Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni
Abstract
:1. Introduction
2. The Taxonomy, Ecology, Physiology, and Chemotaxis of C. testosteroni
3. Chemoreceptors of C. testosteroni
3.1. Genomic Data-mining of Chemoreceptor Genes
3.2. Classification of Chemoreceptors from C. testosteroni CNB-1
4. Functional Identification of Chemoreceptors from C. testosteroni
4.1. Bioinformatic Prediction of Potential Ligand-Binding Domains
4.2. Functional Redundancy of Chemoreceptors
5. Chemotaxis of C. testosteroni Towards Aromatic Compounds
6. Chemotactic Signaling Pathways in C. testosteroni and Other Comamonas Species
7. Summary and Perspective
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, J.; S Harwood, C. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu. Rev. Microbiol. 2002, 56, 345–369. [Google Scholar] [CrossRef]
- Fuchs, G.; Boll, M.; Heider, J. Microbial degradation of aromatic compounds—from one strategy to four. Nat. Rev. Microbiol. 2011, 9, 803–816. [Google Scholar] [CrossRef]
- Keith, L.H.; Telliard, W.A. Priority pollutants I-a perspective view. Environ. Sci. Technol. 1979, 13, 416–423. [Google Scholar] [CrossRef]
- Buchanan-Kilbey, G.; Djumpah, J.; Papadopoulou, M.V.; Bloomer, W.; Hu, L.; Wilkinson, S.R.; Ashworth, R. Evaluating the developmental toxicity of trypanocidal nitroaromatic compounds on zebrafish. Acta Trop 2013, 128, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Purohit, V.; Basu, A.K. Mutagenicity of nitroaromatic compounds. Chem. Res. Toxicol. 2000, 13, 673–692. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Yuan, S.Y.; Chang, J.S.; Yen, J.H.; Chang, B.V. Biodegradation of phenanthrene in river sediment. Chemosphere 2001, 43, 273–278. [Google Scholar] [CrossRef]
- Gordillo, F.; Chavez, F.P.; Jerez, C.A. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol. Ecol. 2007, 60, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Krell, T.; Lacal, J.; Guazzaroni, M.E.; Busch, A.; Silva-Jimenez, H.; Fillet, S.; Reyes-Darias, J.A.; Munoz-Martinez, F.; Rico-Jimenez, M.; Garcia-Fontana, C.; et al. Responses of Pseudomonas putida to toxic aromatic carbon sources. J. Biotechnol. 2012, 160, 25–32. [Google Scholar] [CrossRef]
- Tremaroli, V.; Vacchi Suzzi, C.; Fedi, S.; Ceri, H.; Zannoni, D.; Turner, R.J. Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: Effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol. Ecol. 2010, 74, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Lacal, J.; Reyes-Darias, J.A.; Garcia-Fontana, C.; Ramos, J.L.; Krell, T. Tactic responses to pollutants and their potential to increase biodegradation efficiency. J. Appl. Microbiol. 2013, 114, 923–933. [Google Scholar] [CrossRef]
- Marx, R.B.; Aitken, M.D. Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ. Sci. Technol. 2000, 34, 3379–3383. [Google Scholar] [CrossRef]
- Krell, T.; Lacal, J.; Reyes-Darias, J.A.; Jimenez-Sanchez, C.; Sungthong, R.; Ortega-Calvo, J.J. Bioavailability of pollutants and chemotaxis. Curr. Opin. Biotechnol. 2013, 24, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parales, R.E.; Harwood, C.S. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 2002, 5, 266–273. [Google Scholar] [CrossRef]
- Bi, S.; Sourjik, V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 2018, 45, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Wong-Ng, J.; Celani, A.; Vergassola, M. Exploring the function of bacterial chemotaxis. Curr. Opin. Microbiol. 2018, 45, 16–21. [Google Scholar] [CrossRef]
- Sampedro, I.; Parales, R.E.; Krell, T.; Hill, J.E. Pseudomonas chemotaxis. Fems. Microbiol. Rev. 2015, 39, 17–46. [Google Scholar]
- Hatayama, K. Comamonas humi sp. nov. isolated from soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 3976–3982. [Google Scholar] [CrossRef]
- Subhash, Y.; Bang, J.J.; You, T.H.; Lee, S.S. Description of Comamonas sediminis sp. nov. isolated from lagoon sediments. Int. J. Syst. Evol. Microbiol. 2016, 66, 2735–2739. [Google Scholar] [CrossRef]
- Kampfer, P.; Busse, H.J.; Baars, S.; Wilharm, G.; Glaeser, S.P. Comamonas aquatilis sp. nov. isolated from a garden pond. Int. J. Syst. Evol. Microbiol. 2018, 68, 1210–1214. [Google Scholar] [CrossRef]
- Chen, I.A.; Chu, K.; Palaniappan, K.; Pillay, M.; Ratner, A.; Huang, J.; Huntemann, M.; Varghese, N.; White, J.R.; Seshadri, R.; et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019, 47, D666–D677. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, W.T.; Cao, Z.; Xu, B.A.; Wang, G.J.; Luo, M.Z. High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genomics 2015, 16. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, M.A. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. Fems Microbiol Rev. 2000, 24, 135–175. [Google Scholar] [PubMed]
- Zhu, W.; Wang, C.; Hill, J.; He, Y.; Tao, B.; Mao, Z.; Wu, W. A missing link in the estuarine nitrogen cycle: Coupled nitrification-denitrification mediated by suspended particulate matter. Sci Rep. 2018, 8, 2282. [Google Scholar] [CrossRef]
- Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2005, 437, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Futamata, H.; Harayama, S. Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek 2002, 81, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K. Linking genetics, physiology and ecology: An interdisciplinary approach for advancing bioremediation. J. Biosci. Bioeng. 2002, 94, 557–562. [Google Scholar] [CrossRef]
- Andreoni, V.; Gianfreda, L. Bioremediation and monitoring of aromatic-polluted habitats. Appl. Microbiol. Biotechnol. 2007, 76, 287–308. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.F.; Sun, C.W.; Jiang, C.Y.; Liu, Z.P.; Liu, S.J. A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: Purification, properties, genetic cloning and expression in Escherichia coli. Arch. Microbiol. 2005, 183, 1–8. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, C.Y.; Liu, X.Y.; Wu, J.F.; Han, J.G.; Liu, S.J. Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ. Microbiol. 2007, 9, 465–473. [Google Scholar] [CrossRef]
- Ma, Y.F.; Wu, J.F.; Wang, S.Y.; Jiang, C.Y.; Zhang, Y.; Qi, S.W.; Liu, L.; Zhao, G.P.; Liu, S.J. Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl. Environ. Microbiol. 2007, 73, 4477–4483. [Google Scholar] [CrossRef]
- Wu, J.F.; Jiang, C.Y.; Wang, B.J.; Ma, Y.F.; Liu, Z.P.; Liu, S.J. Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl. Environ. Microbiol. 2006, 72, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; Zhang, Y.; Zhang, J.Y.; Chen, D.W.; Zhu, Y.; Zheng, H.; Wang, S.Y.; Jiang, C.Y.; Zhao, G.P.; Liu, S.J. The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl. Environ. Microbiol. 2009, 75, 6812–6819. [Google Scholar] [CrossRef]
- Alexandre, G.; Greer-Phillips, S.; Zhulin, I.B. Ecological role of energy taxis in microorganisms. Fems. Microbiol. Rev. 2004, 28, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinovitch-Deere, C.A.; Parales, R.E. Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene. Appl. Environ. Microbiol. 2012, 78, 2306–2315. [Google Scholar] [CrossRef]
- Ni, B.; Huang, Z.; Fan, Z.; Jiang, C.Y.; Liu, S.J. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol. Microbiol. 2013, 90, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Huang, Z.; Wu, Y.F.; Fan, Z.; Jiang, C.Y.; Liu, S.J. A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Appl. Microbiol. Biotechnol. 2015, 99, 2773–2781. [Google Scholar] [CrossRef]
- Huang, Z.; Ni, B.; Jiang, C.Y.; Wu, Y.F.; He, Y.Z.; Parales, R.E.; Liu, S.J. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni. Mol. Microbiol. 2016, 101, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Gohler, A.; Xiong, G.; Paulsen, S.; Trentmann, G.; Maser, E. Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni. J. Biol. Chem. 2008, 283, 17380–17390. [Google Scholar] [CrossRef]
- Welch, M.; Oosawa, K.; Aizawa, S.; Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl. Acad. Sci. USA 1993, 90, 8787–8791. [Google Scholar] [CrossRef]
- Blat, Y.; Eisenbach, M. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 1994, 33, 902–906. [Google Scholar] [CrossRef]
- Springer, W.R.; Koshland, D.E., Jr. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. USA 1977, 74, 533–537. [Google Scholar] [CrossRef]
- Kehry, M.R.; Bond, M.W.; Hunkapiller, M.W.; Dahlquist, F.W. Enzymatic Deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB Gene product. Proc. Natl. Acad. Sci. USA 1983, 80, 3599–3603. [Google Scholar] [CrossRef]
- Ulrich, L.E.; Zhulin, I.B. The MiST2 database: A comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res. 2010, 38, D401–D407. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.P.; Zhulin, I.B. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc. Natl. Acad. Sci. USA 2007, 104, 2885–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuichet, K.; Zhulin, I.B. Origins and diversification of a complex signal transduction system in prokaryotes. Sci. Signal. 2010, 3, ra50. [Google Scholar] [CrossRef] [PubMed]
- Ortega, D.R.; Fleetwood, A.D.; Krell, T.; Harwood, C.S.; Jensen, G.J.; Zhulin, I.B. Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2017, 114, 12809–12814. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.H.; Zhu, H.Z.; Andrianova, E.P.; Jiang, C.Y.; Li, D.; Ma, L.; Feng, J.; Liu, Z.P.; Xiang, H.; et al. Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation. MBio 2019, 10, e02876-18. [Google Scholar] [CrossRef]
- Adebali, O.; Ortega, D.R.; Zhulin, I.B. CDvist: A webserver for identification and visualization of conserved domains in protein sequences. Bioinformatics 2015, 31, 1475–1477. [Google Scholar] [CrossRef] [PubMed]
- Wuichet, K.; Alexander, R.P.; Zhulin, I.B. Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol. 2007, 422, 1–31. [Google Scholar]
- Lacal, J.; Garcia-Fontana, C.; Munoz-Martinez, F.; Ramos, J.L.; Krell, T. Sensing of environmental signals: Classification of chemoreceptors according to the size of their ligand binding regions. Environ. Microbiol. 2010, 12, 2873–2884. [Google Scholar] [CrossRef] [PubMed]
- Ortega, A.; Zhulin, I.B.; Krell, T. Sensory repertoire of bacterial chemoreceptors. Microbiol. Mol. Biol. Rev. 2017, 81, e00033-17. [Google Scholar] [CrossRef] [PubMed]
- Martin-Mora, D.; Fernandez, M.; Velando, F.; Ortega, A.; Gavira, J.A.; Matilla, M.A.; Krell, T. Functional annotation of bacterial signal transduction systems: Progress and challenges. Int. J. Mol. Sci. 2018, 19, 3755. [Google Scholar] [CrossRef]
- Corral-Lugo, A.; Matilla, M.A.; Martin-Mora, D.; Silva Jimenez, H.; Mesa Torres, N.; Kato, J.; Hida, A.; Oku, S.; Conejero-Muriel, M.; Gavira, J.A.; et al. High-affinity chemotaxis to histamine mediated by the TlpQ chemoreceptor of the human pathogen Pseudomonas aeruginosa. MBio 2018, 9, e01894-18. [Google Scholar] [CrossRef]
- Hida, A.; Tajima, T.; Kato, J. Two citrate chemoreceptors involved in chemotaxis to citrate and/or citrate-metal complexes in Ralstonia pseudosolanacearum. J. Biosci. Bioeng. 2019, 127, 169–175. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, N.; Du, W.; Zhang, H.; Liu, Y.; Fu, R.; Shao, J.; Zhang, G.; Shen, Q.; Zhang, R. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant. Microbe Interact. 2018, 31, 995–1005. [Google Scholar] [CrossRef]
- Paul, D.; Singh, R.; Jain, R.K. Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ. Microbiol. 2006, 8, 1797–1804. [Google Scholar] [CrossRef]
- Hawkins, A.C.; Harwood, C.S. Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl. Environ. Microbiol. 2002, 68, 968–972. [Google Scholar] [CrossRef]
- Parke, D.; Ornston, L.N.; Nester, E.W. Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti-plasmid in Agrobacterium tumefaciens. J. Bacteriol. 1987, 169, 5336–5338. [Google Scholar] [CrossRef] [PubMed]
- Lopez-de-Victoria, G.; Lovell, C.R. Chemotaxis of Azospirillum species to aromatic compounds. Appl. Environ. Microbiol. 1993, 59, 2951–2955. [Google Scholar]
- Parke, D.; Rivelli, M.; Ornston, L.N. Chemotaxis to aromatic and hydroaromatic acids: Comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J. Bacteriol. 1985, 163, 417–422. [Google Scholar]
- Pandey, G.; Jain, R.K. Bacterial chemotaxis toward environmental pollutants: Role in bioremediation. Appl. Environ. Microbiol. 2002, 68, 5789–5795. [Google Scholar] [CrossRef]
- Luu, R.A.; Schneider, B.J.; Ho, C.C.; Nesteryuk, V.; Ngwesse, S.E.; Liu, X.X.; Parales, J.V.; Ditty, J.L.; Parales, R.E. Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2. Appl. Environ. Microbiol. 2013, 79, 2416–2423. [Google Scholar] [CrossRef]
- Sarand, I.; Osterberg, S.; Holmqvist, S.; Holmfeldt, P.; Skarfstad, E.; Parales, R.E.; Shingler, V. Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ. Microbiol. 2008, 10, 1320–1334. [Google Scholar] [CrossRef]
- Key, J.; Hefti, M.; Purcell, E.B.; Moffat, K. Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: Signaling, dimerization, and mechanism. Biochemistry 2007, 46, 3614–3623. [Google Scholar] [CrossRef]
- Martin-Mora, D.; Ortega, A.; Reyes-Darias, J.A.; Garcia, V.; Lopez-Farfan, D.; Matilla, M.A.; Krell, T. Identification of a chemoreceptor in Pseudomonas aeruginosa that specifically mediates chemotaxis toward alpha-ketoglutarate. Front. Microbiol. 2016, 7, 1937. [Google Scholar] [CrossRef]
- Lacal, J.; Alfonso, C.; Liu, X.; Parales, R.E.; Morel, B.; Conejero-Lara, F.; Rivas, G.; Duque, E.; Ramos, J.L.; Krell, T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: Differential chemotactic response towards receptor ligands. J. Biol. Chem. 2010, 285, 23126–23136. [Google Scholar] [CrossRef]
- Yamamoto, K.; Imae, Y. Cloning and characterization of the Salmonella typhimurium specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc. Natl. Acad. Sci. USA 1993, 90, 217–221. [Google Scholar] [CrossRef]
- Grimm, A.C.; Harwood, C.S. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol. 1997, 63, 4111–4115. [Google Scholar]
- Grimm, A.C.; Harwood, C.S. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol. 1999, 181, 3310–3316. [Google Scholar]
- Iwaki, H.; Muraki, T.; Ishihara, S.; Hasegawa, Y.; Rankin, K.N.; Sulea, T.; Boyd, J.; Lau, P.C. Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J. Bacteriol. 2007, 189, 3502–3514. [Google Scholar] [CrossRef]
- Lacal, J.; Munoz-Martinez, F.; Reyes-Darias, J.A.; Duque, E.; Matilla, M.; Segura, A.; Calvo, J.J.; Jimenez-Sanchez, C.; Krell, T.; Ramos, J.L. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ. Microbiol. 2011, 13, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Vangnai, A.S.; Takeuchi, K.; Oku, S.; Kataoka, N.; Nitisakulkan, T.; Tajima, T.; Kato, J. Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2013, 79, 7241–7248. [Google Scholar] [CrossRef]
- Garcia, V.; Reyes-Darias, J.A.; Martin-Mora, D.; Morel, B.; Matilla, M.A.; Krell, T. Identification of a chemoreceptor for C2 and C3 carboxylic acids. Appl. Environ. Microbiol. 2015, 81, 5449–5457. [Google Scholar] [CrossRef]
- Fernandez, M.; Matilla, M.A.; Ortega, A.; Krell, T. Metabolic value chemoattractants are preferentially recognized at broad ligand range chemoreceptor of Pseudomonas putida KT2440. Front. Microbiol. 2017, 8, 990. [Google Scholar] [CrossRef]
- Wadhams, G.H.; Armitage, J.P. Making sense of it all: Bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 2004, 5, 1024–1037. [Google Scholar] [CrossRef]
- Sourjik, V.; Armitage, J.P. Spatial organization in bacterial chemotaxis. EMBO J. 2010, 29, 2724–2733. [Google Scholar] [CrossRef] [Green Version]
- Krell, T.; Lacal, J.; Munoz-Martinez, F.; Reyes-Darias, J.A.; Cadirci, B.H.; Garcia-Fontana, C.; Ramos, J.L. Diversity at its best: Bacterial taxis. Environ. Microbiol. 2011, 13, 1115–1124. [Google Scholar] [CrossRef]
- Muff, T.J.; Ordal, G.W. The diverse CheC-type phosphatases: Chemotaxis and beyond. Mol. Microbiol. 2008, 70, 1054–1061. [Google Scholar] [CrossRef]
- Alexander, R.P.; Lowenthal, A.C.; Harshey, R.M.; Ottemann, K.M. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol. 2010, 18, 494–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, J.R. Chemotaxis-like regulatory systems: Unique roles in diverse bacteria. Annu. Rev. Microbiol. 2009, 63, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.L.; Wadhams, G.H.; Armitage, J.P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 2011, 9, 153–165. [Google Scholar] [CrossRef]
- Mukherjee, T.; Kumar, D.; Burriss, N.; Xie, Z.; Alexandre, G. Azospirillum brasilense chemotaxis depends on two signaling pathways regulating distinct motility parameters. J. Bacteriol. 2016, 198, 1764–1772. [Google Scholar] [CrossRef]
- Whitchurch, C.B.; Leech, A.J.; Young, M.D.; Kennedy, D.; Sargent, J.L.; Bertrand, J.J.; Semmler, A.B.; Mellick, A.S.; Martin, P.R.; Alm, R.A.; et al. Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 2004, 52, 873–893. [Google Scholar] [CrossRef] [PubMed]
- Hickman, J.W.; Tifrea, D.F.; Harwood, C.S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 2005, 102, 14422–14427. [Google Scholar] [CrossRef] [Green Version]
- Berleman, J.E.; Bauer, C.E. Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol. Microbiol. 2005, 56, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Berleman, J.E.; Bauer, C.E. A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol. Microbiol. 2005, 55, 1390–1402. [Google Scholar] [CrossRef]
Strain | Potential Chemoeffector | Refs | |
---|---|---|---|
Comamonas sp. strain JS765 | 2-nitrotoluene | [35] | |
Comamonas testosteroni strain CNB-1 | benzoate | 2-hydroxybenzoate | [36,37,38] |
3-hydroxybenzoate | 4-hydroxybenzoate | ||
2,6-dihydroxybenzoate | protocatechuate | ||
vanillic acid | vanillin | ||
gallic acid | gentisate | ||
phenol | catechol | ||
adipate | succinate | ||
fumarate | pyruvate | ||
citrate | malate | ||
α-ketoglutarate | cis-aconitate | ||
oxaloacetate | isocitrate | ||
Comamonas testosteroni ATCC 11996 | 1-dehydrotestosterone | pregnenolone | [39] |
17α-hydroxyprogesterone | androstanedione | ||
11α-hydroxyprogesterone | testosterone | ||
21α-hydroxyprogesterone | deoxycorticosterone | ||
5-androsten-3β-17β-diol |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-H.; Huang, Z.; Liu, S.-J. Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int. J. Mol. Sci. 2019, 20, 2701. https://doi.org/10.3390/ijms20112701
Wang Y-H, Huang Z, Liu S-J. Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. International Journal of Molecular Sciences. 2019; 20(11):2701. https://doi.org/10.3390/ijms20112701
Chicago/Turabian StyleWang, Yun-Hao, Zhou Huang, and Shuang-Jiang Liu. 2019. "Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni" International Journal of Molecular Sciences 20, no. 11: 2701. https://doi.org/10.3390/ijms20112701
APA StyleWang, Y. -H., Huang, Z., & Liu, S. -J. (2019). Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. International Journal of Molecular Sciences, 20(11), 2701. https://doi.org/10.3390/ijms20112701