Therapeutic Use of Intranasal Glucagon: Resolution of Hypoglycemia
Abstract
:1. Hypoglycemia in Patients with Type 1 and Type 2 Diabetes, a Risk for Major Complications
2. Intranasal Administration of Peptide Hormones
3. Intranasal Administration of Glucagon
4. Biology of Intranasal Glucagon
5. Possible Advantages of Intranasal Glucagon
5.1. Technical Skills for Preparing Injectable Glucagon
5.2. What Are Patients Expectations
5.3. A Question about Common Cold and Nasal Decongestants
5.4. Resolution of Hypoglycemia Begins Almost Immediately with Both IM and IN Glucagon
5.5. What Happens if an Administration Fails? Failure of IM Glucagon and of IN Glucagon
5.6. The Real World and the Role of Caregivers
6. Limitations
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cryer, P. Hypoglycaemia in Diabetes: Pathophysiology, Prevalence and Prevention, 2nd ed.; American Diabetes Association: Alexandria, VA, USA, 2012. [Google Scholar]
- UK Hypoglycaemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: Effects of treatment modalities and their duration. Diabetologia 2007, 50, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National diabetes fact sheet: National estimates, general information on diabetes, prediabetes in the United States, 2011; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2011.
- Seaquist, E.R.; Anderson, J.; Childs, B.; Cryer, P.; Dagogo-Jack, S.; Fish, L.; Heller, S.R.; Rodriguez, H.; Rosenzweig, J.; Vigersky, R. Hypoglycaemia and diabetes: A report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care 2013, 36, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Tamborlane, W.V.; Bergenstal, R.M.; Miller, K.M.; DuBose, S.N.; Hall, C.A. T1D Exchange Clinic Network. The T1D Exchange clinic registry. J. Clin. Endocrinol. Metab. 2012, 97, 4383–4389. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, K.M.; Hepburn, D.A.; Frier, B.M. Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet. Med. 1993, 10, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Cryer, P.E.; Davis, S.N.; Shamoon, H. Hypoglycaemia in diabetes. Diabetes Care 2003, 26, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Leese, G.P.; Wang, J.; Broomhall, J.; Kelly, P.; Marsden, A.; Morrison, W.; Frier, B.M.; Morris, A.D.; DARTS/ MEMO Collaboration. Frequency of severe hypoglycaemia requiring emergency treatment in type 1 and type 2 diabetes: A population-based study of health service resource use. Diabetes Care 2003, 26, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.I.; Shehab, N.; Lovegrove, M.C.; Kegler, S.R.; Weidenbach, K.N.; Ryan, G.J.; Budnitz, D.S. National estimates of insulin related hypoglycaemia and errors leading to emergency department visits and hospitalizations. JAMA Intern. Med. 2014, 174, 678–686. [Google Scholar] [CrossRef]
- Pontiroli, E.A.; Miele, L.; Morabito, A. Metabolic control and risk of hypoglycaemia during the first year of intensive insulin treatment in type 2 diabetes: Systematic review and meta-analysis. Diabetes Obes. Metab. 2012, 14, 433–446. [Google Scholar] [CrossRef]
- Clarke, W.L.; Gonder-Frederick, A.; Snyder, A.L.; Cox, D.J. Maternal fear of hypoglycaemia in their children with insulin dependent diabetes mellitus. J. Pediatr. Endocrinol. Metab. 1998, 11, 189–194. [Google Scholar] [CrossRef]
- Patton, S.R.; Dolan, L.M.; Henry, R.; Powers, S.W. Parental fear of hypoglycaemia: Young children treated with continuous subcutaneous insulin infusion. Pediatr. Diabetes 2007, 8, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Arah, O.A.; Goto, M.; Terauchi, Y.; Noda, M. Severe hypoglycaemia and cardiovascular disease: Systematic review and meta-analysis with bias analysis. BMJ 2013, 347, f4533. [Google Scholar] [CrossRef] [PubMed]
- Berra, C.; De Fazio, F.; Azzolini, E.; Albini, M.; Zangrandi, F.; Mirani, M.; Garbossa, S.; Guardado-Mendoza, R.; Condorelli, G.; Folli, F. Hypoglycemia and hyperglycemia are risk factors for falls in the hospital population. Acta Diabetol. 2019, 56, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Shalimova, A.; Graff, B.; Gasecki, D.; Wolf, J.; Sabisz, A.; Szurowska, E.; Jodzio, K.; Narkiewicz, K. Cognitive Dysfunctions in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 2239–2249. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Children and Adolescents: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S148–S164. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, P.; Porcellati, F.; Bolli, G.B.; Fanelli, C.G. Prevention and Management of Severe Hypoglycemia and Hypoglycemia Unawareness: Incorporating Sensor Technology. Curr. Diab. Rep. 2018, 18, 83. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes-2015. Diabetes Care 2015, 38, S1–S94. [Google Scholar]
- Holste, L.C.; Connolly, C.C.; Moore, M.C.; Neal, D.W.; Cherrington, A.D. Physiological changes in circulating glucagon alter hepatic glucose disposition during portal glucose delivery. Am. J. Physiol. 1997, 273, 488–496. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Calderara, A.; Pozza, G. Intranasal drug delivery: Potential advantages and limitations from a clinical pharmacokinetic perspective. Clin. Pharmacokinet. 1989, 17, 299–307. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Alberetto, M.; Secchi, A.; Dossi, G.; Bosi, I.; Pozza, G. Insulin given intranasally induces hypoglycaemia in normal and diabetic subjects. Br. Med. J. (Clin. Res. Ed.) 1982, 284, 303–306. [Google Scholar] [CrossRef]
- Pontiroli, A.E. Peptide hormones: Review of current and emerging uses by nasal delivery. Adv. Drug Deliv. Rev. 1998, 29, 81–87. [Google Scholar] [CrossRef]
- Reynolds, J.E.F.; Martindale, W. The Extra Pharmacopoeia, 31st ed.; Royal Pharmaceutical Society: London, UK, 1996. [Google Scholar]
- Lee, W.A.; Ennis, R.D.; Longenecker, J.P.; Bengtsson, P. The bioavailability of intranasal salmon calcitonin in healthy volunteers with and without a permeation enhancer. Pharm. Res. 1994, 11, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Belgardt, B.F.; Brüning, J.C. CNS leptin and insulin action in the control of energy homeostasis. Ann. N. Y. Acad. Sci. 2010, 1212, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Heni, M.; Wagner, R.; Kullmann, S.; Veit, R.; Mat Husin, H.; Linder, K.; Benkendorff, C.; Peter, A.; Stefan, N.; Häring, H.U.; et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes. 2014, 63, 4083–4088. [Google Scholar] [CrossRef] [PubMed]
- Fourlanos, S.; Perry, C.; Gellert, S.A.; Martinuzzi, E.; Mallone, R.; Butler, J.; Colman, P.G.; Harrison, L.C. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes. Diabetes. 2011, 60, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- During, M.J.; Cao, L.; Zuzga, D.S.; Francis, J.S.; Fitzsimons, H.L.; Jiao, X.; Bland, R.J.; Klugmann, M.; Banks, W.A.; Drucker, D.J.; et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 2003, 9, 1173–1179. [Google Scholar] [CrossRef]
- Banks, W.A.; During, M.J.; Niehoff, M.L. Brain uptake of the glucagon- like peptide-1 antagonist exendin(9–39) after intranasal administration. J. Pharmacol Exp. Ther. 2004, 309, 469–475. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Alberetto, M.; Pozza, G. Intranasal glucagon raises blood glucose concentrations in healthy volunteers. Br. Med. J. (Clin. Res. Ed.). 1983, 287, 462–463. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Alberetto, M.; Pozza, G. Metabolic effects of intranasally administered glucagon: Comparison with intramuscular and intravenous injection. Acta Diabetol. Lat. 1985, 22, 103–110. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Alberetto, M.; Calderara, A.; Pajetta, E.; Pozza, G. Nasal administration of glucagon and human calcitonin to healthy subjects: A comparison of powders and spray solutions and of different enhancing agents. Eur. J. Clin. Pharmacol. 1989, 37, 427–430. [Google Scholar] [CrossRef]
- Slama, G.; Alamowitch, C.; Desplanque, N.; Letanoux, M.; Zirinis, P. A new non-invasive method for treating insulin-reaction: Intranasal lyophylized glucagon. Diabetologia 1990, 33, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Teshima, D.; Yamauchi, A.; Makino, K.; Kataoka, Y.; Arita, Y.; Nawata, H.; Oishi, R. Nasal glucagon delivery using microcrystalline cellulose in healthy volunteers. Int. J. Pharm. 2002, 233, 61–66. [Google Scholar] [CrossRef]
- Pontiroli, A.E.; Calderara, A.; Pajetta, E.; Alberetto, M.; Pozza, G. Intranasal glucagon as remedy for hypoglycaemia. Studies in healthy subjects and type I diabetic patients. Diabetes Care 1989, 12, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Pontiroli, A.E. Intranasal Glucagon: A Promising Approach for Treatment of Severe Hypoglycemia. J. Diabetes Sci. Technol. 2015, 9, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Boido, A.; Ceriani, V.; Pontiroli, A.E. Glucagon for hypoglycemic episodes in insulin-treated diabetic patients: A systematic review and meta-analysis with a comparison of glucagon with dextrose and of different glucagon formulations. Acta Diabetol. 2015, 52, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Yanai, O.; Pilpel, D.; Harman, I.; Elitzur-Leiberman, E.; Phillip, M. IDDM patients’ opinions on the use of Glucagon Emergency Kit in severe episodes of hypoglycaemia. Pract. Diab. Int. 1997, 14, 40–42. [Google Scholar] [CrossRef]
- Harris, G.; Diment, A.; Sulway, M.; Wilkinson, M. Glucagon administration-underevaluated and undertaught. Pract. Diab. Int. 2001, 18, 22–25. [Google Scholar] [CrossRef]
- Pacchioni, M.; Orena, C.; Panizza, P.; Cucchi, E.; Del Maschio, A.; Pontiroli, A.E. The hypotonic effect of intranasal and intravenous glucagon in gastrointestinal radiology. Abdom. Imaging 1995, 20, 44–46. [Google Scholar] [CrossRef]
- Stahel, P.; Lee, S.J.; Sud, S.K.; Floh, A.; Dash, S. Intranasal glucagon acutely increases energy expenditure without inducing hyperglycaemia in overweight/obese adults. Diab. Obes Metab. 2019, 21, 1357–1364. [Google Scholar] [CrossRef]
- Reno, F.E.; Normand, P.; McInally, K.; Silo, S.; Stotland, P.; Triest, M.; Carballo, D.; Piché, C. A novel nasal powder formulation of glucagon: Toxicology studies in animal models. BMC Pharmacol Toxicol. 2015, 26, 16–29. [Google Scholar] [CrossRef]
- Reno, F.E.; Edwards, C.N.; Bendix Jensen, M.; Török-Bathó, M.; Esdaile, D.J.; Piché, C.; Triest, M.; Carballo, D. Needle-free nasal delivery of glucagon for treatment of diabetes-related severe hypoglycaemia: Toxicology of polypropylene resin used in delivery device. Cutan. Ocul. Toxicol. 2016, 35, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Rickels, M.R.; Ruedy, K.J.; Foster, N.C.; Piché, C.A.; Dulude, H.; Sherr, J.L.; Tamborlane, W.V.; Bethin, K.E.; DiMeglio, L.A.; Wadwa, R.P.; et al. T1D Exchange Intranasal Glucagon Investigators. Intranasal Glucagon for Treatment of Insulin-Induced Hypoglycaemia in Adults With Type 1 Diabetes: A Randomized Crossover Noninferiority Study. Diabetes Care 2016, 39, 264–270. [Google Scholar] [PubMed]
- Sherr, J.L.; Ruedy, K.J.; Foster, N.C.; Piché, C.A.; Dulude, H.; Rickels, M.R.; Tamborlane, W.V.; Bethin, K.E.; DiMeglio, L.A.; Fox, L.A.; et al. T1D Exchange Intranasal Glucagon Investigators. Glucagon Nasal Powder: A Promising Alternative to Intramuscular Glucagon in Youth With Type 1 Diabetes. Diabetes Care 2016, 39, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Dulude, H.; Sicard, E.; Rufiange, M.; Piché, C.; Guzman, C.B.; Zhang, S.; Shen, T.; Jacobson, J.G.; Zhang, M.X. Pharmacokinetics (PK), Pharmacodynamics (PD), and Safety following Single or Repeated 3 mg Doses of Nasal Glucagon (NG) in Adults with Type 1 or Type 2 Diabetes (T1D or T2D). Pediatr Diabetes 2016, 17, 85. [Google Scholar]
- Pedersen, J.S. The nature of amyloid-like glucagon fibrils. J. Diabetes Sci. Technol. 2010, 4, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.M.; Castle, J.R. Stable Liquid Glucagon: Beyond Emergency Hypoglycemia Rescue. J. Diabetes Sci. Technol. 2018, 12, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frequency of carrying glucagon. Available online: https://myglu.org/polls/1303 (accessed on 16 December 2015).
- Driscoll, K.A.; Volkening, L.K.; Haro, H.; Ocean, G.; Wang, Y.; Jackson, C.C.; Clougherty, M.; Hale, D.E.; Klingensmith, G.J.; Laffel, L.; et al. Are children with type 1 diabetes safe at school? Examining parent perceptions. Pediatr. Diabetes 2015, 16, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Yale, J.; Dulude, H.; Egeth, M.; Piche, C.; Lafontaine, M.; Carballo, D.; Margolies, R.; Dissinger, E.; Shames, A.; Kaplowitz, N.; et al. Faster use and fewer failures with needle-free nasal glucagon versus injectable glucagon in severe hypoglycaemia rescue: A simulation study. Diab. Tech. Ther. 2017, 19, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Guzman, C.B.; Dulude, H.; Piché, C.; Rufiange, M.; Sadoune, A.A.; Rampakakis, E.; Carballo, D.; Triest, M.; Zhang, M.X.; Zhang, S.; et al. Effects of common cold and concomitant administration of nasal decongestant on the pharmacokinetics and pharmacodynamics of nasal glucagon in otherwise healthy participants: A randomized clinical trial. Diabetes Obes. Metab. 2018, 20, 646–653. [Google Scholar] [CrossRef]
- MacCuish, A.C.; Munro, J.F.; Duncan, L.J. Treatment of hypoglycaemic coma with glucagon, intravenous dextrose, and mannitol infusion in a hundred diabetics. Lancet 1970, 2, 946–949. [Google Scholar] [CrossRef]
- Seaquist, E.; Dulude, H.; Zhang, M.; Rampakakis, E.; Rabasa-Lhoret, R.; Tsoukas, G.; Conway, R.; Weisnagel, J.; Gerety, G.; Woo, V.; et al. Prospective study evaluating the use of nasal glucagon for the treatment of moderate to severe hypoglycaemia in adults with type 1 diabetes in a real-world setting. Diabetes Obes. Metab. 2018, 20, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Deeb, L.; Dulude, H.; Guzman, C.; Zhang, S.; Reiner, B.; Piche, C.; Pradhan, S.; Zhang, M. A phase 3 multicenter, open-label, prospective study designed to evaluate the effectiveness and ease of use of nasal glucagon in the treatment of moderate and severe hypoglycaemia in children and adolescents with type 1 diabetes in the home or school setting. Pediatric Diabetes 2018, 19, 1007–1013. [Google Scholar] [PubMed]
- Pöhlmann, J.; Mitchell, B.D.; Bajpai, S.; Osumili, B.; Valentine, W.J. Nasal Glucagon Versus Injectable Glucagon for Severe Hypoglycemia: A Cost-Offset and Budget Impact Analysis. J. Diabetes Sci. Technol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.S.; Graven, L.J. Intranasal Glucagon for Severe Hypoglycemia. Home Healthc Now. 2017, 35, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, M.; Wilson, S.S.; Hampton, J. Safety and efficacy of intranasally administered medications in the emergency department and prehospital settings. Am. J. Health Syst. Pharm. 2015, 72, 1544–1554. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Okazaki, K.; Yanagisawa, K.; Yamada, K.; Kuribayashi, N.; Totsuka, Y.; Hiyoshi, T.; Naka, M.; Sugimoto, M.; Aoki, Y.; et al. Glucagon underutilized among type 1 diabetes mellitus patients in Japan. Diabetes Technol. Ther. 2013, 15, 748–750. [Google Scholar] [CrossRef]
- Mitchell, B.D.; He, X.; Sturdy, I.M.; Cagle, A.P.; Settles, J.A. Glucagon prescription patterns in patients with either type 1 or type 2 diabetes with newly prescribed insulin. Endocr. Pract. 2016, 22, 123–135. [Google Scholar] [CrossRef]
Problem and Remedies | Technical Problems | Alternatives/Improvements |
---|---|---|
Hypoglycemia | ||
Frequent, dangerous for prognosis and for well-being | ||
Remedies are glucose (p.o. or parenteral) and glucagon | Glucagon has to be reconstituted and injected IM | Intranasal glucagon (was shown in 1983 to raise blood glucose levels in healthy subjects) |
Reconstitution is difficult for untrained caregivers | Powders that do not need reconstitution and solutions and can be worn in a device | |
Poorly utilized because of technical problems | Easy to administer, might be used by caregivers or even self-administered | |
It works in the presence of common cold and nasal congestion | ||
It works in the real-world setting | ||
Side effects: several and common | Side effects: fewer, only local |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontiroli, A.E.; Tagliabue, E. Therapeutic Use of Intranasal Glucagon: Resolution of Hypoglycemia. Int. J. Mol. Sci. 2019, 20, 3646. https://doi.org/10.3390/ijms20153646
Pontiroli AE, Tagliabue E. Therapeutic Use of Intranasal Glucagon: Resolution of Hypoglycemia. International Journal of Molecular Sciences. 2019; 20(15):3646. https://doi.org/10.3390/ijms20153646
Chicago/Turabian StylePontiroli, Antonio E., and Elena Tagliabue. 2019. "Therapeutic Use of Intranasal Glucagon: Resolution of Hypoglycemia" International Journal of Molecular Sciences 20, no. 15: 3646. https://doi.org/10.3390/ijms20153646
APA StylePontiroli, A. E., & Tagliabue, E. (2019). Therapeutic Use of Intranasal Glucagon: Resolution of Hypoglycemia. International Journal of Molecular Sciences, 20(15), 3646. https://doi.org/10.3390/ijms20153646