Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat
Abstract
:1. Introduction
2. Results
2.1. Functional Enhancement of Evoked Vasodilation by Acute SKA-31 Treatment
2.2. Detection of BK Receptors and KCa Channels
2.3. Regulation of Coronary Flow in Isolated Hearts from SHRs and Wistar Rats by Endothelium-Dependent and -Independent Vasodilators
2.4. Effect of Acute SKA-31 Administration on Systemic Blood Pressure in SHRs
3. Discussion
4. Materials and Methods:
4.1. Animals and Treatment
4.2. Surgical Procedure for Telemeter Implantation in SHRs
4.3. Radio-Telemetry and Data Acquisition
4.4. Protocol for Langendorff-Perfused, Isolated Heart Experiments
4.5. Arterial Pressure Myography
4.6. Quantitative PCR
4.7. Preparation of Vessel Homogenates
4.8. SDS-PAGE and Western Blot Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACh | acetylcholine |
ADO | adenosine |
BK | bradykinin |
CREL | cremaphor EL |
EDTA | ethylenediaminetetraacetic acid |
EGTA | ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid |
HR | heart rate |
ITA | internal thoracic artery |
KCa2.3 | small conductance, calcium-activated K+ channel |
KCa3.1 | intermediate conductance, calcium-activated K+ channel |
MAP | mean arterial pressure |
NO | nitric oxide |
PE | phenylephrine |
PMSF | phenylmethanesulfonyl fluoride |
Pina | pinacidil |
SKA-31 | naphthol[1–2-d]thiazol-2-ylamine |
SDS-PAGE | sodium dodecyl sulfate polyacrylamide gel electrophoresis |
SHR | spontaneously hypertensive rat |
SNP | sodium nitroprusside |
References
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Dorans, K.S.; Mills, K.T.; Liu, Y.; He, J. Trends in Prevalence and Control of Hypertension According to the 2017 American College of Cardiology/American Heart Association (ACC/AHA) Guideline. J. Am. Heart Assoc. 2018, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Arima, H.; Barzi, F.; Chalmers, J. Mortality patterns in hypertension. J. Hypertens. 2011, 29, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Brandes, R.P. Endothelial dysfunction and hypertension. Hypertension 2014, 64, 924–928. [Google Scholar] [CrossRef] [PubMed]
- Dharmashankar, K.; Widlansky, M.E. Vascular endothelial function and hypertension: Insights and directions. Curr. Hypertens. Rep. 2010, 12, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Versari, D.; Daghini, E.; Virdis, A.; Ghiadoni, L.; Taddei, S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br. J. Pharmacol. 2009, 157, 527–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010, 9, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Puddu, P.; Puddu, G.M.; Zaca, F.; Muscari, A. Endothelial dysfunction in hypertension. Acta Cardiol 2000, 55, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Shimokawa, H.; Tang, E.H.; Félétou, M. Endothelial dysfunction and vascular disease. Acta Physiol. 2009, 196, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, E.H.; Vanhoutte, P.M. Endothelial dysfunction: A strategic target in the treatment of hypertension? Pflug. Arch. 2010, 459, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Félétou, M.; Huang, Y.; Vanhoutte, P.M. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br. J. Pharmacol. 2011, 164, 894–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, R.; Olivan-Viguera, A.; Wulff, H. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. Adv. Pharm. 2016, 77, 65–104. [Google Scholar]
- Félétou, M. Endothelium-Dependent Hyperpolarization and Endothelial Dysfunction. J. Cardiovasc. Pharmacol. 2016, 67, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Stankevicius, E.; Lopez-Valverde, V.; Rivera, L.; Hughes, A.D.; Mulvany, M.J.; Simonsen, U. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br. J. Pharmacol. 2006, 149, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.Z.; Braun, A.P. Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Am. J. Physiol.-Cell Physiol. 2007, 293, C458–C467. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.Z.; Ella, S.; Davis, M.J.; Hill, M.A.; Braun, A.P. Openers of SKCa and IKCa channels enhance agonist-evoked endothelial nitric oxide synthesis and arteriolar vasodilation. FASEB J: Off. Publ. Fed. Am. Soc. Exp. Biol. 2009, 23, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Ohtsubo, T.; Kitazono, T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int. J. Mol. Sci. 2018, 19, 315. [Google Scholar] [CrossRef]
- Taylor, M.S.; Bonev, A.D.; Gross, T.P.; Eckman, D.M.; Brayden, J.E.; Bond, C.T.; Adelman, J.P.; Nelson, M.T. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ. Res. 2003, 93, 124–131. [Google Scholar] [CrossRef]
- Brähler, S.; Kaistha, A.; Schmidt, V.J.; Wolfle, S.E.; Busch, C.; Kaistha, B.P.; Kacik, M.; Hasenau, A.L.; Grgic, I.; Si, H.; et al. Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 2009, 119, 2323–2332. [Google Scholar] [CrossRef]
- Mishra, R.C.; Mitchell, J.R.; Gibbons-Kroeker, C.; Wulff, H.; Belenkie, I.; Tyberg, J.V.; Braun, A.P. A pharmacologic activator of endothelial KCa channels increases systemic conductance and reduces arterial pressure in an anesthetized pig model. Vasc. Pharmacol. 2016, 79, 24–31. [Google Scholar] [CrossRef]
- Sankaranarayanan, A.; Raman, G.; Busch, C.; Schultz, T.; Zimin, P.I.; Hoyer, J.; Köhler, R.; Wulff, H. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol. 2009, 75, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Radtke, J.; Schmidt, K.; Wulff, H.; Köhler, R.; de Wit, C. Activation of KCa3.1 by SKA-31 induces arteriolar dilatation and lowers blood pressure in normo- and hypertensive connexin40-deficient mice. Br. J. Pharmacol. 2013, 170, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Damkjaer, M.; Nielsen, G.; Bodendiek, S.; Staehr, M.; Gramsbergen, J.B.; de Wit, C.; Jensen, B.L.; Simonsen, U.; Bie, P.; Wulff, H.; et al. Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. Br. J. Pharmacol. 2012, 165, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Toral, M.; Romero, M.; Perez-Vizcaino, F.; Duarte, J.; Jimenez, R. Antihypertensive effects of peroxisome proliferator-activated receptor-beta/delta activation. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H189–H200. [Google Scholar] [CrossRef] [PubMed]
- Félétou, M.; Verbeuren, T.J.; Vanhoutte, P.M. Endothelium-dependent contractions in SHR: A tale of prostanoid TP and IP receptors. Br. J. Pharmacol. 2009, 156, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Torok, J. Participation of nitric oxide in different models of experimental hypertension. Physiol. Res. / Acad. Sci. Bohemoslov. 2008, 57, 813–825. [Google Scholar]
- Mishra, R.C.; Wulff, H.; Hill, M.A.; Braun, A.P. Inhibition of Myogenic Tone in Rat Cremaster and Cerebral Arteries by SKA-31, an Activator of Endothelial KCa2.3 and KCa3.1 Channels. J. Cardiovasc. Pharmacol. 2015, 66, 118–127. [Google Scholar] [CrossRef]
- Mishra, R.C.; Wulff, H.; Cole, W.C.; Braun, A.P. A pharmacologic activator of endothelial KCa channels enhances coronary flow in the hearts of type 2 diabetic rats. J. Mol. Cell. Cardiol. 2014, 72, 364–373. [Google Scholar] [CrossRef]
- Pinto, Y.M.; Paul, M.; Ganten, D. Lessons from rat models of hypertension: From Goldblatt to genetic engineering. Cardiovasc. Res. 1998, 39, 77–88. [Google Scholar] [CrossRef]
- Zugck, C.; Lossnitzer, D.; Backs, J.; Kristen, A.; Kinscherf, R.; Haass, M. Increased cardiac norepinephrine release in spontaneously hypertensive rats: Role of presynaptic alpha-2A adrenoceptors. J. Hypertens. 2003, 21, 1363–1369. [Google Scholar] [CrossRef]
- Giachini, F.R.; Carneiro, F.S.; Lima, V.V.; Carneiro, Z.N.; Dorrance, A.; Webb, R.C.; Tostes, R.C. Upregulation of intermediate calcium-activated potassium channels counterbalance the impaired endothelium-dependent vasodilation in stroke-prone spontaneously hypertensive rats. Transl. Res. J. Lab. Clin. Med. 2009, 154, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasenau, A.L.; Nielsen, G.; Morisseau, C.; Hammock, B.D.; Wulff, H.; Köhler, R. Improvement of endothelium-dependent vasodilations by SKA-31 and SKA-20, activators of small- and intermediate-conductance Ca2+ -activated K+ -channels. Acta Physiol. 2011, 203, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Bröndum, E.; Kold-Petersen, H.; Simonsen, U.; Aalkjaer, C. NS309 restores EDHF-type relaxation in mesenteric small arteries from type 2 diabetic ZDF rats. Br. J. Pharmacol. 2010, 159, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef] [PubMed]
- Westerhof, N.; Boer, C.; Lamberts, R.R.; Sipkema, P. Cross-talk between cardiac muscle and coronary vasculature. Physiol. Rev. 2006, 86, 1263–1308. [Google Scholar] [CrossRef] [PubMed]
- Gregg, D.E. Effect of Coronary Perfusion Pressure or Coronary Flow on Oxygen Usage of the Myocardium. Circ. Res. 1963, 13, 497–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazil, M.K.; Krulan, C.; Webb, R.L. Telemetric monitoring of cardiovascular parameters in conscious spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 1993, 22, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Khaddaj-Mallat, R.; Mathew John, C.; Braun, A.P. SKA-31, an activator of endothelial Ca2+-activated K+ channels evokes robust vasodilation in rat mesenteric arteries. Eur. J. Pharmacol. 2018, 831, 60–67. [Google Scholar] [CrossRef]
- Boulanger, C.M. Secondary endothelial dysfunction: Hypertension and heart failure. J. Mol. Cell. Cardiol. 1999, 31, 39–49. [Google Scholar] [CrossRef]
- Félétou, M.; Vanhoutte, P.M. EDHF: An update. Clin. Sci. 2009, 117, 139–155. [Google Scholar] [CrossRef]
- Weston, A.H.; Porter, E.L.; Harno, E.; Edwards, G. Impairment of endothelial SK(Ca) channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Br. J. Pharmacol. 2010, 160, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Tominaga, M.; Ohmori, S.; Kobayashi, K.; Koga, T.; Takata, Y.; Fujishima, M. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ. Res. 1992, 70, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Sunano, S.; Watanabe, H.; Tanaka, S.; Sekiguchi, F.; Shimamura, K. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Br. J. Pharmacol. 1999, 126, 709–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, K.; Rummery, N.M.; Grayson, T.H.; Hill, C.E. Attenuation of conducted vasodilatation in rat mesenteric arteries during hypertension: Role of inwardly rectifying potassium channels. J. Physiol 2004, 561, 215–231. [Google Scholar] [CrossRef]
- Tschudi, M.R.; Criscione, L.; Novosel, D.; Pfeiffer, K.; Lüscher, T.F. Antihypertensive therapy augments endothelium-dependent relaxations in coronary arteries of spontaneously hypertensive rats. Circulation 1994, 89, 2212–2218. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.J.; Uehata, A.; Gerhard, M.D.; Meredith, I.T.; Knab, S.; Delagrange, D.; Lieberman, E.H.; Ganz, P.; Creager, M.A.; Yeung, A.C.; et al. Close relation of endothelial function in the human coronary and peripheral circulations. J. Am. Coll. Cardiol. 1995, 26, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Vanhoutte, P.M.; Shimokawa, H.; Félétou, M.; Tang, E.H. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar] [CrossRef] [PubMed]
- Fasciolo, J.C.; Vargas, L.; Lama, M.C.; Nolly, H. Bradykinin-induced vasoconstriction of rat mesenteric arteries precontracted with noradrenaline. Br. J. Pharmacol. 1990, 101, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, L.; Wang, R. Kinin B2 receptor-mediated contraction of tail arteries from normal or streptozotocin-induced diabetic rats. Br. J. Pharmacol. 1998, 125, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.M.; Tsai, Y.J.; Pan, S.L.; Wu, W.B.; Wang, C.C.; Lee, Y.S.; Lin, C.C.; Huang, S.C.; Chiu, C.T. Pharmacological and functional characterization of bradykinin receptors in rat cultured vascular smooth muscle cells. Cell. Signal. 1999, 11, 853–862. [Google Scholar] [CrossRef]
- Nawa, H.; Kawasaki, H.; Nakatsuma, A.; Isobe, S.; Kurosaki, Y. Triphasic vascular responses to bradykinin in the mesenteric resistance artery of the rat. Eur. J. Pharmacol. 2001, 433, 105–113. [Google Scholar] [CrossRef]
- McLean, P.G.; Perretti, M.; Ahluwalia, A. Kinin B(1) receptors and the cardiovascular system: Regulation of expression and function. Cardiovasc. Res. 2000, 48, 194–210. [Google Scholar] [CrossRef]
- Mathew John, C.; Khaddaj Mallat, R.; George, G.; Kim, T.; Mishra, R.C.; Braun, A.P. Pharmacologic targeting of endothelial Ca2+-activated K+ channels: A strategy to improve cardiovascular function. Channels (Austin) 2018, 12, 126–136. [Google Scholar] [CrossRef] [PubMed]
- McBryde, F.D.; Abdala, A.P.; Hendy, E.B.; Pijacka, W.; Marvar, P.; Moraes, D.J.; Sobotka, P.A.; Paton, J.F. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat. Commun. 2013, 4, 2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, B.N.; Chafe, L.L.; Halfyard, S.J.; Leonard, A.M. Distinct rapid and slow phases of salt-induced hypertension in Dahl salt-sensitive rats. J. Hypertens. 2006, 24, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.C.; Belke, D.; Wulff, H.; Braun, A.P. SKA-31, a novel activator of SK(Ca) and IK(Ca) channels, increases coronary flow in male and female rat hearts. Cardiovasc. Res. 2013, 97, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Swayze, R.D.; Braun, A.P. A catalytically inactive mutant of type I cGMP-dependent protein kinase prevents enhancement of large conductance, calcium-sensitive K+ channels by sodium nitroprusside and cGMP. J. Biol. Chem. 2001, 276, 19729–19737. [Google Scholar] [CrossRef]
- Edgell, C.J.; McDonald, C.C.; Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 1983, 80, 3734–3737. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaddaj Mallat, R.; Mathew John, C.; Mishra, R.C.; Kendrick, D.J.; Braun, A.P. Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. Int. J. Mol. Sci. 2019, 20, 3481. https://doi.org/10.3390/ijms20143481
Khaddaj Mallat R, Mathew John C, Mishra RC, Kendrick DJ, Braun AP. Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. International Journal of Molecular Sciences. 2019; 20(14):3481. https://doi.org/10.3390/ijms20143481
Chicago/Turabian StyleKhaddaj Mallat, Rayan, Cini Mathew John, Ramesh C Mishra, Dylan J Kendrick, and Andrew P Braun. 2019. "Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat" International Journal of Molecular Sciences 20, no. 14: 3481. https://doi.org/10.3390/ijms20143481
APA StyleKhaddaj Mallat, R., Mathew John, C., Mishra, R. C., Kendrick, D. J., & Braun, A. P. (2019). Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. International Journal of Molecular Sciences, 20(14), 3481. https://doi.org/10.3390/ijms20143481