Early Immunological Effects of Ischemia-Reperfusion Injury: No Modulation by Ischemic Preconditioning in a Randomised Crossover Trial in Healthy Humans
Abstract
:1. Introduction
2. Results
2.1. Adverse Events
2.2. Immune Cell Subset Population
2.3. Phosphorylated AKT (pAKT), Stat3 (pStat3), ERK1/2 (pERK1/2) in CD4+, CD8+ T Cells and Classical Monocytes
2.4. Cytokine Levels
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Randomisation and Blinding
4.3. IPC-Procedure and Time Plan
4.4. Flow Cytometry
4.4.1. Fluorochromes
4.4.2. Preparation Before Study Initiation
4.4.3. Phosphospecific Flow Cytometry
4.4.4. Flow Cytometry of FoxP3+ Cells (Tregs)
4.4.5. Flow Cytometry of Dendritic Cells, CD14+ Count and CD3+ CD4+ Cells
4.5. Cytokines
4.6. Statistics
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IPC | Ischemic preconditioning |
IRI | Ischemia-reperfusion injury |
mDC | Myeloid dendritic cell |
MOA | Mechanism of action |
pDC | Plasmacytoid dendritic cell |
PBMCs | Peripheral blood mononuclear cells |
PMA | phorbol myristate acetate |
pAKT | Phosphorylated protein kinase B |
pERK1/2 | Phosphorylated extracellular signal-regulated kinases 1 and 2 |
pStat3 | Phosphorylated signal transducer and activator of transcription 3 |
Tfh | T follicular helper cell |
Th1 | T helper cell type 1 |
Th17 | T helper cell type 17 |
References
- Linfert, D.; Chowdhry, T.; Rabb, H. Lymphocytes and ischemia-reperfusion injury. Transplant. Rev. 2009, 23, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burne, M.J.; Daniels, F.; El Ghandour, A.; Mauiyyedi, S.; Colvin, R.B.; O’Donnell, M.P.; Rabb, H. Identification of the cd4(+) t cell as a major pathogenic factor in ischemic acute renal failure. J. Clin. Investig. 2001, 108, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, G.R.; Sharma, R.; Huang, L.; Li, L.; Vergis, A.L.; Ye, H.; Ju, S.T.; Okusa, M.D. Regulatory t cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 2009, 20, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Lu, L.; Zhai, Y. T cells in organ ischemia reperfusion injury. Curr. Opin. Organ Transplant. 2014, 19, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slegtenhorst, B.R.; Dor, F.J.; Rodriguez, H.; Voskuil, F.J.; Tullius, S.G. Ischemia/reperfusion injury and its consequences on immunity and inflammation. Curr. Transplant. Rep. 2014, 1, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from il-1 to il-38), interferons, transforming growth factor beta, and tnf-alpha: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef] [PubMed]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.P.; Niiro, M.; Gwinn, R. Prior ischemic stress protects against experimental stroke. Neurosci. Lett. 1993, 163, 135–137. [Google Scholar] [CrossRef]
- Roth, S.; Li, B.; Rosenbaum, P.S.; Gupta, H.; Goldstein, I.M.; Maxwell, K.M.; Gidday, J.M. Preconditioning provides complete protection against retinal ischemic injury in rats. Investig. Ophthalmol. Vis. Sci. 1998, 39, 777–785. [Google Scholar]
- Clavien, P.A.; Yadav, S.; Sindram, D.; Bentley, R.C. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann. Surg. 2000, 232, 155–162. [Google Scholar] [CrossRef]
- Addison, P.D.; Neligan, P.C.; Ashrafpour, H.; Khan, A.; Zhong, A.; Moses, M.; Forrest, C.R.; Pang, C.Y. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1435–H1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soendergaard, P.; Krogstrup, N.V.; Secher, N.G.; Ravlo, K.; Keller, A.K.; Toennesen, E.; Bibby, B.M.; Moldrup, U.; Ostraat, E.O.; Pedersen, M.; et al. Improved gfr and renal plasma perfusion following remote ischaemic conditioning in a porcine kidney transplantation model. Transpl. Int. 2012, 25, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Candilio, L.; Malik, A.; Hausenloy, D.J. Protection of organs other than the heart by remote ischemic conditioning. J. Cardiovasc. Med. 2013, 14, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Erling Junior, N.; Montero, E.F.; Sannomiya, P.; Poli-de-Figueiredo, L.F. Local and remote ischemic preconditioning protect against intestinal ischemic/reperfusion injury after supraceliac aortic clamping. Clinics 2013, 68, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Heusch, G.; Botker, H.E.; Przyklenk, K.; Redington, A.; Yellon, D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 2015, 65, 177–195. [Google Scholar] [CrossRef]
- Przyklenk, K.; Bauer, B.; Ovize, M.; Kloner, R.A.; Whittaker, P. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993, 87, 893–899. [Google Scholar] [CrossRef]
- Kharbanda, R.K.; Mortensen, U.M.; White, P.A.; Kristiansen, S.B.; Schmidt, M.R.; Hoschtitzky, J.A.; Vogel, M.; Sorensen, K.; Redington, A.N.; MacAllister, R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002, 106, 2881–2883. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Candilio, L.; Evans, R.; Ariti, C.; Jenkins, D.P.; Kolvekar, S.; Knight, R.; Kunst, G.; Laing, C.; Nicholas, J.; et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 2015, 373, 1408–1417. [Google Scholar] [CrossRef]
- Krogstrup, N.V.; Oltean, M.; Nieuwenhuijs-Moeke, G.J.; Dor, F.J.; Moldrup, U.; Krag, S.P.; Bibby, B.M.; Birn, H.; Jespersen, B. Remote ischemic conditioning on recipients of deceased renal transplants does not improve early graft function: A multicenter randomized, controlled clinical trial. Am. J. Transplant. 2017, 17, 1042–1049. [Google Scholar] [CrossRef]
- Li, B.; Lang, X.; Cao, L.; Wang, Y.; Lu, Y.; Feng, S.; Yang, Y.; Chen, J.; Jiang, H. Effect of remote ischemic preconditioning on postoperative acute kidney injury among patients undergoing cardiac and vascular interventions: A meta-analysis. J. Nephrol. 2017, 30, 19–33. [Google Scholar] [CrossRef]
- Kharbanda, R.K.; Peters, M.; Walton, B.; Kattenhorn, M.; Mullen, M.; Klein, N.; Vallance, P.; Deanfield, J.; MacAllister, R. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation 2001, 103, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Sloth, A.D.; Schmidt, M.R.; Munk, K.; Kharbanda, R.K.; Redington, A.N.; Schmidt, M.; Pedersen, L.; Sorensen, H.T.; Botker, H.E. Improved long-term clinical outcomes in patients with st-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur. Heart J. 2014, 35, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Sloth, A.D.; Schmidt, M.R.; Munk, K.; Schmidt, M.; Pedersen, L.; Sorensen, H.T.; Botker, H.E. Impact of cardiovascular risk factors and medication use on the efficacy of remote ischaemic conditioning: Post hoc subgroup analysis of a randomised controlled trial. BMJ Open 2015, 5, e006923. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Hopkins, N.; Bailey, T.G.; Green, D.J.; Cable, N.T.; Thijssen, D.H. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am. J. Hypertens. 2014, 27, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory t cells and immune tolerance. Cell 2008, 133, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. Foxp3+ regulatory t cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Kleinewietfeld, M.; Hafler, D.A. The plasticity of human treg and th17 cells and its role in autoimmunity. Semin. Immunol. 2013, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Pesenacker, A.M.; Broady, R.; Levings, M.K. Control of tissue-localized immune responses by human regulatory t cells. Eur. J. Immunol. 2015, 45, 333–343. [Google Scholar] [CrossRef]
- Bacchetta, R.; Barzaghi, F.; Roncarolo, M.G. From ipex syndrome to foxp3 mutation: A lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 2018, 1417, 5–22. [Google Scholar] [CrossRef]
- Botker, H.E.; Kharbanda, R.; Schmidt, M.R.; Bottcher, M.; Kaltoft, A.K.; Terkelsen, C.J.; Munk, K.; Andersen, N.H.; Hansen, T.M.; Trautner, S.; et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. Lancet 2010, 375, 727–734. [Google Scholar] [CrossRef]
- Johnsen, J.; Pryds, K.; Salman, R.; Lofgren, B.; Kristiansen, S.B.; Botker, H.E. The remote ischemic preconditioning algorithm: Effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res. Cardiol. 2016, 111, 10. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Martens, S.; Zahn, P.K.; Wolf, B.; Goebel, U.; Schwer, C.I.; Rosenberger, P.; et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: A randomized clinical trial. JAMA 2015, 313, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Chen, C.; Li, X.R.; Ran, Y.Y.; Xu, T.; Zhang, Y.; Geng, X.K.; Zhang, Y.; Du, H.S.; Leak, R.K.; et al. Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci. Ther. 2016, 22, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Pryds, K.; Kristiansen, J.; Neergaard-Petersen, S.; Nielsen, R.R.; Schmidt, M.R.; Refsgaard, J.; Kristensen, S.D.; Botker, H.E.; Hvas, A.M.; Grove, E.L. Effect of long-term remote ischaemic conditioning on platelet function and fibrinolysis in patients with chronic ischaemic heart failure. Thromb. Res. 2017, 153, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Pryds, K.; Nielsen, R.R.; Jorsal, A.; Hansen, M.S.; Ringgaard, S.; Refsgaard, J.; Kim, W.Y.; Petersen, A.K.; Botker, H.E.; Schmidt, M.R. Effect of long-term remote ischemic conditioning in patients with chronic ischemic heart failure. Basic Res. Cardiol. 2017, 112, 67. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, P.; Przyklenk, K. From ischemic conditioning to “hyperconditioning”: Clinical phenomenon and basic science opportunity. Dose-Response Publ. Int. Hormesis Soc. 2014, 12, 650–663. [Google Scholar] [CrossRef] [PubMed]
- Burne-Taney, M.J.; Liu, M.; Baldwin, W.M.; Racusen, L.; Rabb, H. Decreased capacity of immune cells to cause tissue injury mediates kidney ischemic preconditioning. J. Immunol. 2006, 176, 7015–7020. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.Y.; Choi, H.M.; Lee, S.Y.; Kim, M.G.; Kim, H.K.; Jo, S.K. The role of tregs and cd11c(+) macrophages/dendritic cells in ischemic preconditioning of the kidney. Kidney Int. 2010, 78, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, G.R.; Huang, L.; Vergis, A.L.; Li, L.; Okusa, M.D. Regulatory t cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int. 2010, 77, 771–780. [Google Scholar] [CrossRef]
- Song, L.; Yan, H.; Zhou, P.; Zhao, H.; Liu, C.; Sheng, Z.; Tan, Y.; Yi, C.; Li, J.; Zhou, J. Effect of comprehensive remote ischemic conditioning in anterior st-elevation myocardial infarction undergoing primary percutaneous coronary intervention: Design and rationale of the coric-mi randomized trial. Clin. Cardiol. 2018, 41, 997–1003. [Google Scholar] [CrossRef]
Cytokine | Baseline (mean, 95% CI) in pg/mL | 85 min (mean, 95% CI) in pg/mL | 24 h (mean, 95% CI) in pg/mL | ||||||
---|---|---|---|---|---|---|---|---|---|
non-IPC | IPC | non-IPC | IPC | vs. Baseline # | non-IPC | IPC | vs. Baseline # | ||
Adaptive immunity | GMCSF | 89 (−4;182) | 98 (−6;202) | 87 (6;168) | 96 (5;188) | −2.1 (−12.7;8.5) | 90 (−2;182) | 89 (8;171) | −3.9 (−10.9;7.4) |
IL2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
IL4 | 6 (1;11) | 10 (2;17) | 5 (2;8) | 7 (3;12) | −2.0 (−4.4;0.3) | 3 (1;6) | 5 (2;9) | −3.8 (−6.1;−1.4) | |
IL5 | 1.2 (0.7;1.7) | 1.4 (0.8;2.1) | 1.2 (0.7;1.8) | 1.4 (0.8;2.0) | −0.0 (−0.1;0.1) | 1.2 (0.7;1.6) | 1.3 (0.7;1.8) | −0.1 (−0.2;0.0) | |
IL7 | 3 (2;4) | 4 (3;5) | 3 (2;4) | 4 (3;5) | −0.1 (−0.4;0.3) | 3 (2;4) | 3 (2;4) | −0.2 (−0.5;0.1) | |
IL13 | 5 (2;8) | 6 (2;9) | 5 (2;8) | 5 (2;8) | −0.1 (−0.6;0.4) | 5 (2;8) | 5 (2;8) | −0.3 (−0.8;0.2) | |
IL21 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
Pro-inflammatory signalling | ITAC | 18 (13;23) | 18 (14;23) | 17 (13;21) | 22 (16;27) | 1.4 (−1.3;4.0) | 18 (14;21) | 18 (14;23) | −0.3 (−2.9;2.4) |
Fractalkine | 70 (43;97) | 84 (56;112) | 73 (48;99) | 76 (46;105) | −2.5 (−12.9;7.8) | 75 (46;104) | 68 (40;95) | −5.6 (−16.0;4.7) | |
INFγ | 9 (7;12) | 10 (7;13) | 9 (7;12) | 10 (8;13) | −0.1 (−0.7;0.6) | 9 (7;12) | 10 (7;13) | −0.3 (−1.0;0.4) | |
MIP3a | 1.5 (0.4;2.5) | 1.7 (0.6;2.7) | 1.0 (0.3;1.7) | 1.2 (0.4;2.0) | −0.5 (−1.1;0.2) | 1.1 (0.3;1.9) | 1.6 (0.3;2.9) | −0.2 (−0.8;0.4) | |
MIP1a | 12 (9;16) | 13 (10;17) | 12 (9;15) | 13 (9;16) | −0.5 (−1.3;0.3) | 12 (9;15) | 12 (9;16) | −0.8 (−1.6;−0.0) | |
MIP1b | 7 (5;10) | 8 (4;11) | 7 (4;9) | 8 (5;10) | −0.2 (−1.0;0.6) | 6 (3;8) | 7 (4;10) | −1.2 (−2.0;−0.4) | |
TNFα | 0.6 (0.1;1,0) | 0.9 (0.2;1.6) | 0.6 (−0.0;1.2) | 0.8 (−0.1;1.7) | −0.0 (−0.2;0.2) | 0.5 (0.0;1) | 0.6 (−0.0;1.3) | −0.2 (−0.4;0.0) | |
IL1b | 0.6 (0.4;0.8) | 0.7 (0.5;1.0) | 0.6 (0.4;0.8) | 0.6 (0.4;0.9) | −0.1 (−0.2;0.0) | 0.6 (0.4;0.8) | 0.6 (0.4;0.9) | −0.1 (−0.2;0.0) | |
IL6 | 0.8 (0.4;1.2) | 0.9 (0.5;1.3) | 0.8 (0.4;1.1) | 0.9 (0.6;1.3) | −0.0 (−0.2;0.1) | 0.9 (0.4;1.4) | 0.8 (0.4;1.2) | −0.2 (−0.2;0.1) | |
IL8 | 1.6 (1.0;2.2) | 1.7 (1.0;2.4) | 1.6 (0.9;2.2) | 1.8 (1.2;2.4) | 0.0 (−0.1;0.1) | 1.5 (0.9;2.0) | 1.6 (1.0;2.3) | −0.1 (−0.3;0.0) | |
IL12 | 1.4 (0.7;2.1) | 1.7 (1.1;2.4) | 1.4 (0.8;2.1) | 1.7 (1.0;2.3) | −0.0 (−0.2;0.2) | 1.4 (0.8;2.1) | 1.5 (0.8;2.1) | −0.1 (−0.3;0.0) | |
IL17a | 4 (2;5) | 5 (3;7) | 4 (2;5) | 4 (3;6) | −0.3 (−0.8;0.2) | 4 (2;5) | 4 (2;6) | −0.5 (−1.1;−0.0) | |
IL23 | 946 (200;1692) | 770 (81;1460) | 581 (−37;1200) | 768 (78;1458) | −184 (−561;194) | 1304 (487;2121) | 940 (193;1687) | 264 (−113;641) | |
Anti−inflammatory signalling | IL10 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, T.H.; Eijken, M.; Baan, C.; Petersen, M.S.; Bibby, B.M.; Jespersen, B.; Møller, B.K. Early Immunological Effects of Ischemia-Reperfusion Injury: No Modulation by Ischemic Preconditioning in a Randomised Crossover Trial in Healthy Humans. Int. J. Mol. Sci. 2019, 20, 2877. https://doi.org/10.3390/ijms20122877
Lange TH, Eijken M, Baan C, Petersen MS, Bibby BM, Jespersen B, Møller BK. Early Immunological Effects of Ischemia-Reperfusion Injury: No Modulation by Ischemic Preconditioning in a Randomised Crossover Trial in Healthy Humans. International Journal of Molecular Sciences. 2019; 20(12):2877. https://doi.org/10.3390/ijms20122877
Chicago/Turabian StyleLange, Thomas H., Marco Eijken, Carla Baan, Mikkel Steen Petersen, Bo Martin Bibby, Bente Jespersen, and Bjarne K. Møller. 2019. "Early Immunological Effects of Ischemia-Reperfusion Injury: No Modulation by Ischemic Preconditioning in a Randomised Crossover Trial in Healthy Humans" International Journal of Molecular Sciences 20, no. 12: 2877. https://doi.org/10.3390/ijms20122877
APA StyleLange, T. H., Eijken, M., Baan, C., Petersen, M. S., Bibby, B. M., Jespersen, B., & Møller, B. K. (2019). Early Immunological Effects of Ischemia-Reperfusion Injury: No Modulation by Ischemic Preconditioning in a Randomised Crossover Trial in Healthy Humans. International Journal of Molecular Sciences, 20(12), 2877. https://doi.org/10.3390/ijms20122877