurent, F.; Latrabe, V.; Raherison, C.; Marthan, R.; Tunon-de-Lara, J.M. Functional significance of air trapping detected in moderate asthma. Eur. Radiol. 2000, 10, 1404–1410. [Google Scholar] [CrossRef]
- Ueda, T.; Niimi, A.; Matsumoto, H.; Takemura, M.; Hirai, T.; Yamaguchi, M.; Matsuoka, H.; Jinnai, M.; Muro, S.; Chin, K.; et al. Role of small airways in asthma: Investigation using high-resolution computed tomography. J. Allergy Clin. Immunol. 2006, 118, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Mitsunobu, F.; Ashida, K.; Hosaki, Y.; Tsugeno, H.; Okamoto, M.; Nishida, N.; Nagata, T.; Takata, S.; Tanizaki, Y. Decreased computed tomographic lung density during exacerbation of asthma. Eur. Respir. J. 2003, 22, 106–112. [Google Scholar] [CrossRef]
- Busacker, A.; Newell, J.D.; Keefe, T.; Hoffman, E.A.; Granroth, J.C.; Castro, M.; Fain, S.; Wenzel, S. A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest. 2009, 135, 48–56. [Google Scholar] [CrossRef]
- Van Beek, E.J.R.; Wild, J.M. Hyperpolarized 3-helium magnetic resonance imaging to probe lung function. Proc. Am. Thorac. Soc. 2005, 2, 528–532. [Google Scholar] [CrossRef]
- De Lange, E.E.; Altes, T.A.; Patrie, J.T.; Parmar, J.; Brookeman, J.R.; Mugler III, J.P.; Platts-Mills, T.A. The variability of regional airflow obstruction within the lungs of patients with asthma: Assessment with hyperpolarized helium-3 magnetic resonance imaging. J. Allergy Clin. Immunol. 2007, 119, 1072–1078. [Google Scholar] [CrossRef]
- Tustison, N.J.; Altes, T.A.; Song, G.; de Lange, E.E.; Mugler, J.P.; Gee, J.C. Feature analysis of hyperpolarized helium-3 pulmonary MRI: A study of asthmatics versus nonasthmatics. Magn. Reson. Med. 2010, 63, 1448–1455. [Google Scholar] [CrossRef]
- Newman, S.P.; Pitcairn, G.R.; Hirst, P.H. A brief history of gamma scintigraphy. J. Aerosol. Med. 2001, 14, 139–145. [Google Scholar] [CrossRef]
- Fleming, J.; Conway, J.; Majoral, C.; Tossici-Bolt, L.; Katz, I.; Caillibotte, G.; Perchet, D.; Pichelin, M.; Muellinger, B.; Martonen, T.; et al. The use of combined single photon emission computed tomography and X-ray computed tomo- graphy to assess the fate of inhaled aerosol. J. Aerosol. Med. Pulm. Drug Deliv. 2011, 24, 49–60. [Google Scholar] [CrossRef]
- Roach, P.J.; Schembri, G.P.; Bailey, D.L. V/Q scanning using SPECT and SPECT/CT. J. Nucl. Med. 2013, 54, 1588–1596. [Google Scholar] [CrossRef]
- Newman, S.; Salmon, A.; Nave, R.; Drollmann, A. High lung deposition of 99mTc-labeled ciclesonide administered via HFA-MDI to patients with asthma. Respir. Med. 2006, 100, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Eberl, S.; Chan, H.-K.; Daviskas, E. SPECT imaging for radio- aerosol deposition and clearance studies. J. Aerosol. Med. 2006, 19, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Dolovich, M.B.; Bailey, D.L. Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products. J. Aerosol. Med. Pulm. Drug Deliv. 2012, 25, S52–S71. [Google Scholar] [CrossRef]
- Scichilone, N.; Contoli, M.; Paleari, D.; Pirina, P.; Rossi, A.; Sanguinetti, C.M.; Santus, P.; Sofia, M.; Sverzellati, N. Assessing and accessing the small airways; implications for asthma management. Pulm. Pharmacol. Ther. 2013, 26, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Usmani, O.S.; Singh, D.; Spinola, M.; Bizzi, A.; Barnes, P.J. The prevalence of small airways disease in adult asthma: A systematic literature review. Respir. Med. 2016, 116, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Postma, D.S.; Brightling, C.; Baldi, S.; Van den Berge, M.; Fabbri, L.M.; Gagnatelli, A.; Papi, A.; Van der Molen, T.; Rabe, K.F.; Siddiqui, S.; et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): Baseline data from a prospective cohort study. Lancet Respir. Med. 2019, 7, 402–416. [Google Scholar] [CrossRef]
- Usmani, O.S.; Biddiscombe, M.F.; Barnes, P.J. Regional lung deposition and bronchodilator response as a function of b2-agonist particle size. Am. J. Respir. Crit. Care Med. 2005, 172, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Leach, C.L.; Davidson, P.J.; Hasselquist, B.E.; Boudreau, R.J. Lung deposition of hydrofluoroalkane-134a beclomethasone is greater than that of chlorofluorocarbon fluticasone and chlorofluorocarbon beclomethasone: A cross-over study in healthy volunteers. Chest 2002, 122, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Häussermann, S.; Acerbi, D.; Brand, P.; Herpich, C.; Poli, G.; Sommerer, K.; Meyer, T. Lung deposition of formoterol HFA (Atimos/Forair) in healthy volunteers, asthmatic and COPD patients. J. Aerosol. Med. 2007, 20, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Usmani, O.S. Treating the small airways. Respiration 2012, 84, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Pirina, P.; Foschino Barbaro, M.P.; Paleari, D.; Spanevello, A. Small airway inflammation and extrafine inhaled corticosteroids plus long-acting beta2-agonists formulations in chronic obstructive pulmonary disease. Respir. Med. 2018, 143, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S.; Keating, G.M. Beclometasone dipropionate/formoterol: In an HFA-propelled pressurized metered-dose inhaler. Drugs 2006, 66, 1475–1483. [Google Scholar] [CrossRef]
- Fabbri, L.M.; Nicolini, G.; Olivieri, D.; Papi, A. Inhaled beclometasone dipropionate/formoterol extra-fine fixed combination in the treatment of asthma: Evidence and future perspectives. Expert. Opin. Pharmacother. 2008, 9, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Scichilone, N.; Benfante, A.; Morandi, L.; Bellini, F.; Papi, A. Impact of extrafine formulations of inhaled corticosteroids/long-acting beta-2 agonist combinations on patient-related outcomes in asthma and COPD. Patient Relat. Outcome Meas. 2014, 5, 153–162. [Google Scholar] [CrossRef]
- Price, D.; Thomas, M.; Haughney, J.; Lewis, R.A.; Burden, A.; von Ziegenweidt, J.; Chisholm, A.; Hillyer, E.V.; Corrigan, C.J. Real-life comparison of beclometasone dipropionate as an extrafine- or larger-particle formulation for asthma. Respir. Med. 2013, 107, 987–1000. [Google Scholar] [CrossRef] [Green Version]
- Barnes, N.; Price, D.; Colice, G.; Chisholm, A.; Dorinsky, P.; Hillyer, E.V.; Burden, A.; Lee, A.J.; Martin, R.J.; Roche, N.; et al. Asthma control with extrafine-particle hydrofluoroalkane-beclometasone vs. large-particle chlorofluorocarbon-beclometasone: A real-world observational study. Clin. Exp. Allergy 2011, 41, 1521–1532. [Google Scholar] [CrossRef]
- Verbanck, S.; Schuermans, D.; Paiva, M.; Vincken, W. The functional benefit of anti-inflammatory aerosols in the lung periphery. J. Allergy Clin. Immunol. 2006, 118, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Goldin, J.G.; Tashkin, D.P.; Kleerup, E.C.; Greaser, L.E.; Haywood, U.M.; Sayre, J.W.; Simmons, M.D.; Suttorp, M.; Colice, G.L.; Vanden Burgt, J.A.; et al. Comparative effects of hydrofluoroalkane and chlorofluorocarbon beclomethasone dipropionate inhalation on small airways: Assessment with functional helical thin-section computed tomography. J. Allergy Clin. Immunol. 1999, 104, 258–267. [Google Scholar] [CrossRef]
- Papi, A.; Paggiaro, P.L.; Nicolini, G.; Vignola, A.M.; Fabbri, L.M. Beclomethasone/formoterol versus budesonide/formoterol combination therapy in asthma. Eur. Respir. J. 2007, 29, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Müller, V.; Gálffy, G.; Eszes, N.; Losonczy, G.; Bizzi, A.; Nicolini, G.; Chrystyn, H.; Tamási, L. Asthma control in patients receiving inhaled corticosteroid and long-acting beta2- agonist fixed combinations. A real-life study comparing dry powder inhalers and a pressurized metered dose inhaler extrafine formulation. BMC Pulm. Med. 2011, 11, 40. [Google Scholar] [CrossRef]
- Huchon, G.; Magnussen, H.; Chuchalin, A.; Dymek, L.; Gonod, F.B.; Bousquet, J. Lung function and asthma control with beclomethasone and formoterol in a single inhaler. Respir. Med. 2009, 103, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scichilone, N.; Battaglia, S.; Sorino, C.; Paglino, G.; Martino, L.; Paternò, A.; Santagata, R.; Spatafora, M.; Nicolini, G.; Bellia, V. Effects of extra-fine inhaled beclomethasone/formoterol on both large and small airways in asthma. Allergy 2010, 65, 897–902. [Google Scholar] [CrossRef]
- Popov, T.A.; Petrova, D.; Kralimarkova, T.Z.; Ivanov, Y.; Popova, T.; Peneva, M.; Odzhakova, T.; Ilieva, Y.; Yakovliev, P.; Lazarova, T.; et al. Real life clinical study design supporting the effectiveness of extra-fine inhaled beclomethasone/formoterol at the level of small airways of asthmatics. Pulm. Pharmacol. Ther. 2013, 26, 624–629. [Google Scholar] [CrossRef]
- Bulac, S.; Cimrin, A.; Ellidokuz, H. The effect of beclometasone dipropionate/formoterol extra-fine fixed combination on the peripheral airway inflammation in controlled asthma. J. Aerosol. Med. Pulm. Drug Deliv. 2015, 28, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Kew, K.M.; Dahri, K. Long-acting muscarinic antagonists (LAMA) added to combination long-acting beta2-agonists and inhaled corticosteroids (LABA/ICS) versus LABA/ICS for adults with asthma. Cochrane Database Syst. Rev. 2016, 1, CD011721. [Google Scholar] [CrossRef] [PubMed]
- Tufvesson, E.; Nihlberg, K.; Westergren-Thorsson, G.; Bjermer, L. Leukotriene receptors are differently expressed in fibroblast from peripheral versus central airways in asthmatics and healthy controls. Prostaglandins Leukot. Essent. Fatty Acids 2011, 85, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.; Cairns, C.B.; Ellison, M.C.; Pak, J.; Irvin, C.; Wenzel, S. Improvements in distal lung function correlate with asthma symptoms after treatment with oral montelukast. Chest 2006, 130, 1726–1732. [Google Scholar] [CrossRef]
- Zeidler, M.R.; Kleerup, E.C.; Goldin, J.G.; Kim, H.J.; Truong, D.A.; Simmons, M.D.; Sayre, J.W.; Liu, W.; Elashoff, R.; Tashkin, D.P. Montelukast improves regional air-trapping due to small airways obstruction in asthma. Eur. Respir. J. 2006, 27, 307–315. [Google Scholar] [CrossRef]
- Gelb, A.F.; Taylor, C.F.; Simmons, M.; Shinar, C. Role of add-on zileuton on total exhaled, large airway, and small airway/alveolar nitric oxide in moderate-severe persistent adult asthmatics on fluticasone 250 microg/Salmeterol 50 microg. Pulm. Pharmacol. Ther. 2009, 22, 516–521. [Google Scholar] [CrossRef]
- Farah, C.S.; Badal, T.; Reed, N.; Rogers, P.G.; King, G.G.; Thamrin, C.; Peters, M.J.; Seccombe, L.M. Mepolizumab improves small airway function in severe eosinophilic asthma. Respir. Med. 2019, 148, 49–53. [Google Scholar] [CrossRef]
Methods | Small Airway Measures | Advantages | Disadvantages |
---|---|---|---|
Spirometry | FVC/SVC, FEV3, FEV6, FEF25-75 | Non-invasive; Easy to perform; Widely available | Highly variability |
Body plethysmography | RV/TLC, DLCO, Raw | Non-invasive; Easy to perform | Not much evidence about it; Not widely available |
Impulse oscillometry | R5–R20, X5, AX, Fres | Non-invasive; Easy to perform | Not widely available |
Single breath nitrogen washout and Multiple breath washout test | Slope phase III, CV, CC, Sacin, Scond | Non-invasive; Good sensitivity and reproducibility | Not widely available |
Imaging | Air trapping, airway wall thickness; Regional ventilation defects; Non ventilated lung volume | Non-invasive | Exposure to radiations; Costly |
Exhaled nitric oxide at multiple exhalation flows | Alveolar NO | Non-invasive; Good reproducibility | Not direct assessment; Requires computational extrapolation |
Sputum induction | Cellular population, inflammatory markers | Non-invasive; Direct assessment | Low reproducibility |
Transbronchial biopsy | Cellular population | Direct assessment | Invasive |
Bronchoalveolar lavage | Cellular population | Direct assessment | Invasive |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinellu, E.; Piras, B.; Ruzittu, G.G.M.; Fois, S.S.; Fois, A.G.; Pirina, P. Recent Advances in Inflammation and Treatment of Small Airways in Asthma. Int. J. Mol. Sci. 2019, 20, 2617. https://doi.org/10.3390/ijms20112617
Zinellu E, Piras B, Ruzittu GGM, Fois SS, Fois AG, Pirina P. Recent Advances in Inflammation and Treatment of Small Airways in Asthma. International Journal of Molecular Sciences. 2019; 20(11):2617. https://doi.org/10.3390/ijms20112617
Chicago/Turabian StyleZinellu, Elisabetta, Barbara Piras, Giulia G. M. Ruzittu, Sara S. Fois, Alessandro G. Fois, and Pietro Pirina. 2019. "Recent Advances in Inflammation and Treatment of Small Airways in Asthma" International Journal of Molecular Sciences 20, no. 11: 2617. https://doi.org/10.3390/ijms20112617
APA StyleZinellu, E., Piras, B., Ruzittu, G. G. M., Fois, S. S., Fois, A. G., & Pirina, P. (2019). Recent Advances in Inflammation and Treatment of Small Airways in Asthma. International Journal of Molecular Sciences, 20(11), 2617. https://doi.org/10.3390/ijms20112617