Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue (Festuca arundinacea)
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. The Uptake, Accumulation and Translocation of Cd
2.3. The Uptake, Accumulation and Translocation of Zn
2.4. Amount of Cd and Zn Accumulated in Tall Fescue
2.5. Interaction between Zn and Cd on Plant Growth and Metal Concentrations
2.6. Mineral Nutrients in Xylem Sap
3. Discussion
3.1. The Effect of Cd and Zn on Plant Growth
3.2. The Interaction between Cd and Zn in Roots of Tall Fescue
3.3. The Interaction between Cd and Zn in Shoots of Tall Fescue
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Treatments and Experiment Design
4.3. Measurement
4.3.1. Collection and Determination of Ions in Guttation and Xylem Sap
4.3.2. Determination of Cd and Zn Concentration in Shoots and Roots
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clemens, S.; Ma, J.F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, T.; Baveye, P.C.; Zhu, J.; Ning, Z.; Li, H. Potential health risk in areas with high naturally-occurring Cadmium background in southwestern china. Ecotoxicol. Environ. Saf. 2015, 112, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Aarts, M.G.; Thomine, S.; Verbruggen, N. Plant science: The key to preventing slow Cadmium poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, X.; Lu, L.; Islam, E.; He, Z. Effects of Zinc and Cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J. Hazard. Mater. 2009, 169, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Kopittke, P.M.; Wang, A.; Sale, P.W.G.; Tang, C. Cadmium reduces Zinc uptake but enhances its translocation in the Cadmium-accumulator, carpobrotus rossii, without affecting speciation. Plant and Soil 2018, 430, 219–231. [Google Scholar] [CrossRef]
- Cojocaru, P.; Gusiatin, Z.M.; Cretescu, I. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ. Sci. Pollut. Res. Int. 2016, 23, 10693–10701. [Google Scholar] [CrossRef]
- Qiu, R.L.; Thangavel, P.; Hu, P.J.; Senthilkumar, P.; Ying, R.R.; Tang, Y.T. Interaction of Cadmium and Zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J. Hazard. Mater. 2011, 186, 1425–1430. [Google Scholar] [CrossRef]
- Benakova, M.; Ahmadi, H.; Ducaiova, Z.; Tylova, E.; Clemens, S.; Tuma, J. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown brassica napus plants. Environ. Sci. Pollut. Res. Int. 2017, 24, 20705–20716. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Q.; Wang, X.; Wei, M.; Yang, F.; Xu, H. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by Cadmium (Cd) toxicity in Cucumis sativus L. Sci. Hortic. 2010, 123, 521–530. [Google Scholar] [CrossRef]
- Hossain, M.A.; Hasanuzzaman, M.; Fujita, M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to Cadmium stress. Physiol. Mol. Biol. Plants 2010, 16, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Mobin, M.; Khan, N.A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to Cadmium stress. J. Plant Physiol. 2007, 164, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liu, C.; Cai, Q.; Liu, Q.; Hou, C. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bull. Environ. Contam. Toxicol. 2010, 85, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Toppi, L.S.; Gabbrielli, R. Response to Cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Khan, N.A.; Singh, S.; Nazar, R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under Cadmium stress. J. Agron. Crop Sci. 2007, 193, 435–444. [Google Scholar] [CrossRef]
- Khan, N.A.; Anjum, N.A.; Nazar, R.; Iqbal, N. Increased activity of atp-sulfurylase and increased contents of cysteine and glutathione reduce high Cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russ. J. Plant Physiol. 2009, 56, 670–677. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zhu, Y.G.; Li, H.Y.; Smith, S.E.; Smith, F.A. Effects of forms and rates of potassium fertilizers on Cadmium uptake by two cultivars of spring wheat (Triticum aestivum, l.). Environ. Int. 2004, 29, 973–978. [Google Scholar] [CrossRef]
- Chou, T.S.; Chao, Y.Y.; Huang, W.D.; Hong, C.Y.; Kao, C.H. Effect of magnesium deficiency on antioxidant status and Cadmium toxicity in rice seedlings. J. Plant Physiol. 2011, 168, 1021–1030. [Google Scholar] [CrossRef]
- Street, R.A.; Kulkarni, M.G.; Stirk, W.A.; Southway, C.; Van Staden, J. Effect of Cadmium on growth and micronutrient distribution in wild garlic (Tulbaghia violacea). South Afr. J. Bot. 2010, 76, 332–336. [Google Scholar] [CrossRef]
- Rivetta, A.; Negrini, N.; Cocucci, M. Involvement of Ca2+ - calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ. 1997, 20, 600–608. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Z. A comparison study in Cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L. Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, J.; Jia, L.; Li, Q.; Zhang, T.; Qiao, K.; Ma, S. Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicol. Environ. Saf. 2012, 86, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Effects of Zn and Cd accumulation on structural and physiological characteristics of barley plants. Braz. J. Plant Physiol. 2007, 19, 15–22. [Google Scholar] [CrossRef]
- Stoyanova, Z.; Doncheva, S. The effect of Zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Braz. J. Plant Physiol. 2002, 114, 111–116. [Google Scholar] [CrossRef]
- Ozturk, L.; Karanlik, S.; Ozkutlu, F.; Cakmak, I.; Kochian, L.V. Shoot biomass and Zinc/Cadmium uptake for hyperaccumulator and non-accumulator thlaspi species in response to growth on a Zinc-deficient calcareous soil. Plant Sci. 2003, 164, 1095–1101. [Google Scholar] [CrossRef]
- Tan, J.; Wang, J.; Chai, T.; Zhang, Y.; Feng, S.; Li, Y.; Zhao, H.; Liu, H.; Chai, X. Functional analyses of tahma2, a p(1b)-type atpase in wheat. Plant Biotechnol. J. 2013, 11, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.; Crouzet, J.; Gravot, A.; Auroy, P.; Leonhardt, N.; Vavasseur, A.; Richaud, P. Athma3, a p1b-atpase allowing Cd/Zn/Co/Pb vacuolar storage in arabidopsis. Plant Physiol. 2009, 149, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Guerinot, M.L. The zip family of metal transporters. Biochim. Biophys. Acta 2000, 1465, 190–198. [Google Scholar] [CrossRef]
- Nevo, Y.; Nelson, N. The nramp family of metal-ion transporters. Biochim. Biophys. Acta 2006, 1763, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing Cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Hassan, M.J.; Zhang, G.; Wu, F.; Wei, K.; Chen, Z. Zinc alleviates growth inhibition and oxidative stress caused by Cadmium in rice. J. Plant Nutr. Soil Sci. 2005, 168, 255–261. [Google Scholar] [CrossRef]
- Perrin, D.D.; Watt, A.E. Complex formation of Zinc and Cadmium with glutathione. Biochim. Biophys. Acta 1971, 230, 96–104. [Google Scholar] [CrossRef]
- Colangelo, E.P.; Guerinot, M.L. Put the metal to the petal: Metal uptake and transport throughout plants. Curr. Opin. Plant Biol. 2006, 9, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Kupper, H.; Kochian, L.V. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to Cadmium and Zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (ganges population). New Phytol. 2010, 185, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Prince, R.C.; Pickering, I.J.; Raskin, I. Mechanisms of Cadmium mobility and accumulation in indian mustard. Plant Physiol. 1995, 109, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.J.; Welch, R.M.; Norvell, W.A.; Sullivan, L.A.; Kochian, L.V. Characterization of Cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol. 1998, 116, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Iwashita, T.; Zhao, F.J.; Ma, J.F. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol. 2008, 49, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Fei, L.; Wang, C.; Hu, S.; Wang, Z.L. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential. Environ. Pollut. 2019, 252, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Stark, N. The effects of water and multi-nutrient stress on xylem sap chemistry, photosynthesis and transpiration of seedlings of two eucalypts. Trees 1992, 6, 7–12. [Google Scholar] [CrossRef]
- Jiang, X.J.; Luo, Y.M.; Liu, Q.; Liu, S.L.; Zhao, Q.G. Effects of Cadmium on nutrient uptake and translocation by indian mustard. Environ. Geochem. Health 2004, 26, 319–324. [Google Scholar] [CrossRef]
- Kupper, H.; Kupper, F.; Spiller, M. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res. 1998, 58, 123–133. [Google Scholar] [CrossRef]
- Webster, D.E.; Ebdon, J.S. Effects of nitrogen and potassium fertilization on perennial ryegrass cold tolerance during deacclimation in late winter and early spring. HortScience 2005, 40, 842–849. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Heidari, M. Effect of potassium supply on drought resistance in sorghum: Plant growth and macronutrient content. Pak. J. Agric. Sci. 2011, 48, 197–204. [Google Scholar]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research progress of heavy metal pollution in china: Sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 2013, 58, 134–140. [Google Scholar] [CrossRef]
- Liu, X.; Peng, K.; Wang, A.; Lian, C.; Shen, Z. Cadmium accumulation and distribution in populations of phytolacca americana L. And the role of transpiration. Chemosphere 2010, 78, 1136–1141. [Google Scholar] [CrossRef]
Measurements | Cd | Zn | Cd + Zn | ||||
---|---|---|---|---|---|---|---|
F Value | p Value | F Value | p Value | F Value | p Value | ||
Plant height | 390.97 | <0.0001 | 24.26 | 0.0004 | 4.33 | 0.0596 | |
Shoot biomass | 10.84 | 0.0081 | 0.13 | 0.7297 | 0.68 | 0.4294 | |
Root length | 75.50 | <0.0001 | 0.95 | 0.3500 | 0.36 | 0.5623 | |
Root biomass | 34.56 | <0.0001 | 0.07 | 0.8006 | 1.46 | 0.2506 | |
Root Zn concentration | 3.68 | 0.0792 | 93.93 | <0.0001 | 8.44 | 0.0132 | |
Shoot Zn concentration | 154.56 | <0.0001 | 163.09 | <0.0001 | 36.21 | <0.0001 | |
Zn translocation factor | 57.98 | <0.0001 | 31.12 | 0.0001 | 18.68 | 0.0010 | |
Zn amount | 62.26 | <0.0001 | 132.96 | <0.0001 | 43.12 | <0.0001 | |
Zn concentration in xylem sap | Sheath | 2.82 | 0.1318 | 94.77 | <0.0001 | 2.92 | 0.1261 |
Leaf blade | 7.00 | 0.0294 | 459.21 | <0.0001 | 8.39 | 0.0200 | |
Guttation | 37.59 | 0.0005 | 280.00 | <0.0001 | 47.74 | 0.0002 | |
Ca concentration in xylem sap | Sheath | 42.26 | 0.0002 | 13.40 | 0.0064 | 6.06 | 0.0392 |
Leaf blade | 38.55 | 0.0008 | 16.39 | 0.0067 | 8.37 | 0.0276 | |
Guttation | 28.68 | 0.0011 | 26.28 | 0.0014 | 8.01 | 0.0254 | |
Mg concentration in xylem sap | Sheath | 17.63 | 0.0030 | 1.46 | 0.2618 | 4.60 | 0.0643 |
Leaf blade | 4.14 | 0.0762 | 4.94 | 0.0569 | 7.86 | 0.0231 | |
Guttation | 15.79 | 0.0041 | 39.35 | 0.0002 | 10.14 | 0.0129 | |
K concentration in xylem sap | Sheath | 0.11 | 0.7489 | 10.99 | 0.0106 | 2.98 | 0.1224 |
Leaf blade | 25.44 | 0.0015 | 136.26 | <0.0001 | 6.06 | 0.0434 | |
Guttation | 2.59 | 0.1518 | 7.69 | 0.0276 | 3.04 | 0.1249 |
Treatment | Cd2+ | Zn2+ | Cd2+ + Zn2+ |
---|---|---|---|
Control | - | 1250.7 ± 101.0 c | 1250.7 ± 101.0 b |
Cd | 4468.9 ± 298.1 a | 1774.6 ± 165.5 c | 6243.5 ± 452.5 a |
Zn | - | 7935.9 ± 959.4 a | 7935.9 ± 959.4 a |
Cd + Zn | 2116.2 ± 119.1 b | 5375.9 ± 410.4 b | 7492.1 ± 450.3 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Hu, S.; Fei, L.; Liu, L.; Wang, Z. Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue (Festuca arundinacea). Int. J. Mol. Sci. 2019, 20, 3332. https://doi.org/10.3390/ijms20133332
Dong Q, Hu S, Fei L, Liu L, Wang Z. Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue (Festuca arundinacea). International Journal of Molecular Sciences. 2019; 20(13):3332. https://doi.org/10.3390/ijms20133332
Chicago/Turabian StyleDong, Qin, Shuai Hu, Ling Fei, Lijiao Liu, and Zhaolong Wang. 2019. "Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue (Festuca arundinacea)" International Journal of Molecular Sciences 20, no. 13: 3332. https://doi.org/10.3390/ijms20133332
APA StyleDong, Q., Hu, S., Fei, L., Liu, L., & Wang, Z. (2019). Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue (Festuca arundinacea). International Journal of Molecular Sciences, 20(13), 3332. https://doi.org/10.3390/ijms20133332