The Role of gp91phox and the Effect of Tranexamic Acid Administration on Hair Color in Mice
Abstract
:1. Introduction
2. Results
2.1. Color of Hair on the Skin of gp91phox−/− mice
2.2. Effect of IL-1 Receptor Antagonist (IL-1RA) Treatment on the Hair Color in gp91phox+/+ Mice
2.3. Effect of Tranexamic Acid Treatment on the Color of Hair on the Skin
2.4. Effect of Plasmin Inhibitor (Aprotinin) Treatment on the Hair Color in gp91phox−/− Mice
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Animal Experiments
4.3. Tranexamic Acid Treatment
4.4. Interleukin 1 Receptor Antagonist (IL-1RA) Treatment
4.5. Plasmin Inhibitor (Aprotinin) Treatment
4.6. Preparation and Staining of the Dorsal Skin and Hair Follicle
4.7. Measurement of Skin on IL-1β, TGF-β and Reactive Oxygen Species (ROS) Levels
4.8. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
IL-1β | Interleukin-1β |
TGF-β | Transforming growth factor-β |
MGRN1 | Mahogunin ring finger protein 1 |
References
- Nishimura, E.K.; Joedan, S.A.; Oshima, H.; Yoshida, H.; Osawa, M.; Moriyama, M.; Jackson, I.J.; Barrandon, Y.; Miyachi, Y.; Nishikawa, S. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 2002, 416, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, E.K.; Granter, S.R.; Fisher, D.E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 2005, 307, 720–724. [Google Scholar] [CrossRef]
- Gunn, D.A.; Rexbye, H.; Griffiths, C.E.; Murray, P.G.; Fereday, A.; Catt, S.D.; Tomlin, C.C.; Strongitharm, B.H.; Perett, D.I.; Catt, M.; Mayes, A.E.; et al. Why some women look young for their age. PLoS One 2009, 4, e8021. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Ryu, H.H.; Yoon, J.; Jo, S.; Jang, S.; Choi, M.; Kwon, O.; Jo, S.J. Association of premature hair graying with family history, smoking, and obesity: a cross-sectional study. J. Am. Acad. Dermatol. 2015, 72, 321–327. [Google Scholar] [CrossRef]
- Panhard, S.; Lozano, I.; Loussouam, G. Greying of the human hair: a worldwide survey, revisiting the ‘50′ rule of thumb. Br. J. Dermatol. 2012, 167, 865–873. [Google Scholar] [CrossRef]
- Nishimura, E.K.; Suzuki, M.; Igras, V.; Du, J.; Lonning, S.; Miyachi, Y.; Roes, J.; Beermann, F.; Fisher, D.E. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 2010, 6, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, S.; Tadokoro, Y.; Inomata, K.; Binh, N.T.; Nishie, W.; Yamazaki, S.; Hakauchi, H.; Tanaka, Y.; McMillan, J.R.; Sawamura, D.; et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 2011, 8, 177–187. [Google Scholar] [CrossRef]
- Matsumura, H.; Mohri, Y.; Binh, N.T.; Morinaga, H.; Fukuda, M.; Ito, M.; Kurata, S.; Hoeijmakers, J.; Nishimura, E.K. Hair follicle aging is driven by transept eliminateon of stem cells via COL17A1 proteolysis. Science 2016, 351, aad4395. [Google Scholar] [CrossRef]
- Abiko, Y.; Iwamoto, M. Plasminogen-plasmin system. VII. Potentiation of antifibrinolytic action of a synthetic inhibitor, tranexamic acid, by alpha 2-macroglobulin antiplasmin. Biochem. Biophys. Acta. 1970, 214, 411–418. [Google Scholar]
- Maeda, K.; Nakamura, M. Topical trans-4-aminomethyl-cyclohexanecarboxylic acid prevents ultraviolet radiation-induced pigmentation. J. Photochem. Photobiol. 1998, B47, 136–141. [Google Scholar] [CrossRef]
- Boudreau, R.M.; Johnson, M.; Veile, R.; Friend, L.A.; Goetzman, H.; Pritts, T.A.; Caldwell, C.C.; Makley, A.T.; Goodman, M.D. Impact of tranexamic acid on coagulation and inflammation in murine models of traumatic brain injury and hemorrhage. J. Surg. Res. 2017, 215, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, K.; Yamate, Y.; Sugiyama, D.; Takahashi, Y.; Mafune, E. The gender differences in the inhibitory action of UVB-induced melanocyte activation by the administration of tranexamic acid. Photodermatol. Photoimmunol. Photomed. 2016, 32, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Cotsarelis, G. Epithelial stem cells: a folliculocentric view. J. Invest. Dermatol. 2006, 126, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Takeya, R.; Suminoto, H. Molecular mechanism for activation of superoxide-producing NADPH oxidases. Mol. Cells 2003, 16, 271–277. [Google Scholar] [PubMed]
- Yue, T.L.; Wang, X.K.; Olson, B.; Feuerstein, G. Interleukin-1 beta (IL-1beta) induces transforming growth factor-beta (TGF-beta1) production by rat aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 1994, 204, 1186–1192. [Google Scholar] [CrossRef]
- Ganesh, B.B.; Bhattacharya, P.; Gopisetty, A.; Sheng, J.; Vasu, C.; Prabhakar, B.S. IL-1β promotes TGF-β 1 and IL-2 dependent Foxp3 expression in regulatory T cells. PLOS One 2011, 6, e21949. [Google Scholar] [CrossRef]
- Tam, I.; Stepien, K. Secretion of proinflammatory cytokines by normal human melanocytes in response to lipopolysaccharide. Acta Biochim. Pol. 2011, 58, 507–511. [Google Scholar] [CrossRef]
- Prota, G. Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Dermatol. 1980, 75, 122–127. [Google Scholar] [CrossRef]
- Kim, D.; Cha, S.; Park, M.; Pars, S.; Kim, H.; Woo, W.; Mun, Y. Scopoletin stimulates melanogenesis via cAMP/PKA pathway and partially p38 activation. Biol. Pharm. Bull. 2017, 40, 2068–2074. [Google Scholar] [CrossRef]
- Hida, T.; Wakamatsu, K.; Sviderskaya, E.V.; Donkin, A.J.; Montoliu, L.; Lamoreux, M.L.; Yu, B.; Millhauser, G.L.; Ito, S.; Barsh, G.S.; et al. Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway. Pigment Cell Melanoma Res. 2009, 22, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Franzke, C.W.; Tasanen, K.; Schacke, H.; Zhou, Z.; Tryggvason, K.; Mauch, C.; Zigrino, P.; Sunnarborg, S.; Lee, D.C.; Fahrenholz, F.; et al. Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. EMBO J. 2002, 21, 5026–5035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McComack, P.L. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 2012, 72, 585–617. [Google Scholar] [CrossRef]
- Kondo, S.; Pasture, S.; Fujisawa, H.; Shivji, G.M.; McKenzie, R.C.; Dinarello, C.A.; Sauder, D.N. Interleukin-1 receptor antagonist suppresses contact hypersensitivity. J. Invest. Dermatol. 1995, 105, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.B.; Deibel, M.R. Jr.; Dunn, C.J.; Tomich, C.S.; Laborde, A.L.; Slightom, J.L.; Berger, A.E.; Bienkowski, M.J.; Sun, F.F.; McEwan, R.N.; et al. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 1990, 344, 633–638. [Google Scholar] [CrossRef]
- Reichel, C.A.; Lerchenberger, M.; Uhl, B.; Rehberg, M.; Berberich, N.; Zahler, S.; Wymann, M.P.; Krombach, F. Plasmin inhibitors prevent leukocyte accumulation and remodeling events in the postischemic microvasculature. PLoS One 2011, 6, e17229. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, G.; Thompson, R.; Nourghargh, S.; Lidington, E.A.; Mason, J.C.; Ratnatunga, C.P.; Haskard, D.O.; Taylor, K.M.; Landis, R.C. An anti-inflammatory property of aprotinin detected at the level of leukocyte extravasation. J. Thorac. Cardiovasc. Surg. 2000, 120, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, S.; Hiramoto, K.; Koyama, M.; Ooi, K. Skin disruption is associated with indomethacin-induced small intestinal injury in mice. Exp. Dermatol. 2014, 23, 659–663. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiramoto, K.; Yamate, Y.; Takishita, Y.; Sato, E.F. The Role of gp91phox and the Effect of Tranexamic Acid Administration on Hair Color in Mice. Int. J. Mol. Sci. 2019, 20, 2665. https://doi.org/10.3390/ijms20112665
Hiramoto K, Yamate Y, Takishita Y, Sato EF. The Role of gp91phox and the Effect of Tranexamic Acid Administration on Hair Color in Mice. International Journal of Molecular Sciences. 2019; 20(11):2665. https://doi.org/10.3390/ijms20112665
Chicago/Turabian StyleHiramoto, Keiichi, Yurika Yamate, Yutaka Takishita, and Eisuke F. Sato. 2019. "The Role of gp91phox and the Effect of Tranexamic Acid Administration on Hair Color in Mice" International Journal of Molecular Sciences 20, no. 11: 2665. https://doi.org/10.3390/ijms20112665
APA StyleHiramoto, K., Yamate, Y., Takishita, Y., & Sato, E. F. (2019). The Role of gp91phox and the Effect of Tranexamic Acid Administration on Hair Color in Mice. International Journal of Molecular Sciences, 20(11), 2665. https://doi.org/10.3390/ijms20112665