Melanocyte Activation Mechanisms and Rational Therapeutic Treatments of Solar Lentigos
Abstract
:1. Introduction
2. Clinical Characteristics
3. Mechanisms of Melanocyte Activation in Solar Lentigo Based upon Melanogenic Paracrine Cytokine Network
3.1. Melanocyte Number and Tyrosinase Expression
3.2. Melanogenic Paracrine Cytokine Networks
3.3. Major Paracrine Cytokines and Receptors Responsible for Melanocyte Activation in SLs
3.4. Synergistic Stimulatory Effects of the Combination of EDN1 and SCF
3.5. Mutual Interactions between EDN/EDNBR and SCF/c-KIT
4. Summary of the Pathobiology of SLs
5. Therapeutic Topical Treatment Approaches
5.1. Blocking Essential Melanogenic Intracellular Signaling
5.2. Inhibiting Tyrosinase Activity
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
SLs | solar lentigos |
EDN1 | endothelin-1 |
SCF | stem cell factor |
mSCF | membrane-bound stem cell factor |
KGF | keratinocyte growth factor |
bFGF | basic fibroblast growth factor |
GROα | growth-related oncogene α |
GM-CSF | granulocyte macrophage colony stimulatory factor |
EDNRB | endothelin B receptor |
IL | interleukin |
TNFα | tumor necrosis factor α |
MAPK | mitogen activated protein kinase |
MITF | microphthalmia associated transcription factor |
NHMs | normal human melanocytes |
PKA | protein kinase A |
PKC | protein kinase C |
ECE | endothelin converting enzyme |
APS | L-ascorbate-2-phosphate 3 Na |
References
- Kawashima, M.; Imokawa, G. Hyperpigmentation mechanisms involved in UVB-melanosis and solar lentigo and clinical effects of Chamomilla extract on the pigmentation. Mon. Book Derma 2005, 98, 43–61. [Google Scholar]
- Hattori, H.; Kawashima, M.; Ichikawa, Y.; Imokawa, G. The epidermal stem cell factor is over-expressed in lentigo senilis: Implication for the mechanism of hyperpigmentation. J. Investig. Dermatol. 2004, 122, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Yonei, N.; Kaminaka, C.; Kimura, A.; Furukawa, F.; Yamamoto, Y. Two patterns of solar lentigines: A histopathological analysis of 40 Japanese women. J. Dermatol. 2012, 39, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Kadono, S.; Manaka, I.; Kawashima, M.; Kobayashi, T.; Imokawa, G. The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis. J. Investig. Dermatol. 2001, 116, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Praetorius, C.; Sturm, R.A.; Steingrimsson, E. Sun-induced freckling: Ephelides and solar lentigines. Pigment Cell Melanoma Res. 2014, 27, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Hasegawa, S.; Inoue, Y.; Date, Y.; Arima, M.; Yagami, A.; Iwata, Y.; Abe, M.; Takahashi, M.; Yamamoto, N.; et al. Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines. J. Dermatol. Sci. 2014, 73, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Yin, L.; Smuda, C.; Batzer, J.; Hearing, V.J.; Kolbe, L. Molecular and histological characterization of age spots. Exp. Dermatol. 2017, 26, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004, 17, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Ishida, K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: Perspective of anti-pigmenting agents. Int. J. Mol. Sci. 2014, 15, 8293–8315. [Google Scholar] [CrossRef]
- Imokawa, G. Paracrine Interactions of Melanocytes in Pigmentary Disorders; Nordlund, J.J., Boissy, R.E., Hearing, V.J., King, R.A., Oetting, W.S., Ortonne, J.-P., Eds.; The Pigmentary System; Blackwell Publishing: Malden, MA, USA, 2005; pp. 421–444. [Google Scholar]
- Imokawa, G.; Yada, Y.; Miyagishi, M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J. Biol. Chem. 1992, 267, 24675–24680. [Google Scholar]
- Imokawa, G.; Miyagishi, M.; Yada, Y. Endothelin-1 as a new melanogen: Coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J. Investig. Dermatol. 1995, 105, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Yada, Y.; Kimura, M. Signaling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem. J. 1996, 314, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G.; Kobayashi, T.; Miyagishi, M.; Higashi, K.; Yada, Y. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res. 1997, 10, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, A.; Kobayashi, A.; Yoshida, Y.; Kitahara, T.; Takema, Y.; Imokawa, G. Biphasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. Am. J. Pathol. 2004, 65, 2099–2109. [Google Scholar] [CrossRef]
- Hachiya, A.; Kobayashi, A.; Ohuchi, A.; Takema, Y.; Imokawa, G. The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet B-induced pigmentation. J. Investig. Dermatol. 2001, 116, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Aoki, H.; Moro, O.; Tagami, H.; Kishimoto, J. Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics. Br. J. Dermatol. 2007, 156, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Motokawa, T.; Kato, T.; Katagiri, T.; Matsunaga, J.; Takeuchi, I.; Tomita, Y.; Suzuki, I. Messenger RNA levels of melanogenesis associated genes in lentigo senilis lesions. J. Dermatol. Sci. 2005, 37, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormmonal regualtion. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef]
- Slominski, A.; Zmijewski, M.A.; Pawelek, J. L-tyrosine and L-dihyroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012, 25, 14–27. [Google Scholar] [CrossRef]
- Starner, R.J.; McClelland, L.; Abdel-Malek, Z.; Fricke, A.; Scott, G. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation. Exp. Dermatol. 2010, 19, 682–684. [Google Scholar] [CrossRef] [Green Version]
- Imokawa, G.; Yada, Y.; Morisaki, N.; Kimura, M. Granulocyte/macrophage-colony-stimulatory factor is an intrinsic keratinocyte-derived growth factor for human melanocytes in UVA-induced melanosis. Biochem. J. 1996, 313, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Halaban, R.; Langdon, R.; Birchall, N.; Cuono, C.; Baird, A.; Scott, G.; Moellmann, G.; McGuire, J. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J. Cell Biol. 1988, 107, 1611–1619. [Google Scholar] [CrossRef]
- Imokawa, G.; Higuchi, K.; Yada, Y. Purification and characterization of an allergy-induced melanogenic stimulating factor in brownish guinea pig skin. J. Biol. Chem. 1998, 273, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, D.; Cardinali, G.; Aspite, N.; Cota, C.; Luzi, F.; Bellei, B.; Briganti, S.; Amantea, A.; Torrisi, M.R.; Picardo, M. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br. J. Dermatol. 2010, 163, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.B.; Hu, Y.; Rossetti, D.; Chen, N.; David, C.; Slominski, A.; Seiberg, M. Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development. J. Dermatol. Sci. 2010, 59, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, G. Characterization of Keratinocyte-and Fibroblast-Derived Mitogens for Human Melanocyte—Their Roles in Stimulated Cutaneous Pigmentation; Melanogenesis and Malignant Melanoma; Hori, Y., Hearing, V.J., Nakayama, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 35–48. [Google Scholar]
- Shishido, E.; Kadono, S.; Manaka, I.; Kawashima, M.; Imokawa, G. The mechanism of epidermal hyperpigmentation in dermatofibroma is associated with stem cell factor and hepatocyte growth factor expression. J. Investig. Dermatol. 2001, 117, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Yoshimura, K.; Suzuki, Y.; Uchid, G.; Kitano, Y.; Harii, K.; Imokawa, G. The mechanism of epidermal hyperpigmentation in Café-Au-Lait macules of neurofibromatosis type-1 (von Recklinghausen’s Disease) may be associated with dermal fibroblast-derived stem cell factor and hepatocyte growth factor. Br. J. Dermatol. 2003, 148, 689–697. [Google Scholar] [CrossRef]
- Chen, N.; Hu, Y.; Li, W.H.; Eisinger, M.; Seiberg, M.; Lin, C.B. The role of keratinocyte growth factor in melanogenesis: A possible mechanism for the initiation of solar lentigines. Exp. Dermatol. 2010, 19, 865–872. [Google Scholar] [CrossRef]
- Imokawa, G.; Kawai, M. Differential hypermelanosis induced by allergic contact dermatitis. J. Investig. Dermatol. 1987, 89, 540–546. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Niwano, T.; Terazawa, S.; Nakajima, H.; Wakabayashi, Y.; Imokawa, G. Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling. Cytokine 2015, 73, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Sato-Jin, K.; Nishimura, E.K.; Akasaka, E.; Huber, W.; Nakano, H.; Miller, A.; Du, J.; Wu, M.; Hanada, K.; Sawamura, D.; et al. Epistatic connections between MITF and endothelin signaling in Waardenburg Syndrome and other pigmentary disorders. FASEB J. 2008, 22, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Yada, Y.; Higuchi, K.; Imokawa, G. Effects of endothelins on signal transduction and proliferation in human melanocytes. J. Biol. Chem. 1991, 266, 18352–18357. [Google Scholar] [PubMed]
- Hyter, S.; Coleman, D.J.; Ganguli-Indra, G.; Merrill, G.F.; Ma, S.; Yanagisawa, M.; Indra, A.K. Endothelin-1 is a transcriptional target of p53 in epidermal keratinocytes and regulates ultraviolet-induced melanocyte homeostasis. Pigment Cell Melanoma Res. 2013, 26, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Yanagisawa, M.; Takuwa, Y.; Miyazaki, H.; Kimura, S.; Goto, K.; Masaki, T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1990, 348, 732–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizutani, Y.; Hayashi, N.; Kawashima, M.; Imokawa, G. A single UVB exposure increases the expression of functional KIT in human melanocytes by up-regulating MITF expression through the phosphorylation of p38/CREB. Arch. Dermatol. Res. 2010, 302, 283–294. [Google Scholar] [CrossRef]
- Tsuboi, R.; Sato, C.; Shi, C.M.; Nakamura, T.; Sakurai, T.; Ogawa, H. Endothelin-1 acts as an autocrine growth factor for normal human keratinocytes. J. Cell Physiol. 1994, 159, 213–220. [Google Scholar] [CrossRef]
- Hachiya, A.; Kobayashi, T.; Takema, Y.; Imokawa, G. Biochemical characterization of endothlein-converting enzyme-1alpha in cultured skin-derived cells and its postulated role in the stimulation of melanogenesis in human epidermis. J. Biol. Chem. 2002, 277, 5395–5403. [Google Scholar] [CrossRef]
- Imokawa, G.; Kobayashi, T.; Miyagishi, M. Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes: Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J. Biol. Chem. 2000, 275, 33321–33328. [Google Scholar] [CrossRef]
- Imokawa, G.; Yada, Y.; Morisaki, N.; Kimura, M. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem. J. 1998, 330, 1235–1239. [Google Scholar] [CrossRef]
- Terazawa, S.; Imokawa, G. Signaling cascades activated by UVB in human melanocytes lead to the increased expression of melanocyte-receptors, endothelin B receptor and c-KIT. Photochem. Photobiol. 2018, 94, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Spritz, R.A. Genetic Hypomelanoses: Disorders Characterized by Congenital White Spotting-Piebaldism, Waardenburg Syndrome, and Related Genetic Disorders of Melanocyte Development-Clinical Aspects; Nordlund, J.J., Boissy, R.E., Hearing, V.J., King, R.A., Oetting, W.S., Ortonne, J.-P., Eds.; The Pigmentary System; Blackwell Publishing: Malden, MA, USA, 2005; pp. 541–550. [Google Scholar]
- Ishikawa, Y.; Niwano, T.; Hirano, S.; Numano, K.; Takasima, K.; Imokawa, G. Whitening effect of L-ascorbate-2-phosphate trisodium salt on solar lentigos. Arch. Dermatol. Res. 2019, 311, 183–191. [Google Scholar] [CrossRef] [PubMed]
→Epidermis →Dermis | Cytokine/Chemokine | Receptor | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ET-1 | SCF | GROa | HGF | bFGF | KGF | IL-1a | TNFa | EDNBR | c-KIT | KGFR | |
UVB melanosis | ↑ | ↑ | → | → | ↑ | ↑ | ↑ | → | ↑ | → | ↑ |
Solar Lentigo | ↑ | ↑ | → | ? | → | ↑ | ↓ | ↑ | ↑ | ↗ | ↑ |
Seborrehoic Keratosis | ↑ | ⇡ | ? | ? | ? | ? | ↓ | ↑ | ? | ? | ? |
Dermato-fibroma | → → | ↑ → | → → | ↑ → | → → | ? | ? | ? | ? | ↑ | ? |
Café-au-lait macules | → → | ↑ | ? | ↑ | → | ? | ? | ? | ? | ? | ? |
Riehl’s Melanosis | ? | ? | ↑ | ? | ? | ? | ↑ | ? | ? | ? | ? |
Vitiligo Vulgaris | ↑ | ↑ | ? | → | → | ? | ? | ? | → | ↓ | ? |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imokawa, G. Melanocyte Activation Mechanisms and Rational Therapeutic Treatments of Solar Lentigos. Int. J. Mol. Sci. 2019, 20, 3666. https://doi.org/10.3390/ijms20153666
Imokawa G. Melanocyte Activation Mechanisms and Rational Therapeutic Treatments of Solar Lentigos. International Journal of Molecular Sciences. 2019; 20(15):3666. https://doi.org/10.3390/ijms20153666
Chicago/Turabian StyleImokawa, Genji. 2019. "Melanocyte Activation Mechanisms and Rational Therapeutic Treatments of Solar Lentigos" International Journal of Molecular Sciences 20, no. 15: 3666. https://doi.org/10.3390/ijms20153666
APA StyleImokawa, G. (2019). Melanocyte Activation Mechanisms and Rational Therapeutic Treatments of Solar Lentigos. International Journal of Molecular Sciences, 20(15), 3666. https://doi.org/10.3390/ijms20153666