Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Opto Trace Raman 202
2.2. The SERS Performance of Rhodamine 6G Substrate
2.3. The SERS Performance of Sildenafil
2.4. Detection of Sildenafil in Health Wine and Liquor
2.5. Quantitative Detection of Sildenafil in Health Wine and Liquor
2.6. Model Accuracy Verification
3. Materials and Methods
3.1. Chemicals
3.2. Instruments
3.3. Sample Preparation
3.4. SERS Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, S.; Prasad, B.; Savaliya, A.A.; Shah, R.P.; Gohil, V.M.; Kaur, A. Strategies for characterizing sildenafil, vardenafil, tadalafil and their analogues in herbal dietary supplements, and detecting counterfeit products containing these drugs. TrAC Trends Anal. Chem. 2009, 28, 13–28. [Google Scholar] [CrossRef]
- Che, N.M.; Nor, N.M.; Lajis, R.; Harn, G.L. Identification of sildenafil, tadalafil and vardenafil by gas chromatography–mass spectrometry on short capillary column. J. Chromatogr. A 2009, 1216, 8426–8430. [Google Scholar]
- Huang, C.A.; Yeh, K.-Y.; Cheng, Y.-Y.; Dubey, K.N.; Chiu, W.A.; Tsai, T.-H. Investigation of Interactive Activity of Electro-Acupuncture on Pharmacokinetics of Sildenafil and Their Synergistic Effect on Penile Blood Flow in Rats. Int. J. Mol. Sci. 2018, 19, 2153. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Y.Y.; Zhang, Y.; Wang, S. Development of enzyme-linked immunosorbent assay for rapid determination of sildenafil in adulterated functional foods. Food Agric. Immunol. 2012, 23, 338–351. [Google Scholar] [CrossRef]
- Damiano, F.; Silva, C.; Gregori, A.; Vacondio, F.; Mor, M.; Menozzi, M.; Giorgio, D.D. Analysis of illicit dietary supplements sold in the Italian market: identification of a sildenafil thioderivative as adulterant using UPLC-TOF/MS and GC/MS. Sci. Justice 2014, 54, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Vaysse, J.; Gilard, V.; Balayssac, S.; Zedde, C.; Martino, R.; Malet-Martino, M. Identification of a novel sildenafil analogue in an adulterated herbal supplement. J. Pharm. Biomed. Anal. 2012, 59, 58–66. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lee, H.C.; Lin, Y.L.; Lin, Y.T.; Tsai, C.F.; Cheng, H.F. Identification of a new sildenafil analogue adulterant, desethylcarbodenafil, in an herbal supplement. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1637–1642. [Google Scholar] [CrossRef]
- Ying, Z.; Zhiqiang, H.; Li, D.; Hongfei, Y.; Meiling, W.; Shaohua, Z. Simultaneous determination of yohimbine, sildenafil, vardenafil and tadalafil in dietary supplements using high-performance liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2015, 33, 2109–2114. [Google Scholar]
- Challa, B.R.; Awen, B.Z.; Chandu, B.R.; Khagga, M.; Bannoth, C.K.; Kanala, K.; Shaik, R.P.; Peraman, R.; Gogineni, R. Sildenafil and N-desmethyl sildenafil quantification in human plasma by HPLC coupled with ESI-MS/MS detection: Application to bioequivalence study. Anal. Methods 2010, 2, 1043–1050. [Google Scholar] [CrossRef]
- Al-Hroub, H.; Alkhawaja, B.; Alkhawaja, E.; Arafat, T. Sensitive and rapid HPLC-UV method with back-extraction step for the determination of sildenafil in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1009–1010, 1–6. [Google Scholar] [CrossRef]
- Altıokka, G.; Atkosar, Z.; Sener, E.; Tunçel, M. FIA of sildenafil citrate using UV-detection. J. Pharm. Biomed. Anal. 2001, 25, 339–342. [Google Scholar] [CrossRef]
- Sabina, S.R.; Luca, A.; Xavier, D.L.T.; Francesco, B. A gas chromatography/mass spectrometry method for the determination of sildenafil, vardenafil and tadalafil and their metabolites in human urine. Rapid Commun. Mass Spectrom. 2010, 24, 1697–1706. [Google Scholar]
- Jeong, Y.D.; Suh, S.I.; Jin, Y.K.; In, M.K.; Paeng, K.J. Simultaneous Determination of Sildenafil, Tadalafil, and Vardenafil in Pharmaceutical Preparations by High-Temperature Gas Chromatography/Mass Spectrometry. Chromatographia 2016, 79, 1671–1678. [Google Scholar] [CrossRef]
- Reddy, T.S.; Reddy, A.S.; Devi, P.S. Quantitative determination of sildenafil citrate in herbal medicinal formulations by high-performance thin-layer chromatography. Jpc-J. Planar Chromatogr. -Mod. Tlc 2006, 19, 427–431. [Google Scholar] [CrossRef]
- Liu, Y.R.; Hai-Sheng, G.E.; Zhao, K.H.; Ling, Y.U.; Zhang, C. Determination of sildenafil citrate added in traditional Chinese medicines and health care products by thin layer chromatographic surface-enhanced Raman spectroscopic method. Chin. J. Pharm. Anal. 2014, 34, 1241–1246. [Google Scholar]
- Said, M.M.; Gibbons, S.; Moffat, A.C.; Zloh, M. Rapid detection of sildenafil analogue in Eurycoma longifolia products using a new two-tier procedure of the near infrared (NIR) spectra database. Food Chem. 2014, 158, 296–301. [Google Scholar] [CrossRef]
- Vredenbregt, M.J.; Blok-Tip, L.; Hoogerbrugge, R.; Barends, D.M.; Kaste, D.D. Screening suspected counterfeit Viagra ®; and imitations of Viagra ®; with near-infrared spectroscopy. J. Pharm. Biomed. Anal. 2006, 40, 840–849. [Google Scholar] [CrossRef]
- Ramirez-Mendiola, B.; Flores-Perez, C.; Garcia-Alvarez, R.; Juarez-Olguin, H.; Flores-Perez, J.; Chavez Pacheco, J.L. A reliable method to quantify sildenafil and its metabolite N-demethylsildenafil by HPLC in plasma of children. Drug Res. 2013, 63, 473–476. [Google Scholar] [CrossRef]
- Orsi, D.D.; Pellegrini, M.; Marchei, E.; Nebuloni, P.; Gallinella, B.; Scaravelli, G.; Martufi, A.; Gagliardi, L.; Pichini, S. High performance liquid chromatography-diode array and electrospray-mass spectrometry analysis of vardenafil, sildenafil, tadalafil, testosterone and local anesthetics in cosmetic creams sold on the Internet web sites. J. Pharm. Biomed. Anal. 2009, 50, 362–369. [Google Scholar] [CrossRef]
- Chee-Leong, K.; Xiaowei, G.; Min-Yong, L. Application of Orbitrap-mass spectrometry to differentiate isomeric sildenafil- and thiosildenafil-like analogues used for the adulteration of dietary supplements. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1737–1748. [Google Scholar]
- Liew, K.B.; Loh, G.O.; Tan, Y.T.; Peh, K.K. Simultaneous quantification of sildenafil and N-desmethyl sildenafil in human plasma by UFLC coupled with ESI-MS/MS and pharmacokinetic and bioequivalence studies in Malay population. Biomed. Chromatogr. 2015, 29, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Yaroshenko, D.V.; Grigoriev, A.V.; Sidorova, A.A.; Kartsova, L.A. Chromatographic determination of sildenafil in blood plasma using spectrophotometric and mass-spectrometric detection. J. Anal. Chem. 2013, 68, 801–808. [Google Scholar] [CrossRef]
- Huiyuan, G.; Zhiyun, Z.; Baoshan, X.; Arnab, M.; Craig, M.; White, J.C.; Lili, H. Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environ. Sci. Technol. 2015, 49, 4317–4324. [Google Scholar]
- He, Y.; Xiao, S.; Dong, T.; Nie, P. Gold Nanoparticles for Qualitative Detection of Deltamethrin and Carbofuran Residues in Soil by Surface Enhanced Raman Scattering (SERS). Int. J. Mol. Sci. 2019, 20, 1731. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Gu, H.; Yuan, X.; Gao, J.; Cai, T. Investigation of 3D silvernanodendrite@glass as surface-enhanced Raman scattering substrate for the detection of Sildenafil and GSH. J. Mol. Struct. 2012, 1029, 75–80. [Google Scholar]
- Mao, D.Z.; Weng, X.X.; Yang, Y.J. Rapid screening of sildenafil and tadalafil adulterated in healthcare products by Micro-Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1985–1990. [Google Scholar] [CrossRef]
- Hang, Z.; Hasi, W.; Lin, B.; Han, S.; Sha, X.; Jia, S.; Lou, X.; Lin, D.; Lv, Z. Rapid Detection of Sildenafil Drugs in Liquid Nutraceuticals Based on Surface-Enhanced Raman Spectroscopy Technology. Chin. J. Chem. 2017, 35, 1522–1528. [Google Scholar]
- Zhang, Y.; Huang, X.; Liu, W.; Cheng, Z.; Chen, C.; Yin, L. Analysis of Drugs Illegally Added into Chinese Traditional Patent Medicine Using Surface-enhanced Raman Scattering. Anal. Sci. 2013, 29, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, L.; Bu, X.; Li, P.; Zhao, B.; Tian, Y. Determination of the illegal adulteration of natural healthcare products with chemical drugs using surface-enhanced Raman scattering. Analyst 2018, 143, 5202–5209. [Google Scholar] [CrossRef]
- Lei, L.; Fangfang, Q.; Pengcheng, N.; Hui, Z.; Bingquan, C.; Yong, H. Rapid and Quantitative Determination of Sildenafil in Cocktail Based on Surface Enhanced Raman Spectroscopy. Molecules 2019, 24, 1790. [Google Scholar] [Green Version]
- Qin, X.; Guo, X.; Li, X.; Ye, Y.; Wu, Y.; Ying, W.; Yang, H. Template-Free Synthesis of SERS-Active Gold Nanopopcorn for Rapid Detection of Chlorpyrifos Residues. Sens. Actuators B Chem. 2017, 241, 1008–1013. [Google Scholar]
- Dong, T.; Lin, L.; He, Y.; Nie, P.; Qu, F.; Xiao, S. Density Functional Theory Analysis of Deltamethrin and Its Determination in Strawberry by Surface Enhanced Raman Spectroscopy. Molecules 2018, 23, 1458. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Dong, T.; Nie, P.; Qu, F.; He, Y.; Chu, B.; Xiao, S. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy. Sensors 2018, 18, 1082. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control 2016, 68, 229–235. [Google Scholar] [CrossRef]
- Xiaoyu, G.; Yichen, F.; Shuyue, F.; Hui, W.; Tianxi, Y.; Ying, W.; Haifeng, Y. Improving SERS activity of inositol hexaphosphate capped silver nanoparticles: Fe3+ as a switcher. Inorg. Chem. 2014, 53, 7227–7232. [Google Scholar]
- Zhu, W.L.; Tan, X.J.; Puah, C.M.; Gu, J.D.; Jiang, H.L.; Chen, K.X.; Felder, C.E.; Silman, I.; Sussman, J.L. How Does Ammonium Interact with Aromatic Groups? A Density Functional Theory (DFT/B3LYP) Investigation. J. Phys. Chem. A 2000, 104, 9573–9580. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | EF | ||||
---|---|---|---|---|---|
785 | 17 | 2377 | 140 | 105 | 1.40 × 107 |
1009 | 32 | 4697 | 149 | 1.49 × 107 | |
1271 | 102 | 3665 | 36 | 3.6 × 106 | |
1331 | 16 | 2928 | 184 | 1.84 × 107 |
RS of Sildenafil Powder (cm−1) | SERS of Sildenafil Solution (cm−1) | SERS of Sildenafil in Liquor (cm−1) | SERS of Sildenafil in Health Wine (cm−1) | Assignments |
---|---|---|---|---|
472 | 474 | 470 | 490 | υ carbonyl + δ phenetole |
553 | 553 | 557 | 553 | υ carbonyl + δ phenetole |
647 | 647 | 645 | 645 | υ carbonyl + δ phenetole + υ (C–S) |
744 | 723 | 723 | 730 | υ carbonyl + δ phenetole + υ (C–S) |
812 | 812 | 814 | 814 | υ Pyrazole pyridine |
926 | 926 | 923 | 923 | δ (C–C) + υ (C–H) |
992 | 989 | 991 | 991 | υ (C–H) in carbonyl |
1027 | 1045 | 1043 | 1043 | δ (C–C) + υ (C–H) |
1150 | 1159 | 1162 | 1151 | υ (C–H) in carbonyl |
1232 | 1232 | 1232 | 1232 | υ (C–H) in carbonyl |
1310 | 1301 | 1309 | 1309 | δ (C–H) in ethyl |
1396 | 1401 | 1401 | 1401 | δ (C–H) in methyl piperazine |
1487 | 1487 | 1487 | 1487 | δ (C–H) in Pyrazole pyridine |
1528 | 1528 | 1530 | 1530 | υ (C–H) in Pyrazole pyridine |
1583 | 1582 | 1582 | 1582 | δ (C–H) in Pyrazole pyridine |
Peaks (cm−1) | Linear Equation | Range (mg/L) | R2 | Peaks (cm−1) | Linear Equation | Range (mg/L) | R2 |
---|---|---|---|---|---|---|---|
645 | y = 27.484x + 52.013 | 0.1–10 | 0.9720 | 814 | y = 39.996x + 40.358 | 0.1–10 | 0.9650 |
y = 76.502x + 24.209 | 0.1–1 | 0.9687 | y = 112.35x − 4.0499 | 0.1–1 | 0.9777 | ||
y = 24.832x + 70.683 | 1–10 | 0.9816 | y = 33.846x + 84.522 | 1–10 | 0.9819 | ||
1232 | y = 186.6x + 373.08 | 0.1–10 | 0.9101 | 1401 | y = 120.74x + 403.59 | 0.1–10 | 0.8752 |
y = 823.83x − 9.648 | 0.1–1 | 0.9803 | y = 638.58x + 98.242 | 0.1–1 | 0.9722 | ||
y = 140.39x + 702.58 | 1–10 | 0.9822 | y = 86.188x + 649.19 | 1–10 | 0.9840 | ||
1530 | y = 190.96x + 377.12 | 0.1–10 | 0.8801 | 1582 | y = 520.22x + 1295.2 | 0.1–10 | 0.8883 |
y = 891.26x − 60.683 | 0.1–1 | 0.9891 | y = 2587.6x + 68.153 | 0.1–1 | 0.9787 | ||
y = 129.74x + 816.6 | 1–10 | 0.9701 | y = 365.32x + 2403.7 | 1–10 | 0.9872 |
Peaks (cm−1) | Linear Equation | Range (mg/L) | R2 | Peaks (cm−1) | Linear Equation | Range (mg/L) | R2 |
---|---|---|---|---|---|---|---|
645 | y = 29.237x + 6.7438 | 0.1–20 | 0.9921 | 814 | y = 17.003x + 18.855 | 0.1–20 | 0.9812 |
y = 65.767x + 2.1908 | 0.1–1 | 0.9944 | y = 29.237x + 6.749 | 0.1–1 | 0.9944 | ||
y = 15.437x + 74.515 | 1–20 | 0.9625 | y = 16.09x + 30.708 | 1–20 | 0.9747 | ||
1232 | y = 106.26x + 251.16 | 0.1–20 | 0.9353 | 1401 | y = 27.004x + 20.516 | 0.1–20 | 0.9944 |
y = 342.03x + 10.409 | 0.1–1 | 0.9726 | y = 43.907x + 9.5066 | 0.1–1 | 0.9662 | ||
y = 86.896x + 503.1 | 1–20 | 0.9652 | y = 26.437x + 27.85 | 1–20 | 0.9922 | ||
1530 | y = 96.516x + 593.72 | 0.1–20 | 0.8629 | 1582 | y = 232.12x + 11.709 | 0.1–20 | 0.9896 |
y = 824.13x + 93.493 | 0.1–1 | 0.9734 | y = 112.76x − 11.609 | 0.1–1 | 0.9835 | ||
y = 70.364x + 931.57 | 1–20 | 0.9816 | y = 223.49x + 138.28 | 1–20 | 0.982 |
Sildenafil Peaks in Health Wine (cm−1) | Predicted (mg/L) Mean + a SD | ||||||
---|---|---|---|---|---|---|---|
645 | 814 | 1232 | 1401 | 1530 | 1582 | ||
Added (mg/L) | 0.5 | 0.472 ± 0.026 | 0.522 ± 0.021 | 0.467 ± 0.031 | 0.470 ± 0.024 | 0.480 ± 0.013 | 0.444 ± 0.029 |
a RSD (%) | 5.51 | 3.92 | 6.78 | 5.14 | 2.89 | 6.66 | |
Recovery (%) | 94.41 | 104.42 | 93.5 | 94.08 | 96.11 | 88.92 | |
Added (mg/L) | 5 | 4.89 ± 0.51 | 4.97 ± 0.37 | 4.93 ± 0.22 | 4.84 ± 0.22 | 5.02 ± 0.13 | 4.88 ± 0.42 |
a RSD (%) | 5.11 | 7.65 | 4.51 | 4.62 | 2.53 | 4.21 | |
Recovery (%) | 97.87 | 99.38 | 98.60 | 96.89 | 100.43 | 97.62 |
Sildenafil Peaks in Health Liquor (cm−1) | Predicted (mg/L) Mean + SD | ||||||
---|---|---|---|---|---|---|---|
645 | 814 | 1232 | 1401 | 1530 | 1584 | ||
Added (mg/L) | 0.5 | 0.483 ± 0.039 | 0.522 ± 0.036 | 0.498 ± 0.022 | 0.512 ± 0.043 | 0.534 ± 0.026 | 0.464 ± 0.025 |
a RSD (%) | 8.07 | 6.98 | 4.59 | 8.35 | 4.95 | 5.44 | |
Recovery (%) | 96.61 | 104.45 | 99.78 | 102.32 | 106.78 | 92.77 | |
Added (mg/L) | 5 | 4.71 ± 0.32 | 4.77 ± 0.28 | 4.93 ± 0.23 | 4.50 ± 0.34 | 5.14 ± 0.34 | 4.89 ± 0.43 |
a RSD (%) | 6.67 | 5.90 | 4.88 | 7.62 | 6.70 | 8.70 | |
Recovery (%) | 94.31 | 95.44 | 98.60 | 90.09 | 102.80 | 97.86 | |
Added (mg/L) | 13 | 12.78 ± 0.85 | 12.08 ± 0.89 | 13.24 ± 0.63 | 12.33 ± 0.90 | 12.70 ± 0.97 | 12.69 ± 0.98 |
a RSD (%) | 6.72 | 7.38 | 4.66 | 7.61 | 7.62 | 7.68 | |
Recovery (%) | 98.36 | 92.99 | 101.84 | 94.90 | 97.73 | 97.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; He, Y. Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy. Int. J. Mol. Sci. 2019, 20, 2722. https://doi.org/10.3390/ijms20112722
Xiao S, He Y. Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy. International Journal of Molecular Sciences. 2019; 20(11):2722. https://doi.org/10.3390/ijms20112722
Chicago/Turabian StyleXiao, Shupei, and Yong He. 2019. "Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy" International Journal of Molecular Sciences 20, no. 11: 2722. https://doi.org/10.3390/ijms20112722
APA StyleXiao, S., & He, Y. (2019). Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy. International Journal of Molecular Sciences, 20(11), 2722. https://doi.org/10.3390/ijms20112722