A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize (Zea mays L.)
Abstract
:1. Introduction
2. Results
2.1. Characterization of Maize Cell Wall Invertase-Related Enzyme Zm-6&1-FEH1 with Fructan Exohydrolase Activity
2.2. Maize 6&1-FEH1 Enzyme Exhibits Differential Expression during Plant Development and in Response to Abiotic Stress
2.3. Maize 6&1-FEH1 Enzyme is Able to Form Complex with Invertase Inhibitor Protein
2.4. Modeling the Interface of a Complex between Zm-6&1-FEH1 and Zm-INVINH1
3. Discussion
4. Materials and Methods
4.1. Plant Material and Cultivation
4.2. Preparation of RNA, cDNA Synthesis and cDNA Cloning
4.3. Plasmid Cloning
4.4. Gene expression Analysis by qPCR
4.5. Expression of Recombinant FEH Proteins in Pichia Pastoris
4.6. Expression of Recombinant Invertase Inhibitors in E. coli
4.7. Plant Transformation
4.8. Protein Extraction from Plant Material and Determination of FEH Activity
4.9. Functional Characterization of Pichia-Expressed FEH and E. coli-Expressed Invertase Inhibitor Proteins
4.10. Carbohydrate Extraction and Analysis
4.11. Bimolecular Fluorescence Complementation (BiFC) Assay
4.12. CLSM Analysis
4.13. Modelling FEH-Invertase Inhibitor Complexes
4.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hendry, G.A.F. Evolutionary origins and natural functions of fructans: A climatological, biogeography and mechanistic appraisal. New Phytol. 1993, 123, 3–14. [Google Scholar] [CrossRef]
- Di Bartolomeo, F.; Van den Ende, W. Fructose and Fructans: Opposite Effects on Health? Plant Food. Hum. Nutr. 2015, 30, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Wang, J.; Zhou, M.J.; Ren, X.Y.; Zhan, W.Y.; Sun, Z.J.; Zhao, H.Y.; Yang, Y.; Liang, M.X.; Van den Ende, W. Characterization of fructan metabolism during Jerusalem Artichoke (Helianthus tuberosus L.) germination. Front. Plant Sci. 2018, 9, 1384. [Google Scholar] [CrossRef] [PubMed]
- Lothier, J.; Van Laere, A.; Pruďhomme, M.P.; Van den Ende, W.; Morvan-Bertrand, A. Cloning and characterization of a novel fructan 6-exohydrolase strongly inhibited by sucrose in Lolium perenne. Planta 2014, 240, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Sonoda, T.; Yoshida, M.; Shiomi, N.; Onodera, S. Purification, characterization, and functional analysis of a novel 6G&1-FEH mainly hydrolyzing neokestose from asparagus. J. Exp. Bot. 2018, 69, 4295–4308. [Google Scholar] [PubMed]
- Verhaest, M.; Van den Ende, W.; Le Roy, K.; De Ranter, C.J.; Van Laere, A.; Rabijns, A. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J. 2005, 41, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Lammens, W.; Le Roy, K.; van Laere, A.; Rabijns, A.; van den Ende, W. Crystal structures of Arabidopsis thaliana cell-wall invertase mutants in complex with sucrose. J. Mol. Biol. 2008, 377, 378–385. [Google Scholar] [CrossRef]
- Lammens, W.; Le Roy, K.; Yuan, S.; Vergauwen, R.; Rabijns, A.; Van Laere, A.; Strelkov, S.V.; Van den Ende, W. Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Plant J. 2012, 170, 205–219. [Google Scholar] [CrossRef]
- Wei, J.Z.; Chatterton, N.J. Fructan biosynthesis and fructosyltransferase evolution: expression of the 6-SFT (sucrose: fructan 6-fructosyltransferase) gene in crested wheatgrass (Agropyron cristatum). J. Plant Physiol. 2001, 158, 1203–1213. [Google Scholar] [CrossRef]
- Lammens, W.; Le Roy, K.; Schroeven, L.; Van Laere, A.; Rabijns, A.; Van den Ende, W. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J. Exp. Bot. 2009, 60, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Le Roy, K.; Lammens, W.; Van Laere, A.; Van den Ende, W. Influencing the binding configuration of sucrose in the active sites of chicory fructan 1-exohydrolase and sugar beet fructan 6-exohydrolase. New Phytol. 2008, 178, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, K.; Vergauwen, R.; Struyf, T.; Yuan, S.; Lammens, W.; Mátrai, J.; De Maeyer, M.; Van den Ende, W. Understanding the role of defective invertases in plants: Tobacco Nin88 fails to degrade sucrose. Plant Physiol. 2013, 161, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Kusch, U.; Harms, K.; Rausch, T.; Greiner, S. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism. New Phytol. 2009, 181, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, M.; Van den Ende, W.; Lammens, W.; Rybin, V.; Scheffzek, K. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. PNAS 2010, 107, 17427–17432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Ende, W.; De Coninck, B.; Clerens, S.; Vergauwen, R.; Van Laere, A. Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel’ cell-wall invertase-like’ specific 6-FEH from sugar beet (Beta vulgaris L.). Plant J. 2003, 36, 697–710. [Google Scholar] [CrossRef] [PubMed]
- De Coninck, B.; Le Roy, K.; Francis, I.; Clerens, S.; Vergauwen, R.; Halliday, A.; Smith, S.; Van Laere, A.; Van den Ende, W. Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydro-lases (FEHs) with different substrate specificities. Plant Cell Environ. 2005, 28, 432–443. [Google Scholar] [CrossRef]
- Ji, X.; Van den Ende, W.; Schroeven, L.; Geuten, K.; Cheng, S.; Bennett, J. The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytol. 2007, 173, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Meguro-Maoka, A.; Yoshida, M. Analysis of seasonal expression levels of wheat fructan exohydrolase (FEH) genes regulating fructan metabolism involved in wintering ability. J. Plant Physiol. 2016, 191, 54–62. [Google Scholar] [CrossRef]
- Van den Ende, W. Novel fructan exohydrolase: unique properties and applications for human health. J. Exp. Bot. 2018, 69, 4227–4231. [Google Scholar] [CrossRef]
- Van den Ende, W.; Van Laere, A. Fructans in dicotyledonous plants: occurence and metabolism. In Recent Advances in Fructooligosaccharides Research; Shiomi, N., Benkeblia, N., Onodera, S., Eds.; Research Signpost: Trivandrum, India, 2007; pp. 1–14. [Google Scholar]
- Kim, J.Y.; Mahé, A.; Guy, S.; Brangeon, J.; Roche, O.; Chourey, P.S.; Prioul, J.L. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 2000, 245, 89–102. [Google Scholar] [CrossRef]
- Cheng, W.; Taliercio, E.; Chourey, P. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 1996, 8, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Chourey, P.S.; Jain, M.; Li, Q.B.; Carlson, S.J. Genetic control of cell wall invertases in developing endosperm of maize. Planta 2006, 223, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Hirose, T.; Takano, M.; Terao, T. Cell wall invertase in developing rice caryopsis: Molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol. 2002, 43, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Rausch, T.; Greiner, S. Plant protein inhibitors of invertases. Biochim. Biophys. Acta 2004, 1696, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Bate, N.J.; Niu, X.; Wang, Y.; Reimann, K.S.; Helentjaris, T.G. An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol. 2004, 134, 246–254. [Google Scholar] [CrossRef]
- De Meyer, T.; Laukens, B.; Nolf, J.; Van Lerberge, E.; De Rycke, R.; Debeuckelaer, A.; De Buck, S.; Callewaert, N.; Depicker, A. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnol. J. 2015, 13, 938–947. [Google Scholar] [CrossRef]
- Le Roy, K.; Verhaest, M.; Rabijns, A.; Clerens, S.; Van Laere, A.; Van den Ende, W. N-glycosylation affects substrate specificity of chicory fructan 1-exohydrolase: Evidence for the presence of an inulin bunding cleft. Plant Physiol. 2007, 176, 317–324. [Google Scholar] [CrossRef]
- Mardo, K.; Visnapuu, T.; Gromkova, M.; Aasamets, A.; Viigand, K.; Vija, H.; Alamae, T. High-throughput assay for levansucrase variants in search of feasible catalysts for the synthesis of fructooligisacchararides and levan. Methods 2014, 19, 8434–8455. [Google Scholar]
- Strube, C.; Homann, A.; Gamer, M.; Jahn, D.; Seibel, J.; Heinz, D.W. Polysaccharide synthesis of the levansucrase SacB from Bacillus megaterium is controlled by distinct surface motifs. J. Biol. Chem. 2011, 286, 17593–17600. [Google Scholar] [CrossRef]
- Alexandrov, N.N.; Brover, V.V.; Freidin, S.; Troukhan, M.E.; Tatarinova, T.V.; Zhang, H.; Swaller, T.J.; Lu, Y.P.; Bouck, J.; Flavell, R.B.; et al. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol. Biol. 2009, 69, 179–194. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, P.; et al. ClustalW and ClustalX version 2. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grefen, C.; Donald, N.; Hashimoto, K.; Kudla, J.; Schumacher, K.; Blatt, M.R. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010, 64, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kusch, U. Dissecting the Regulation of Fructan Active Enzymes in Cichorium intybus. Ph.D. Thesis, Universität Heidelberg, Heidelberg, Germany, 5 June 2009. [Google Scholar]
- Eufinger, J. Regulation of Taproot Development and Sucrose Stabilization in Sugar Beet: Influence of Invertase Inhibitors and Occurrence of Mitochondrial Energy-Dissipating Proteins. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany, 21 June 2006. [Google Scholar]
- Wolf, S.; Rausch, T.; Greiner, S. The N-terminal pro region mediates retention of unprocessed type I PME in the Golgi apparatus. Plant J. 2009, 58, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Wyatt, S.; Tsou, P.L.; Robertson, D.; Allen, N.S. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 1999, 26, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Link, M.; Rausch, T.; Greine, S. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specifcities and expression profiles. FEBS Lett. 2004, 573, 105–109. [Google Scholar] [CrossRef]
- Wei, H.B.; Bausewein, A.; Steininger, H.; Su, T.; Zhao, H.B.; Harms, K.; Greiner, S.; Rausch, T. Linking expression of fructan active enzymes, cell wall invertases and sucrose transporters with fructan profiles in growing taproot of Chicory (Cichorium intybus): Impact of hormonal and environmental cues. Front. Plant Sci. 2016, 7, 1806. [Google Scholar] [CrossRef]
- Wei, H.B.; Zhao, H.B.; Su, T.; Bausewein, A.; Greiner, S.; Harms, K.; Rausch, T. Chicory R2R3-MYB transcription factors CiMYB5 and CiMYB3 regulate fructan 1-exohydrolase expression in response to abiotic stress and hormonal cues. J. Exp. Bot. 2017, 68, 4323–4338. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.B.; Bausewein, A.; Greiner, S.; Dauchot, N.; Harms, K.; Rausch, T. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. New Phytol. 2017, 215, 281–298. [Google Scholar] [CrossRef]
- Hothorn, M.; D’Angelo, I.; Marquez, J.; Greiner, S.; Scheffzek, K. The invertase inhibitor nt-cif from tobacco: A highly thermostable four-helix bundle with an unusual n-terminal extension. J. Mol. Biol. 2004, 335, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 2016, 54. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. D 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
Substrate | Linkage Form | DP | Pichia Derived Activity of Zm-6&1-FEH1 (%) |
---|---|---|---|
6% inulin | β (2,1) | 30* | 85 |
1 mM 1-kestotriose | β (2,1) | 3 | 45 |
1 mM 1,1-kestotetraose | β (2,1) | 4 | 39 |
1 mm 1,1,1-kestopentaose | β (2,1) | 5 | 36 |
1 mM levan | β (2,6) | 100* | 100 |
1 mM sucrose | 2 | 21 | |
10 mM sucrose | 2 | 20 | |
100 mM sucrose | 2 | 20 |
Zm-6&1-FEH1 | Control | Zm-INVINH1 | ||
inulin | levan | inulin | levan | |
100 (±10) | 100 (±8) | 66 (±11) | 64 (±8) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Greiner, S.; Scheffzek, K.; Rausch, T.; Wang, G. A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize (Zea mays L.). Int. J. Mol. Sci. 2019, 20, 3807. https://doi.org/10.3390/ijms20153807
Zhao H, Greiner S, Scheffzek K, Rausch T, Wang G. A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize (Zea mays L.). International Journal of Molecular Sciences. 2019; 20(15):3807. https://doi.org/10.3390/ijms20153807
Chicago/Turabian StyleZhao, Hongbo, Steffen Greiner, Klaus Scheffzek, Thomas Rausch, and Guoping Wang. 2019. "A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize (Zea mays L.)" International Journal of Molecular Sciences 20, no. 15: 3807. https://doi.org/10.3390/ijms20153807
APA StyleZhao, H., Greiner, S., Scheffzek, K., Rausch, T., & Wang, G. (2019). A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize (Zea mays L.). International Journal of Molecular Sciences, 20(15), 3807. https://doi.org/10.3390/ijms20153807