A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs)
Abstract
:1. Introduction
2. Synthesis and Application of Flame Retardants
2.1. Usage Situation of Flame Retardant
2.2. Classification and Preparation Technology of OPFRs
2.2.1. Classification and Preparation Technology of Organophosphate Esters
2.2.2. Phosphonate Flame Retardant
2.2.3. Phosphine Oxide Flame Retardant
2.2.4. Organophosphate Heterocycle Flame Retardants
2.3. The Comparison of Several Common Flame Retardants
3. Detection of Organophosphate Flame Retardants
3.1. Traditional Method for Detecting Organophosphate Flame Retardants
3.2. Emerging Methods for Detecting Organophosphate Flame Retardants
3.2.1. LC-ESI (+)-/MS/MS Method
3.2.2. Microwave-Assisted Extraction Combined with Gel Permeation Chromatography and Silica Gel Clean-Up Followed by Gas Chromatography–Mass Spectrometry
3.3. Detection of Organophosphate Flame-Retardant Content in Different Media
3.3.1. Detection of Organophosphate Flame-Retardant Content in Biological Samples
3.3.2. Detection of Organophosphate Flame-Retardant Content in Surface and Drinking Water
3.3.3. Detection of Organophosphate Flame-Retardant Content in Sewage and Wastewater
3.3.4. Detection of Organophosphate Flame-Retardant Content in Soil
3.3.5. Detection of Organophosphate Flame-Retardant Content in Sediment
3.3.6. Detection of Organophosphate Flame-Retardant Content in the Atmosphere, Indoor Air and Dust
4. Environmental Impacts of OPFRs
4.1. Toxicity
4.1.1. Developmental Toxicity and Reproduction Toxicity
4.1.2. Neurotoxicity
4.2. Biological Enrichment
4.3. Endocrine Disrupting Effects
5. Pollution Controls of OPFRs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OPFRs | organophosphate flame retardants |
ECs | emerging contaminants |
FRs | flame retardants |
ATH | alumina trihydrate |
VP | vapour pressure |
BCF | bioconcentration factor |
TBP | tributylphosphat |
TEP | triethyl phosphate |
TCEP | tri(2-chloroethyl)phosphate |
BFR | brominated flame retardant |
PBDE | polybrominated diphenyl ether |
PentaBDE | pentabromodiphenyl ether |
OctaBDE | octabromodiphenyl ethers |
DecaBDE | decabromodiphenyl ether |
NBFR | new brominated flame retardant |
AFR | alternative flame retardant |
WWTP | wastewater treatment plant |
TBOEP | tris(2-butoxyethyl) phosphate |
TCIPP | tris(1-chloro-2-propyl) phosphate |
PU | polyurethane |
ABS | acrylonitrile-butadiene-styrene |
HIPS | high impact polystyrene |
PVC | polyethylene, polyvinyl chloride |
TCPP | tris(chloroisopropyl) phosphate |
TDCPP | tris(1,3-dichloroisopropyl) phosphate |
TDCIPP | tris(1,3-dichloroisopropyl) phosphate |
TH | thyroid hormone |
DCRP | DechloranePlus |
POPs | persistent organic pollutants |
REACH | Registration, Evaluation, Authorization and Restriction of Chemicals |
RDP | Resorcinol bis(diphenyl phosphate) |
DBDPO | decabromodiphenyl oxide |
DCEPP | O,O′-di (2-chloroethyl),O″-[2-bis-(2-chloroethoxy) phosphoryl] propylphosphate |
DBEPP | O,O′-di (2-bromoethyl),O″-[2-bis-(2-bromoethoxy) phosphoryl] propylphosphate |
LOI | limiting oxygen index |
PMPC | phenyl methyl phosphonochloridate |
MPDC | methyl phosphonic dichloride |
DPPMP | diphenyl piperazine-1,4-diylbis(methylphosphinate) |
PSF | polysulfone |
BMI | bismaleimide |
DGEBA | diglycidyl ether of bisphenol A |
HNCP | hexakis (4-nitrophenoxy) cyclotriphosphazene |
PET | poly(ethylene terephthalate) |
POBPP | polyphosphate poly (6-oxido-6H-dibenzo [-c,e] [1,2]oxa-phosphinin-6-yl phenyl phenylphosphate |
DOPO-BQ | 10-(2,5-dihydroxyl phenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide |
HBCDD | hexabromocyclododecane |
TBBPA | tetrabromobisphenol A |
LC/MS | liquid chromatography-mass spectrometry |
TPHP | TPHP (triphenyl phosphate) |
BDCP | BDCP (Tris-(2,4,6-Tribromophenoxy)dichlorophosphorane) |
TBEP | TBEP (tris(2-butoxyethyl) phosphate) |
HPLC | high performance liquid chromatography |
LC-MS-MS | liquid chromatography-quadrupole-linear ion trap mass spectrometry |
LC-ESI/MS/MS | liquid chromatography–electrospray ionization (+)– tandem mass spectrometry |
MS/MS | mass spectrometer |
ESI | electrospray ionization |
SRM | selected reaction monitoring |
MAE | microwave assisted extraction |
OPE | organophosphate ester |
IPPP | tris(isopropylphenyl)phosphate |
IDPP | isodecyldiphenyl phosphate |
EHDP | ethylhexyl diphenyl phosphate |
TEHP | tri(2-ethyltexyl)phosphate |
TnBP | tri-n-butyl phosphate |
TDBPP | tris(2,3-dibromopropyl) phosphate |
TDCP | tris(1,3-dichloropropyl)phosphate |
MQL | method quantification limits |
PRE | pearl river estuary |
TMPP | tris(methylphenyl) phosphate |
TCrP | tricresyl phosphate |
TPP | tritolyl phosphate |
TIBP | tris(isobutyl) phosphate |
TPrP | tripropyl phosphate |
CDP | cresyl diphenyl phosphate |
IQR | interquartile range |
CPF | chlorpyrifos |
OPIDP | organophosphate-induced delayed polyneuropathy |
TOCP | triorthocresyl phosphate |
AchE | acetylcholinesterase |
OGT | O-GlcNAc transferase |
ROS | reactive oxygen species |
BDCIPP | diester metabolites bis (1,3-dichloro-2-propyl) phosphate |
BBOEP | bis-(2-butoxyethyl) phosphate |
DEHP | di(2-ethylhexyl) phosphate |
DPP | diphenyl phosphate |
ITP | isopropylated triphenyl phosphate |
TCP | tricresyl phosphate |
AOP | advanced oxidation process |
UF | ultrafiltration |
NF | nanofiltration |
PCP | pentachlorophenol |
SCWO | supercritical water oxidation |
CPSC | consumer products safety commission |
References
- Du, Z.K.; Wang, G.W.; Gao, S.X.; Wang, Z.Y. Aryl organophosphate flame retardants induced cardiotoxicity during zebra fish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat. Toxicol. 2015, 161, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Xu, Y.P.; Wang, Z.J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016, 153, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Greaves, A.K.; Letcher, R.J. Body compartment distribution in female Great Lakes herring gulls and in ovo transfer of sixteen bioaccumulative organophosphate flame retardants. Environ. Sci. Technol. 2014, 48, 7942–7950. [Google Scholar] [CrossRef] [PubMed]
- Veen, I.V.D.; Boer, J.D. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; Hurtado, A.; Gómez-Canela, C.; Lacorte, S. Occurrence and Sources of Brominated and Organophosphate Flame Retardants in Dust from Different Indoor Environments in Barcelona, Spain. Environ. Res. 2016, 149, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.L.; Li, D.Q.; Zhuo, M.N.; Liao, Y.S.; Xie, Z.Y.; Guo, T.L.; Li, J.J.; Zhang, S.Y.; Liang, Z.Q. Organophosphate flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef]
- Reemtsma, T.; Quintana, J.B.; Rodil, R.; García-Lopez, M.; Rodríguez, I. Organophosphate flame retardants and plasticizers in water and air I. Occurrence and fate. Trends Anal. Chem. 2008, 27, 727–737. [Google Scholar] [CrossRef]
- Khan, M.U.; Li, J.; Zhang, G.; Malik, R.N. First insight into the levels and distribution of flame retardants in potable water in Pakistan: An underestimated problem with an associated health risk diagnosis. Sci. Total Environ. 2016, 565, 346–359. [Google Scholar] [CrossRef]
- Dishaw, L.V.; Powers, C.M.; Ryde, I.T.; Roberts, S.C.; Seidler, F.J.; Slotkin, T.A.; Stapleton, H.M. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol. Appl. Pharmacol. 2011, 256, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Ali, L.; Mehdi, T.; Dirtu, A.C.; Al-Shammari, F.; Neels, H.; Covaci, A. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion. Environ. Int. 2013, 55, 62–70. [Google Scholar] [CrossRef]
- Ali, N.; Malik, R.N.; Mehdi, T.; Eqani, S.A.M.A.S.; Javeed, A.; Neels, H.; Covaci, A. Organohalogenated contaminants (OHCs) in the serum and hair of household cats and dogs: Biosentinels of human exposure to indoor pollution. Sci. Total Environ. 2013, 449, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Qi, H.; Ma, W.L.; Liu, L.Y.; Zhang, Z.; Mohammed, M.O.; Song, W.W.; Zhang, Z.; Li, Y.F. Brominated flame retardants in Chinese air before and after the phase out of polybrominated diphenyl ethers. Atmos. Environ. 2015, 117, 156–161. [Google Scholar] [CrossRef]
- Yang, F.X.; Ding, J.J.; Huang, W.; Xie, W.; Liu, W.P. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter. Environ. Sci. Technol. 2014, 48, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lam, J.C.W.; Man, Y.C.; Lai, N.L.S.; Kwok, K.Y.; Guo, Y.Y.; Lam, P.K.S.; Zhou, B. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebra fish. Aquat. Toxicol. 2015, 158, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bacaloni, A.; Cavaliere, C.; Foglia, P.; Nazzari, M.; Samperi, R.; Lagana, A. Liquid chromatography/tandem mass spectrometry determination of organophosphate flame retardants and plasticizers in drinking and surface waters. Rapid Commun. Mass Spectrom. 2007, 21, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.X.; Zeng, X.Y.; Song, H.; Li, H.R.; Yu, Z.Q.; Sheng, G.Y.; Fu, J.M. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China. Environ. Toxicol. Chem. 2012, 31, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Mihajlovic, I.; Miloradov, M.V.; Fries, E. Application of twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil. Environ. Sci. Technol. 2011, 45, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Moeller, A.; Sturm, R.; Xie, Z.; Cai, M.; He, J.; Ebinghaus, R. Organophosphate flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the polar regions: Evidence for global occurrence. Environ. Sci. Technol. 2012, 46, 3127–3134. [Google Scholar] [CrossRef]
- He, R.W.; Li, Y.Z.; Xiang, P.; Li, C.; Cui, X.Y.; Ma, L.Q. Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environ. Res. 2018, 162, 166–172. [Google Scholar] [CrossRef]
- Eede, N.V.D.; Dirtu, A.C.; Neels, H.; Covaci, A. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ. Int. 2011, 37, 454–461. [Google Scholar] [CrossRef]
- Cequier, E.; Ionas, A.C.; Covaci, A.; Marce, R.M.; Becher, G.; Thomsen, C. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ. Sci. Technol. 2014, 48, 6827–6835. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.W.; Ding, W.H. Determination of organophosphate flame retardants in sediments by microwave-assisted extraction and gas chromatographyemass spectrometry with electron impact and chemical ionization. Anal. Bioanal. Chem. 2009, 395, 2325–2334. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Deng, Y.; Yuan, W.; He, H.; Yang, S.; Sun, C. Determination of organophosphate flame retardants in fish by pressurized liquid extraction using aqueous solutions and solid-phase microextraction coupled with gas chromatography-flame photometric detector. J. Chromatogr. A 2014, 1366, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Isobe, T.; Chang, K.H.; Amano, A.; Maneja, R.H.; Zamora, P.B.; Siringan, F.P.; Tanabe, S. Levels and distribution of organophosphate flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ. Pollut. 2011, 159, 3653–3659. [Google Scholar] [CrossRef] [PubMed]
- Staaf, T.; Ostman, C. Organophosphate triesters in indoor environments. J. Environ. Monit. 2005, 7, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.F.; Tan, H.L.; Guo, Y.; Wu, Y.; Chen, D. Emerging and legacy flame retardants in indoor dust from East China. Chemosphere 2017, 186, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Bollmann, U.E.; Moeler, A.; Xie, Z.; Ebinghaus, R.; Einax, J.W. Occurrence and fate of organophosphate flame retardants and plasticizers in coastal and marine surface waters. Water Res. 2012, 46, 531–538. [Google Scholar] [CrossRef]
- Cequier, E.; Marce, R.M.; Becher, G.; Thomsen, C. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry. Anal. Chim. Acta 2014, 845, 98–104. [Google Scholar] [CrossRef]
- Sundkvist, A.M.; Olofsson, U.; Haglund, P. Organophosphate flame retardants and plasticizers inmarine and fresh water biota and in human milk. J. Environ. Monit. 2010, 12, 943–951. [Google Scholar] [CrossRef]
- Johnson-Restrepo, B.; Kannan, K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere 2009, 76, 542–548. [Google Scholar] [CrossRef]
- Meeker, J.D.; Stapleton, H.M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; Vázquez, A.G.; Barata, C.; Lacorte, S. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Environ. Int. 2013, 59, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Bester, K. Organophosphate flame retardants and plasticisers in wastewater treatment plants. J. Environ. Monit. 2004, 6, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Pantelaki, I.; Voutsa, D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment. Sci. Total Environ. 2019, 649, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Marklund, A.; Andersson, B.; Haglund, P. Organophosphate flame retardants and plasticizers in Swedish sewage treatment plants. Environ. Sci. Technol. 2005, 39, 7423–7429. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. Occurrence of organophosphate flame retardants in drinking water from China. Water Res. 2014, 54, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Regnery, J.; Püttmann, W. Occurrence and fate of organophosphate flame retardants and plasticizers in urban and remote surface waters in Germany. Water Res. 2010, 44, 4097–4104. [Google Scholar] [CrossRef] [PubMed]
- Regnery, J.; Püttmann, W. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff. Chemosphere 2010, 78, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Dirtu, A.C.; Eede, N.V.D.; Goosey, E.; Harrad, S.; Neels, H.; Mannetje, A.; Coakley, J.; Douwes, J.; Covaci, A. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 2012, 88, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Brommer, S.; Harrad, S.; Eede, N.V.D.; Covaci, A. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J. Environ. Monit. 2012, 14, 2482–2487. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Li, Y.Z.; Xiang, P.; Li, C.; Zhou, C.Y.; Zhang, S.J.; Cui, X.Y.; Ma, L.Q. Organophosphate flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2015, 150, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.L.; Püttmann, W. Distributions of organophosphate flame retardants (OPFRs) in three dust size fractions from homes and building material markets. Environ. Pollut. 2019, 245, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Mizouchi, S.; Ichiba, M.; Takigami, H.; Kajiwara, N.; Takamuku, T.; Miyajima, T.; Kodama, H.; Someya, T.; Ueno, D. Exposure assessment of organophosphate and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere 2015, 123, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, H.M.; Klosterbaus, S.; Keller, A.; Ferguson, P.L.; Bergen, S.V.; Cooper, E.; Webster, T.F.; Blum, A. Identification of flame retardants in polyurethane foam collected from baby products. Environ. Sci. Technol. 2011, 45, 5323–5331. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Ji, K.; Choi, K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebra fish. Aquat. Toxicol. 2012, 114–115, 173–181. [Google Scholar] [CrossRef]
- Giulivo, M.; Capri, E.; Eljarrat, E.; Barceló, D. Analysis of organophosphate flame retardants in environmental and biotic matrices using on-line turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1474, 71–78. [Google Scholar] [CrossRef]
- McGoldrick, D.J.; Letcher, R.J.; Barresi, E.; Keir, M.J.; Small, J.; Clark, M.G.; Backus, S.M. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environ. Pollut. 2014, 193, 254–261. [Google Scholar] [CrossRef]
- Regnery, J.; Puttmann, W. Organophosphate flame retardants and plasticizers in rain and snow from middle Germany. Clean Soil Air Water 2009, 37, 334–342. [Google Scholar] [CrossRef]
- Rodil, R.; Quintana, J.B.; Reemtsma, T. Liquid chromatography-tandem mass spectrometry determination of nonionic organophosphate flame retardants and plasticizers in wastewater samples. Anal. Chem. 2005, 77, 3083–3089. [Google Scholar] [CrossRef]
- Thomas, M.B.; Stapleton, H.M.; Dills, R.L.; Violette, H.D.; Christakis, D.A.; Sathyanarayana, S. Demographic and dietary risk factors in relation to urinary metabolites of organophosphate flame retardants in toddlers. Chemosphere 2017, 185, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, L.Y.; Sverko, E.; Li, Y.F.; Li, H.L.; Huo, C.Y.; Ma, W.L.; Song, W.W.; Zhang, Z.F. Organophosphate flame retardants in college dormitory dust of northern Chinese cities: Occurrence, human exposure and risk assessment. Sci. Total Environ. 2019, 665, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, H.J.; Choi, W.; Moon, H.B. Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Mar. Pollut. Bull. 2018, 130, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Jin, Y.X.; Wu, Y.; Liu, L.; Fu, Z.W. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ. Toxicol. Pharmacol. 2015, 40, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.A.; Lohmann, R. Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt. Chemosphere 2019, 220, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Lorenzo, A.; Butt, C.M.; Adair, L.; Herring, A.H.; Stapleton, H.M.; Daniels, J.L. Predictors of urinary flame retardant concentration among pregnant women. Environ. Int. 2016, 98, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhat, A.; Crump, D.; Chiu, S.; Williams, K.L.; Letcher, R.J.; Gauthier, L.T.; Kennedy, S.W. In ovo effects of two organophosphate flame retardants-tcpp and tdcpp-on pipping success, development, mrna expression, and thyroid hormone levels in chicken embryos. Toxicol. Sci. 2013, 134, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Daniels, J.L.; Stapleton, H.M. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women. Environ. Int. 2014, 63, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Eqani, S.A.M.A.S.; Ismail, I.M.I.; Malarvannan, G.; Kadi, M.W.; Albar, H.M.S.; Rehan, M.; Covaci, A. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure. Sci. Total Environ. 2016, 569–570, 269–277. [Google Scholar] [CrossRef]
- Ni, Y.; Kumagai, K.; Yanagisawa, Y. Measuring emissions of organophosphate flame retardants using a passive flux sampler. Atmos. Environ. 2007, 41, 3235–3240. [Google Scholar] [CrossRef]
- Yu, X.L.; Yin, H.; Peng, H.; Lu, G.N.; Liu, Z.H.; Dang, Z. OPFRs and BFRs induced A549 cell apoptosis by caspase-dependent mitochondrial pathway. Chemosphere 2019, 221, 693–702. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Zhao, H.X.; Xu, L.; Wang, Y. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.). Ecotoxicol. Environ. Saf. 2019, 174, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Chen, Y.J.; Zhang, Y.H.; Li, R.J.; Chen, W.; Yan, S.C.; Qi, Z.H.; Chen, Z.F.; Cai, Z.W. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS. Talanta 2019, 194, 320–328. [Google Scholar] [CrossRef] [PubMed]
- McDonald, T.A. A perspective on the potential health risks of PBDEs. Chemosphere 2002, 46, 745–755. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.W.; Zhu, H.K.; Yao, Y.M.; Chen, H.; Ren, C.; Wu, F.C.; Kannan, K. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China. Sci. Total Environ. 2018, 625, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.L.S.; Kwok, K.Y.; Wang, X.H.; Yamashita, N.; Liu, G.J.; Leung, K.M.Y.; Lam, P.K.S.; Lam, J.C.W. Assessment of organophosphate flame retardants and plasticizers in aquatic environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). J. Hazard. Mater. 2019, 371, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Muir, D.C.G.; Grift, N.P.; Blouw, A.P.; Lockhart, W.L. Environmental dynamics of phosphate esters. I. Uptake and bioaccumulation of triphenyl phosphate by rainbow trout. Chemosphere 1980, 9, 525–532. [Google Scholar] [CrossRef]
- St John, L.E.; Eldefrawi, M.E.; Lisk, D.J. Studies of possible absorption of a flame retardant from treated fabrics worn by rats and humans. Bull. Environ. Contam. Toxicol. 1976, 15, 192–197. [Google Scholar] [CrossRef]
- Lu, S.Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Wit, C.A.D. An Overview of Brominated Flame Retardants in the Environment. Chemosphere 2002, 46, 583–624. [Google Scholar] [CrossRef]
- Birnbaum, L.S.; Staskal, D.F. Brominated flame retardants: Cause for concern? Environ. Health Perspect. 2004, 112, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Alaee, M.; Arias, P.; Sjödin, A.; Bergman, A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2004, 29, 683–689. [Google Scholar] [CrossRef]
- Hoh, E.; Zhu, L.; Hites, R.A. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environ. Sci. Technol. 2006, 40, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Marvin, C.H.; Hites, R.A. Dechlorane plus and other flame retardants in a sediment core from Lake Ontario. Environ. Sci. Technol. 2007, 41, 6014–6019. [Google Scholar] [CrossRef] [PubMed]
- Covaci, A.; Harrad, S.; Abdallah, M.A.; Ali, N.; Law, R.J.; Herzke, D.; Wit, C.A.D. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.D.; Blum, A.; Weber, R.; Kannan, K.; Rich, D.; Lucas, D.; Koshland, C.P.; Dobraca, D.; Hanson, S.; Birnbaum, L.S. Halogenated flame retardants: Do the fire safety benefits justify the risks? Rev. Environ. Health 2010, 25, 261–306. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shen, L.; Su, Y.; Barresi, E.; Dejong, M.; Hung, H.; Lei, Y.D.; Wania, F.; Reiner, E.J.; Sverko, E.; et al. Atmospheric concentrations of halogenated flame retardants at two remote locations: The canadian high arctic and the tibetan plateau. Environ. Pollut. 2012, 161, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Leu, T.; Wang, C. Synergistic effect of a phosphorus–nitrogen flame retardant on engineering plastics. J. Appl. Polym. Sci. 2010, 92, 410–417. [Google Scholar] [CrossRef]
- Yuan, L.; Qi, W. The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. J. Polym. Res. 2009, 16, 583–589. [Google Scholar]
- Law, R.J.; Herzke, D. Current Levels and Trends of Brominated Flame Retardants in the Environment. Handbook Environ. Chem. 2010, 64, 187–208. [Google Scholar]
- Tao, F.; Abdallah, M.A.E.; Ashworth, D.C.; Douglas, P.; Toledano, M.B.; Harrad, S. Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. Environ. Int. 2017, 105, 95–104. [Google Scholar] [CrossRef]
- Ji, L.; Gao, Y.; Tiian, Y. Review on production, application, and environmental pollution of organophosphate flame retardants in China. J. Environ. Occup. Med. 2017, 34, 271–279. (In Chinese) [Google Scholar]
- Behl, M.; Hsieh, J.H.; Shafer, T.J.; Mundy, W.R.; Rice, J.R.; Boyd, W.A.; Freedman, J.H.; Hunter IIIE, S.; Jarema, K.A.; Padilla, S.; et al. Use of alternative assays to identify and prioritize organophosphate flame retardants for potential developmental and neurotoxicity. Neurotoxicol. Teratol. 2015, 52, 181–193. [Google Scholar] [CrossRef]
- Aznar-Alemany, Ò.; Sala, B.; Plön, S.; Bouwman, H.; Barceló, D.; Eljarrat, E. Halogenated and organophosphate flame retardants in cetaceans from the southwestern Indian Ocean. Chemosphere 2019, 226, 791–799. [Google Scholar] [CrossRef]
- Hu, Y.X.; Sun, Y.X.; Li, X.; Xu, W.H.; Zhang, Y.; Luo, X.J.; Dai, S.H.; Xu, X.R.; Mai, B.X. Organophosphate flame retardants in mangrove sediments from the Pearl River estuary, South China. Chemosphere 2017, 181, 433–439. [Google Scholar] [CrossRef]
- Nguyen, T.M.D.; Chang, S.; Condon, B.D.; Uchimiya, M. Synthesis and characterization of a novel phosphorus-nitrogen-containing flame retardant and its application for textile. Polym. Adv. Technol. 2012, 23, 1036–1044. [Google Scholar] [CrossRef]
- Li, R.W.; Wang, H.Q.; Mi, C.; Feng, C.L.; Zhou, B.S. The adverse effect of TCIPP and TCEP on neurodevelopment of zebra fish embryos/larvae. Chemosphere 2019, 220, 811–817. [Google Scholar] [CrossRef]
- Ballesterosgómez, A.; Eede, N.V.D.; Covaci, A. In Vitro Human Metabolism of the Flame Retardant Resorcinol Bis(diphenylphosphate) (RDP). Environ. Sci. Technol. 2015, 49, 3897–3904. [Google Scholar] [CrossRef]
- Xin, F. Preparation and Characterization of Resorcinol Bis(diphenyl phosphate) Oligomer. New Chem. Mater. 2011, 39, 123–125. (In Chinese) [Google Scholar]
- Xing, W.Y.; Song, L.; Jie, G.X.; Lv, X.Q. Synthesis and thermal behavior of a novel UV-curable transparent flame retardant film and phosphorus-nitrogen synergism of flame retardancy. Polym. Adv. Technol. 2011, 22, 2123–2129. [Google Scholar] [CrossRef]
- Chen, M.J.; Shao, Z.B.; Wang, X.L.; Chen, L.; Wang, Y.Z. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant. Ind. Eng. Chem. Res. 2012, 51, 9769–9776. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, P.H.; Zhang, M.; Liu, Y.Q.; Li, T.K.; Liao, D.X. Synthesis and Flame Retardant Properties of a Novel Monomolecular P-N Intumescent Flame Retardant. Chin. J. Synth. Chem. 2013, 21, 530–533. [Google Scholar]
- Zhang, Z.Y.; Sun, F.Y.; Liu, Y.Q. Synthesis of a Novel P-N Intumescent Flame Retardant and Its Application in Rigid Polyurethane Foam. Chin. J. Synth. Chem. 2014, 22, 20–23. (In Chinese) [Google Scholar]
- Zhong, L.; Liu, Z.G.; Ou, Y.X. Synthesis and Identification of Novel Halogen-contained Phosphate Ester and Its Application in PU Foam. Plastics 2008, 37, 27–30. (In Chinese) [Google Scholar]
- Qian, Y.; Xu, Y.M.; Zhang, R. Synthesis of a New Type Benzimidazole Flame Retardant with P-N-Cl Synergistic Effect and Its Application in Thermosetting Resin. China Plast. Ind. 2014, 42, 117–121. (In Chinese) [Google Scholar]
- Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index); ASTM D2863-10; ASTM: West Conshohocken, PA, USA, 2000.
- Nguyen, C.; Kim, J. Synthesis of a novel nitrogen-phosphorus flame retardant based on phosphoramidate and its application to PC, PBT, EVA, and ABS. Macromol. Res. 2008, 16, 620–625. [Google Scholar] [CrossRef]
- Jiang, D.W.; Sun, C.Y.; Zhou, Y.N.; Wang, H.; Yan, X.R.; He, Q.L.; Guo, J.; Guo, Z.H. Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers Polym. 2015, 16, 388–396. [Google Scholar] [CrossRef]
- Rajasekaran, R.; Karikalchozhan, C.; Alagar, M. Preparation and characterization of 3,3′-bis (maleimidophenyl)phenylphosphine oxide (BMI)/polysulfone modified epoxy resin intercrosslinked matrices. Polym. Compos. 2010, 29, 773–781. [Google Scholar] [CrossRef]
- Huang, S.; Hou, X.; Li, J.J.; Tian, X.J.; Yu, Q.; Wang, Z.W. A novel curing agent based on diphenylphosphine oxide for flame-retardant epoxy resin. High Perform. Polym. 2017, 30. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Y.; Mao, Z.P. Flame retardancy and thermal stability properties of poly (ethylene terephthalate)/hexakis (4-nitrophenoxy) cyclotriphosphazene systems. Polym. Degrad. Stab. 2012, 97, 1504–1510. [Google Scholar] [CrossRef]
- Min, Y.; Li, P.; Yin, X.G.; Ban, D.M. Synthesis and characterization of an novel flame retardant based on phosphaphenanthrene for epoxy resin. Polym. Bull. 2017, 74, 1–10. [Google Scholar] [CrossRef]
- Li, Y.L.; Kuan, C.F.; Hsu, S.W.; Chen, C.H.; Kuan, H.C.; Lee, F.M.; Yip, M.C.; Chiang, C.L. Preparation, thermal stability and flame-retardant properties of halogen-free polypropylene composites. High Perform. Polym. 2012, 24, 478–487. [Google Scholar] [CrossRef]
- Hooshangi, Z.; Feghhi, S.A.H.; Sheikh, N. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate. Radiat. Phys. Chem. 2015, 108, 54–59. [Google Scholar] [CrossRef]
- Andresen, J.A.; Grundmann, A.; Bester, K. Organophosphate flame retardants and plasticisers in surface waters. Sci. Total Environ. 2004, 332, 155–166. [Google Scholar] [CrossRef]
- Alongi, J.; Tata, J.; Carosio, F.; Rosace, G.; Frache, A.; Camino, G. A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics. Polymers 2015, 7, 47–68. [Google Scholar] [CrossRef]
- Chen, X.L.; Jiao, C.M. Study on flame retardance of co-microencapsulated ammonium polyphosphate and pentaerythritol in polypropylene. J. Fire Sci. 2010, 28, 509–521. [Google Scholar] [CrossRef]
- Wu, K.; Hu, Y.; Song, L.; Lu, H.; Wang, Z. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind. Eng. Chem. Res. 2009, 48, 3150–3157. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 2006, 24, 345–364. [Google Scholar] [CrossRef]
- Hakk, H.; Letcher, R.J. Metabolism in the toxicokinetics and fate of brominated flame retardants-a review. Environ. Int. 2003, 29, 801–828. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, L.; Sun, H.W.; Yao, T.Q.; Zhu, H.K.; Xu, J.Y.; Liu, X.W. Impacts of loach bioturbation on the selective bioaccumulation of HBCDD diastereoisomers and enantiomers by mirror carp in a microcosm. Chemosphere 2016, 163, 471–479. [Google Scholar] [CrossRef]
- Sala, B.; Giménez, J.; Stephanis, R.D.; Barceló, D.; Eljarrat, E. First determination of high levels of organophosphate flame retardants and plasticizers in dolphins from Southern European waters. Environ. Res. 2019, 172, 289–295. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Zhang, Y.W.; Tan, F.; Li, Q.L.; Zhao, H.X.; Xie, Q.; Chen, J.W. Polyurethane heat preservation materials: The significant sources of organophosphate flame retardants. Chemosphere 2019, 227, 409–415. [Google Scholar] [CrossRef]
- Wang, X.Q.; Meng, X.J.; Li, F.; Ding, J.W.; Ji, C.L.; Wu, H.F. The critical factors affecting typical organophosphate flame retardants to mimetic biomembrane: An integrated in vitro and in silico study. Chemosphere 2019, 226, 159–165. [Google Scholar] [CrossRef]
- Someya, M.; Suzuki, G.; Ionas, A.C.; Tue, N.M.; Xu, F.; Matsukami, H.; Covaci, A.; Tuyen, L.H.; Viet, P.H.; Takahashi, S.; et al. Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam. Emerg. Contam. 2016, 2, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Papachlimitzou, A.; Barber, J.L.; Losada, S.; Papachlimitzou, A.; Barber, J.L.; Losada, S.; Bersuder, P.; Law, R.J. A review of the analysis of novel brominated flame retardants. J. Chromatogr. A 2012, 1219, 15–28. [Google Scholar] [CrossRef]
- Wit, C.A.D.; Herzke, D.; Vorkamp, K. Brominated flame retardants in the Arctic environment-trends and new candidates. Sci. Total Environ. 2010, 408, 2885–2918. [Google Scholar] [CrossRef]
- Martínezcarballo, E.; Gonzálezbarreiro, C.; Sitka, A.; Scharf, S.; Gans, O. Determination of selected organophosphate esters in the aquatic environment of Austria. Sci. Total Environ. 2007, 388, 290–299. [Google Scholar] [CrossRef]
- Cristale, J.; Katsoyiannis, A.; Chen, C.E.; Jones, K.C.; Lacorte, S. Assessment of flame retardants in river water using a ceramic dosimeter passive sampler. Environ. Pollut. 2013, 172, 163–169. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Møskeland, T.; Andersson, P.L.; Nyholm, J.R. Presence and partitioning properties of the flame retardants pentabromotoluene, pentabromoethylbenzene and hexabromobenzene near suspected source zones in Norway. J. Environ. Monit. 2011, 13, 505–513. [Google Scholar] [CrossRef]
- Nyholm, J.R.; Grabic, R.; Arp, H.P.H.; Moskeland, T.; Andersson, P.L. Environmental occurrence of emerging and legacy brominated flame retardants near suspected sources in Norway. Sci. Total Environ. 2013, 443, 307–314. [Google Scholar] [CrossRef]
- Cristale, J.; Quintana, J.; Chaler, R.; Ventura, F.; Lacorte, S. Gas chromatography/mass spectrometry comprehensive analysis of Organophosphate, brominated flame retardants, by-products and formulation intermediates in water. J. Chromatogr. A 2012, 1241, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, I.; Calvo, F.; Quintana, J.B.; Rubí, E.; Rodil, R.; Cela, R. Suitability of solid-phase microextraction for the determination of organophosphate flame retardants and plasticizers in water samples. J. Chromatogr. A 2006, 1108, 158–165. [Google Scholar] [CrossRef]
- Dirtu, A.C.; Van, D.E.N.; Malarvannan, G.; Ionas, A.C.; Covaci, A. Analytical methods for selected emerging contaminants in human matrices-a review. Anal. Bioanal. Chem. 2012, 404, 2555–2581. [Google Scholar] [CrossRef] [PubMed]
- Santín, G.; Eljarrat, E.; Barceló, D. Simultaneous determination of 16 organophosphate flame retardants and plasticizers in fish by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1441, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Kosarac, I.; Kubwabo, C.; Foster, W.G. Quantitative determination of nine urinary metabolites of organophosphate flame retardants using solid phase extraction and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). J. Chromatogr. B 2016, 1014, 24–30. [Google Scholar] [CrossRef]
- Reemtsma, T.; Lingott, J.; Roegler, S. Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC-MS/MS in human urinary sample. Sci. Total Environ. 2011, 409, 1990–1993. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Garantziotis, S.; Birnbaum, L.S.; Stapleton, H.M. Monitoring Indoor Exposure to organophosphate Flame Retardants: Hand Wipes and House Dust. Environ. Health Perspect. 2015, 123, 160–165. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, K.; Zeng, F.; Wen, J.; Liu, H.; Zhu, F.; Ouyang, G.; Luan, T.; Zeng, Z. Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography–Mass spectrometry for the determination of organophosphate flame retardants and plasticizers in biological samples. Anal. Chim. Acta 2013, 786, 47–53. [Google Scholar] [CrossRef]
- Petropoulou, S.E.; Petreas, M.; Park, J.S. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine. J. Chromatogr. A 2016, 1434, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Letcher, R.J.; Chu, S. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography e tandem quadrupole mass spectrometry. J. Chromatogr. A 2012, 1220, 169–174. [Google Scholar] [CrossRef]
- Garcíalópez, M.; Rodríguez, I.; Cela, R. Mixed-mode solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the determination of tri- and di-substituted organophosphate species in water samples. J. Chromatogr. A 2010, 1217, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Ramaswamy, B.R.; Chang, K.H.; Isobe, T.; Tanabe, S. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 3511–3520. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.J.; Liu, J.; Luo, Y.; Zhang, X.L.; Wu, J.P.; Lin, Z.; Chen, S.J.; Mai, B.X.; Yang, Z.Y. Polybrominated diphenyl ethers (PBDEs) in free-range domestic fowl from an e-waste recycling site in South China: Levels, profile and human dietary exposure. Environ. Int. 2009, 35, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zou, W.; Mu, L.; Chen, Y.; Ren, C.; Hu, X.; Zhou, Q. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. J. Hazard. Mater. 2016, 318, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Giulivo, M.; Capri, E.; Kalogianni, E.; Milacic, R.; Majone, B.; Ferrari, F.; Eljarrat, E.; Barceló, D. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Sci. Total Environ. 2017, 586, 782–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.; Li, J.; Zhang, B.; Cui, Q.L.; Wei, S.; Yu, H.X. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China. Mar. Pollut. Bull. 2014, 86, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.P.; Li, Y.; Yang, C.M.; Yao, C. Assessment of organophosphate flame retardants in surface water and sediment from a freshwater environment (Yangtze River, China). Environ. Monit. Assess. 2018, 190, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, J.; Wiberg, K.; Ribeli, E.; Nguyen, M.A.; Josefsson, S.; Ahrens, L. Screening of organic flame retardants in Swedish river water. Sci. Total Environ. 2018, 625, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.D.; Guo, J.H.; Wang, Y.W.; Li, Z.N.; Liang, K.; Corcoran, M.B.; Hosseini, S.; Bonina, S.M.; Rockne, K.J.; Sturchio, N.C.; et al. Organophosphate esters in sediment of the great lakes. Environ. Sci. Technol. 2017, 51, 1441–1449. [Google Scholar] [CrossRef]
- Reemtsma, T.; Weiss, S.; Mueller, J.; Petrović, M.; González, S.; Barceló, D.; Ventura, F.; Knepper, T.P. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective. Environ. Sci. Technol. 2006, 40, 5451–5458. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Li, J.; Zhang, G. Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment. Chemosphere 2017, 190, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Venier, M.; Dove, A.; Romanak, K.; Backus, S.; Hites, R. Flame retardants and legacy chemicals in Great Lakes’ water. Environ. Sci. Technol. 2014, 48, 9563–9572. [Google Scholar] [CrossRef] [PubMed]
- Wolschke, H.; Sühring, R.; Xie, Z.; Ebinghaus, R. Organophosphate flame retardants and plasticizers in the aquatic environment: A case study of the Elbe River, Germany. Environ. Pollut. 2015, 206, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tang, J.; Xie, Z.; Mi, W.; Chen, Y.; Wolschke, H.; Tian, C.; Pan, X.; Luo, Y.; Ebinghaus, R. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ. Pollut. 2015, 198, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.X.; Luo, X.J.; Zheng, X.B.; Li, Z.R.; Sun, R.X.; Mai, B.X. Distribution of organophosphate flame retardants in sediments from the Pearl River Delta in South China. Sci. Total Environ. 2016, 544, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Salamova, A.; Ma, Y.; Venier, M.; Hites, R.A. High levels of organophosphate flame retardants in the Great Lakes atmosphere. Environ. Sci. Technol. Lett. 2014, 1, 8–14. [Google Scholar] [CrossRef]
- Shoeib, M.; Ahrens, L.; Jantunen, L.; Harner, T. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada. Atmos. Environ. 2014, 99, 140–147. [Google Scholar] [CrossRef]
- Tokumura, M.; Hatayama, R.; Tatsu, K.; Naito, T.; Takeda, T.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Masunaga, S. Organophosphate flame retardants in the indoor air and dust in cars in Japan. Environ. Monit. Assess. 2017, 189, 48–59. [Google Scholar] [CrossRef]
- Zhou, L.; Hiltscher, M.; Gruber, D.; Püttmann, W. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments. Environ. Sci. Pollut. Res. 2017, 24, 10992–11005. [Google Scholar] [CrossRef]
- Cristale, J.; Gomes, A.B.T.; Lacorte, S.; Rosa, R.D.M.M. Occurrence and human exposure to brominated and organophosphate flame retardants via indoor dust in a Brazilian city. Environ. Pollut. 2017, 237, 695–703. [Google Scholar] [CrossRef]
- Oliveri, A.N.; Bailey, J.M.; Levin, E.D. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebra fish. Neurotoxicol. Teratol. 2015, 52, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Nele, V.D.E.; Heffernan, A.L.; Aylward, L.L.; Hobson, P.; Neels, H.; Mueller, J.F.; Covaci, A. Age as a determinant of phosphate flame retardant exposure of the Australian population and identification of novel urinary PFR metabolites. Environ. Int. 2015, 74, 1–8. [Google Scholar]
- Breton, C.V.; Marsit, C.J.; Faustman, E.; Nadeau, K.; Goodrich, J.M.; Dolinoy, D.C.; Herbstman, J.; Holland, N.; LaSalle, J.M.; Schmidt, R.; et al. Small-magnitude effect sizes in epigenetic end points are important in Children’s environmental health studies: The Children’s environmental health and disease prevention research Center’s epigenetics working group. Environ. Health. Perspect. 2017, 125, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Lotti, M.; Moretto, A. Organophosphate-induced delayed polyneuropathy. Toxicol. Rev. 2005, 24, 37–49. [Google Scholar]
- Abou-Donia, M.B. Organophosphate ester-induced chronic neurotoxicity. Arch. Environ. Health. 2003, 58, 484–497. [Google Scholar] [CrossRef]
- Terry, A.V. Functional consequences of repeated organophosphate exposure: Potential non-cholinergic mechanisms. Pharmacol. Ther. 2012, 134, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.P.; Su, F.; Hong, P.P.; Zhang, Q.; Zhao, M.R. 1H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line. Sci. Total Environ. 2019, 665, 162–170. [Google Scholar] [CrossRef]
- Gu, Y.X.; Yang, Y.; Wan, B.; Li, M.J.; Guo, L.H. Inhibition of O-linked N-acetylglucosamine transferase activity in PC12 cells-A molecular mechanism of organophosphate flame retardants developmental neurotoxicity. Biochem. Pharmacol. 2018, 152, 21–33. [Google Scholar] [CrossRef]
- Greaves, A.K.; Letcher, R.J.; Chen, D.; McGoldrick, D.J.; Gauthier, L.T.; Backus, S.M. Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. Environ. Res. 2016, 150, 255–263. [Google Scholar] [CrossRef]
- Su, G.; Greaves, A.K.; Gauthier, L.T.; Letcher, R.J. Liquid chromatography electrospray-tandem mass spectrometry based method organophosphate diesters in biological matrices including the plasma of herring gulls from the North American Great Lakes. J. Chromatogr. 2014, 1374, 85–92. [Google Scholar] [CrossRef]
- Brandsma, S.H.; Leonards, P.E.G.; Leslie, H.A.; De Boer, J. Tracing organophosphate and brominated flame retardants and plasticizers in an estuarine food web. Sci. Total Environ. 2015, 505, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Choo, G.; Cho, H.S.; Park, K.; Lee, J.W.; Kim, P.; Oh, J.E. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp. Environ. Pollut. 2018, 239, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Malarvannan, G.; Belpaire, C.; Geeraerts, C.; Eulaers, I.; Neels, H.; Covaci, A. Organophosphate flame retardants in the European eel in Flanders, Belgium: Occurrence, fate and human health risk. Environ. Res. 2015, 140, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Kojadinovic, J.; Potier, M.; Le Corre, M.; Cosson, R.P.; Bustamante, P. Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ. Pollut. 2007, 146, 548–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.J.; Jo, H.; Lee, I.S.; Joo, G.J.; Oh, J.E. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. Chemosphere 2015, 137, 108–114. [Google Scholar] [CrossRef]
- Hou, R.; Liu, C.; Gao, X.; Xu, Y.; Zha, J.; Wang, Z. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China. Environ. Pollut. 2017, 229, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Takeuchi, S.; Itoh, T.; Iida, M.; Kobayashi, S.; Yoshida, T. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Toxicology 2013, 314, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, M.; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-pdioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. 2009, 35, 245–274. [Google Scholar] [CrossRef]
- Quicker, P.; Neuerburg, F.; Noel, Y.; Huras, A. Status of Alternative Techniques for Thermal Waste Treatment: Expert Report for the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety Project; No. Z 6-30 345/18 Report No. 29217; Umweltbundesamt: Dessau-Roßlau, Germany, 2015. [Google Scholar]
- Peng, Y.; Chen, J.; Lu, S.; Huang, J.; Zhang, M.; Buekens, A.; Li, X.; Yan, J. Chlorophenols in Municipal Solid Waste Incineration: A review. Chem. Eng. J. 2016, 292, 398–414. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Manag. 2015, 36, 106–118. [Google Scholar] [CrossRef]
- Zhang, M.; Buekens, A.; Li, X. Brominated flame retardants and the formation of dioxins and furans in fires and combustion. J. Hazard. Mater. 2016, 304, 26–39. [Google Scholar] [CrossRef]
- Lucas, D.; Petty, S.M.; Keen, O.; Luedeka, B.; Schlummer, M.; Weber, R.; Barlaz, M.; Yazdani, R.; Riise, B.; Rhodes, J.; et al. Methods of Responsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants. Environ. Eng. Sci. 2018, 35, 573–602. [Google Scholar] [CrossRef]
- Deng, M.; Kuo, D.T.F.; Wu, Q.; Liu, X.; Liu, S.; Hu, X.; Mai, B.; Liu, Z.; Zhang, H. Organophosphate flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China. Environ. Pollut. 2018, 236, 137–145. [Google Scholar] [CrossRef]
- Krzeminski, P.; Schwermer, C.; Wennberg, A.; Langford, K.; Vogelsang, C. Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. J. Hazard. Mater. 2016, 323, 166–176. [Google Scholar] [CrossRef]
- Wang, W.; Deng, S.; Li, D.; Ren, L.; Shan, D.; Wang, B.; Huang, J.; Wang, Y.J.; Yu, G. Sorption behavior and mechanism of organophosphate flame retardants on activated carbons. Chem. Eng. J. 2018, 332, 286–292. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Yin, C.S.; Liu, H.Y.; Yi, Z.S.; Wang, Y. 3D-QSAR study on atmospheric half-lives of POPs using CoMFA and CoMSIA. J. Environ. Sci. 2008, 20, 1433–1438. [Google Scholar]
- Wang, X.; Chu, Z.; Yang, J.; Li, Y. Pentachlorophenol molecule design with lower bioconcentration through 3D-QSAR associated with molecule docking. Environ. Sci. Pollut. Res. 2017, 24, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Gu, W.W.; Li, Y. Molecular design of 1,3,5,7-TetraCN derivatives with reduced bioconcentration using 3D-QSAR modeling, full factorial design, and molecular docking. J. Mol. Graph. Model. 2018, 84, 197–214. [Google Scholar] [CrossRef]
- Chu, Z.H.; Li, Y. Designing modified polybrominated diphenyl ether BDE-47, BDE-99, BDE-100, BDE-183, and BDE-209 molecules with decreased estrogenic activities using 3D-QSAR, pharmacophore models coupled with resolution V of the 2 10-3 fractional factorial design and molecular docking. J. Hazard. Mater. 2018, 364, 151–162. [Google Scholar]
Type | Compounds |
---|---|
POPs | Decabromodiphenyl ether (commercial mixture, c-decaBDE) |
Hexabromocyclododecane | |
Hexabromobiphenyl | |
Hexabromodiphenyl ether | |
Heptabromodiphenyl ether | |
Commercial octabromodiphenyl ether | |
Short-chain chlorinated paraffins | |
Tetrabromodiphenyl ether | |
Pentabromodiphenyl ether | |
REACH | Short-chain chlorinated paraffins |
Tris(2-chloroethyl) phosphate | |
Boric acid | |
Sodium tetraborate | |
Hexabromocyclododecane | |
Tris-(2-carboxyethyl)-phosphine hydrochloride | |
Decabromodiphenyl ether | |
Boron oxide |
Name | Category | Molecule Structure | Solubility (mg/L) at 25 °C | VP (mmHG) at 25 °C | logKow | BCFs | Ref. |
---|---|---|---|---|---|---|---|
Tricresyl phosphate | OPFRs | 0.36 | 1.80 × 10−7 | 5.48 | 8.56 × 103 | [2,4,16] | |
Tributyl phosphate | 280 | 1.13 × 10−3 | 4.00 | 39.81 | |||
Tri-iso-butyl phosphate | 475.57 | 0.0129 | 3.60 | 19.51 | |||
Triethyl phosphate | 1115 | 0.393 | 0.87 | 3.162 | |||
Tris(2-ethylhexyl) phosphate | 0.6 | 8.25 × 10−8 | 9.49 | 1 × 106 | |||
Triphenyl phosphate | 1.9 | 1.12 × 10−5 | 4.70 | 113.3 | |||
Tris(2-chloroethyl) phosphate | 7000 | 0.0613 | 1.63 | 0.4254 | |||
Tris(chloroisopropyl) phosphate | 51.85 | 5.64 × 10−5 | 2.89 | 3.268 | |||
Tris(2-butoxyethyl) phosphate | 1100 | 1.23 × 10−6 | 3.00 | 25.56 | |||
Trixylenyl phosphate | 0.89 | 8.76 × 10−8 | 7.98 | 480.1 | |||
2-ethylhexyldiphenyl phosphate | 1.9 | 5 × 10−5 | 6.30 | 855.3 | |||
Resorcinol bis(diphenyl phosphate) (RDP) | 1.11 × 10−4 | 2.1 × 10−8 | 5.82 | 2.05 × 104 | |||
Decabromodiphenylethane | BFRs | 2.1 × 10−7 g/Lb | 333–349 | 11.1 | [70,110] | ||
1,2-Bis(2,4,6-tribromophenoxy)ethane | 0.72 μg/L | 350 | 3.55 | ||||
2-Ethylhexyl-2,3,4,5-tetrabromobenzoate | 3.70 × 10−5 mg/L | 8.26 | |||||
pentabromodiphenyl ether (PentaBDE) | PBDEs | 13.3 | 2.2 × 10−7 to 5.5 × 10−7 | 6.64 to 6.97 | [63,81] | ||
octabromodiphenyl ethers (OctaBDE) | Less than 1 | 9.0 × 10−10 to 1.7 × 10−9 | 6.29 | ||||
decabromodiphenyl ether (DecaBDE) | Less than 1 | 3.2 × 10−8 | 6.265 | ||||
Hexabromocyclododecane (HBCDD) | NFRs | [111] | |||||
Tetrabromobisphenol A (TBBPA) | Insoluble (<1 mg/mL) (NTP, 1992) | 1.37 × 10−8 | 5.90 | [70] |
Country | Sample Year | TBP | TCEP | TCPP | TDCPP | TBEP | TPhP | TEHP | ΣOPFR | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Great Lakes | 2011–2012 | 1.03 | 0.72 | 5.87 | 1.99 | 27.6 | 0.49 | [143] | ||
Elbe River, Germany | 2013 | 41.0 (5.2–108) | 75.9(33.8–104) | 104(89.9–128) | 76.7(51.8–111) | [144] | ||||
Nalón, Arga and Besòs River, Spain | 2012 | 92.1(<LOQc–370) | 85.3(<LOQ–330) | 571(<LOQ–1800) | 103(<LOQ–200) | 1445(<LOQ–4600) | 11.6(<LOQ–35.0) | 2.01(<LOQ–4.00) | 1072(<LOQ–7200) | [32] |
German Bight (North Sea), Germany | 33.7(<LOQc–84) | 22.9(3.29–69.9) | 146(24.3–570) | 22.5(5.30–67.0) | 50.7(<LOQ–103) | 5.90(<LOQ–10.3) | 402(58.3–1092) | [27] | ||
North China | 2013 | 13.4(<LOQc–218) | 80.2(1.30–268) | 186(4.60–921) | 4.30(<LOQ–44.0) | 4.20(<LOQ–47.0) | 1.00(<LOQ–15.7) | 0.39(<LOQ–3.30) | 398(9.55–1550) | [145] |
Qingdao, Lianyungang and Xiamen, China | 134(21.0–618) | 84.1(15.8–170) | 109(24.0–378) | 425(91.9–1392) | [137] | |||||
Lake Shihwa, Korea | 2015 | 24.8(<LOQc–72.9) | 255(3.26–5963) | 211(<LOQ–5100) | 15.6(<LOQ–325) | 164(2.88–838) | 8.29(<LOQ–96.2) | 3.27(<LOQ–59.4) | 877(28.3–16,000) | [52] |
Sediment (ng/g dry weight) Great Lakes | 2010–2013 | 0.58(<LOQc–1.96) | 1.40(<LOQ–1.90) | 0.46(<LOQ–3.37) | 0.70(<LOQ–1.99) | 3.54(<LOQ–23.7) | 1.17(<LOQ–9.03) | 0.41(<LOQ–8.38) | 9.01(0.44–48.0) | [140] |
Nalón, Arga and Besòs River, Spain | 2012 | 6.82(<LOQc–13) | 6.02(<LOQ–9.70) | 116(<LOQ–365) | 7.96(<LOQ–12.0) | 7.41(<LOQ–23.0) | 35.1(<LOQ–290) | 156(3.80–824) | [32] | |
Evrotas River Basin, Greece | 2014–2015 | 2.39(<LOQc–5.54) | 1.76(<LOQ–2.27) | 4.59(<LOQ–7.62) | 1.63(<LOQ–2.96) | 1.47(<LOQ–3.35) | 0.36(<LOQ–0.67) | 1.84(<LOQ–4.73) | 10.4(0.31–31.0) | [136] |
Adige River Basin, Italy | 2014–2015 | 5.52(<LOQc–42.6) | 2.52(0.33–19.0) | 14.9(0.53–53.7) | 2.31(<LOQ–6.86) | 2.36(<LOQ–9.98) | 1.49(<LOQ–9.69) | 8.97(<LOQ–35.1) | 82.6(11.5–549) | [136] |
Sava River Basin, Serbia | 2014–2015 | 7.65(<LOQc–14.2) | 0.79(<LOQ–2.32) | 6.60(<LOQ–14.7) | 0.36(<LOQ–0.39) | 3.16(<LOQ–11.0) | <LOQ | 3.53(0.33–7.73) | 50.1(10.5–248) | [136] |
Taihu Lake, China | 1.04(<LOQc–2.65) | 1.75(0.62–3.17) | 1.36(<LOQ–2.27) | 1.16(<LOQ–5.54) | 2.00(1.03–5.00) | 0.49(<LOQ–1.19) | 7.88(3.38–14.3) | [16] | ||
Pearl River Delta, China | 2015 | 3.53(1.29–12.8) | 7.36(1.00–26.5) | 18.3(2.27–186) | 1.31(<LOQ–6.05) | 4.08(<LOQ–19.7) | 14.3(0.42–317) | 3.74(0.15–26.7) | [137] | |
Pearl River Delta, China | 2010 | 7.11(<LOQc–37) | 13.1(<LOQ–58.0) | 15.7(0.91–185) | 1.59(<LOQ–10.0) | 10.4(<LOQ–46.0) | 26.9(<LOQ–253) | 13.1(0.86–56.0) | 78.3(8.31–470) | [146] |
Lake Shihwa, Korea | 2015 | 2.14(<LOQc–33.3) | 18.4(<LOQ–290) | 194(<LOQ–2500) | 43.6(<LOQ–405) | 64.4(<LOQ–2755) | 18.7(<LOQ–257) | 3.49(<LOQ–99.7) | 381(3.00–3800) | [52] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhao, Y.; Li, M.; Du, M.; Li, X.; Li, Y. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). Int. J. Mol. Sci. 2019, 20, 2874. https://doi.org/10.3390/ijms20122874
Yang J, Zhao Y, Li M, Du M, Li X, Li Y. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). International Journal of Molecular Sciences. 2019; 20(12):2874. https://doi.org/10.3390/ijms20122874
Chicago/Turabian StyleYang, Jiawen, Yuanyuan Zhao, Minghao Li, Meijin Du, Xixi Li, and Yu Li. 2019. "A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs)" International Journal of Molecular Sciences 20, no. 12: 2874. https://doi.org/10.3390/ijms20122874
APA StyleYang, J., Zhao, Y., Li, M., Du, M., Li, X., & Li, Y. (2019). A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). International Journal of Molecular Sciences, 20(12), 2874. https://doi.org/10.3390/ijms20122874