Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties
Abstract
:1. Introduction
2. Reactive Oxygen Species (ROS) and Polyphenols as Two Opposing Pro and Anti-Obesity Factors
3. The Impact of ROS on Mitochondrial Activity, the Inflammation Process, Hypothalamic Neurons, and Their Role in Obesity
3.1. Mitochondrial Activity in Obese Subjects
3.2. Chronic Low-Grade Inflammation as a Result of Increased Adipocyte Number
3.3. Regulation of Appetite and Energy Homeostasis
4. Obesity—In Vivo and In Vitro Plant Extract Studies
4.1. Obesity Cellular Models—In Vitro Studies
4.2. Obesity Animal Models—In Vivo Studies
4.3. Obesity Human Model—In Vivo Studies.
5. Role of Polyphenols in Mitochondrial Activities, Inflammation and Sympathetic Nervous System Activity and Obesity Management via ROS Neutralization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- WHO Obesity. Available online: https://www.who.int/topics/obesity/en/ (accessed on 15 August 2019).
- Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.O.; Catenacci, V.; Wyatt, H.R. Obesity: Overview of an epidemic. Psychiatr. Clin. North. Am. 2005, 28, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Steenbergen, L.; Colzato, L.S. Overweight and cognitive performance: High body mass index is associated with impairment in reactive control during task switching. Front. Nutr. 2017, 4, 51. [Google Scholar] [CrossRef] [PubMed]
- Sperrin, M.; Marshall, A.D.; Higgins, V.; Renehan, A.G.; Buchan, I.E. Body mass index relates weight to height differently in women and older adults: Serial cross-sectional surveys in England (1992–2011). J. Public Health 2016, 38, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Frank, Q.; Nuttall, M.D. Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar]
- Djalalinia, S.; Qorbani, M.; Peykari, N.; Kelishadi, R. Health Impacts of Obesity—Obesity Canada. Pak. J. Med. Sci. 2015, 31, 239–242. [Google Scholar]
- Hruby, A.; Manson, J.A.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and consequences of obesity. Am. J. Public Health 2016, 106, 1656–1662. [Google Scholar] [CrossRef]
- Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Cho, K.J.; Seo, J.M.; Kim, J.H. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol. Cells 2011, 32, 1–5. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Beszterda, M.; Goliński, P. Nonenzymatic Antioxidants in Plants. In Oxidative Damage to Plants, 1st ed.; Ahmad, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 201–234. [Google Scholar]
- Yoboue, E.D.; Mougeolle, A.; Kaiser, L.; Averet, N.; Rigoulet, M.; Devin, A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. Biochim. Biophys. Acta 2014, 1837, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Timper, K.; Brüning, J.C. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity. Dis. Model. Mech. 2017, 10, 679–689. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef]
- Puri, B.; Hall, A. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 1998. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Kulbat, K. Biotechnology and Food Sciences The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Wink, M. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front. Physiol. 2018, 9, 364. [Google Scholar] [CrossRef]
- Neill, S.O. The functional role of anthocyanins in leaves. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2002. [Google Scholar]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Liou, G.-Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications review-Article. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [Green Version]
- Panth, N.; Paudel, K.R.; Parajuli, K. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Adv. Med. 2016, 2016, 9152732. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Skibsted, L.H. Vitamin and non-vitamin antioxidants and their interaction in food. J. Food Drug Anal. 2012, 20, 355–358. [Google Scholar]
- Dai, F.; Chen, W.F.; Zhou, B. Antioxidant synergism of green tea polyphenols withα-tocopherol and l-ascorbic acid in SDS micelles. Biochimie 2008, 90, 1499–1505. [Google Scholar] [CrossRef]
- Hong, J.; Smith, T.J.; Ho, C.T.; August, D.A.; Yang, C.S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol. 2001, 62, 1175–1183. [Google Scholar] [CrossRef]
- Ribeiro, V.M.; Bede, T.P.; Rocha, G.; Barroso, S.; Valença, S.; De Azeredo, V.B. High fat diet and high polyphenols beverages effects in enzymatic and non-enzymatic antioxidant activity. Nutr. Hosp. 2017, 35, 169–175. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Serra, D.; Mera, P.; Malandrino, M.I.; Mir, J.F.; Herrero, L. Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal. 2013, 19, 269–284. [Google Scholar] [CrossRef]
- Bournat, J.C.; Brown, C.W. Mitochondrial Dysfunction in Obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446–452. [Google Scholar] [CrossRef]
- Pintus, F.; Floris, G.; Rufini, A. Nutrient availability links mitochondria, apoptosis, and obesity. Aging 2012, 4, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Zhang, J.; Choi, A.M.K.; Kim, H.P. Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid. Med. Cell. Longev. 2013, 2013, 327167. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Bouchez, C.; Devin, A. Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): A Complex Relationship Regulated by the cAMP/PKA Signaling Pathway. Cells 2019, 8, 287. [Google Scholar] [CrossRef]
- Hernández-Aguilera, A.; Rull, A.; Rodríguez-Gallego, E.; Riera-Borrull, M.; Luciano-Mateo, F.; Camps, J.; Menéndez, J.A.; Joven, J. Mitochondrial dysfunction: A basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm. 2013, 2013, 135698. [Google Scholar] [CrossRef]
- Cunarro, J.; Casado, S.; Lugilde, J.; Tovar, S. Hypothalamic mitochondrial dysfunction as a target in obesity and metabolic disease. Front. Endocrinol. 2018, 9, 283. [Google Scholar] [CrossRef]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef]
- Castro, A.M.; Macedo-de la Concha, L.E.; Pantoja-Meléndez, C.A. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev. Médica del Hosp. Gen. México 2016, 80, 101–105. [Google Scholar] [CrossRef]
- Liu, G.S.; Chan, E.C.; Higuchi, M.; Dusting, G.J.; Jiang, F. Redox Mechanisms in Regulation of Adipocyte Differentiation: Beyond a General Stress Response. Cells 2012, 1, 976–993. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.P.; Grune, T.; Speckmann, B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol. Chem. 2016, 397, 709–724. [Google Scholar] [CrossRef]
- Hakuno, F.; Takahashi, S.I. IGF1 receptor signaling pathways. J. Mol. Endocrinol. 2018, 61, T69–T86. [Google Scholar] [CrossRef]
- Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 2013, 528, 27–48. [Google Scholar]
- Grimaldi, P.A. The roles of PPARs in adipocyte differentiation. Prog. Lipid Res. 2001, 40, 269–281. [Google Scholar] [CrossRef]
- Schopfer, F.J.; Cole, M.P.; Groeger, A.L.; Chen, C.S.; Khoo, N.K.; Woodcock, S.R.; Golin-Bisello, F.; Motanya, U.N.; Li, Y.; Zhang, J.; et al. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: Selective ligand activity and anti-diabetic signaling actions. J. Biol. Chem. 2010, 285, 12321–12333. [Google Scholar] [CrossRef]
- Kim, J.W.; Tang, Q.Q.; Li, X.; Lane, M.D. Effect of phosphorylation and S–S bond-induced dimerization on DNA binding and transcriptional activation by C/EBPbeta. Proc. Natl. Acad. Sci. USA 2007, 104, 1800–1804. [Google Scholar] [CrossRef]
- Jankovic, A.; Korac, A.; Buzadzic, B.; Otasevic, V.; Stancic, A.; Daiber, A.; Korac, B. Redox implications in adipose tissue (dys)function--A new look at old acquaintances. Redox Biol. 2015, 6, 19–32. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity & inflammation: The linking mechanism & the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar]
- El-Kenawi, A.; Ruffell, B. Inflammation, ROS, and Mutagenesis. Cancer Cell 2017, 32, 727–729. [Google Scholar] [CrossRef] [Green Version]
- Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.A.T.E.; Schröder, H. The gut microbiome profile in obesity: A systematic review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef]
- Tanti, J.F.; Ceppo, F.; Jager, J.; Berthou, F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front. Endocrinol. 2013, 3, 181. [Google Scholar] [CrossRef] [Green Version]
- Erridge, C.; Samani, N.J. Saturated fatty acids do not directly stimulate toll-like receptor signaling. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1944–1949. [Google Scholar] [CrossRef]
- Pal, D.; Dasgupta, S.; Kundu, R.; Maitra, S.; Das, G.; Mukhopadhyay, S.; Ray, S.; Majumdar, S.S.; Bhattacharya, S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012, 18, 1279–1285. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Hu, L.; Liu, Y.; Sun, H.Y.; Tang, J.; Hou, Y.J.; Chang, Y.X.; Tu, Q.Q.; Feng, G.S.; et al. Nuclear Factor High-mobility Group Box1 Mediating the Activation of Toll-like Receptor 4 Signaling in Hepatocytes in the Early Stage of Non-alcoholic Fatty Liver Disease in Mice. Hepatology 2011, 54, 1620–1630. [Google Scholar] [CrossRef]
- Fischer, H.; Ellström, P.; Ekström, K.; Gustafsson, L.; Gustafsson, M.; Svanborg, C. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell. Microbiol. 2007, 9, 1239–1251. [Google Scholar] [CrossRef]
- Oliveira-Marques, V.; Marinho, H.S.; Cyrne, L.; Antunes, F. Role of Hydrogen Peroxide in NF-κB Activation: From Inducer to Modulator. Antioxid. Redox Signal. 2009, 11, 2223–2243. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Akhter, N.; Madhoun, A.; Arefanian, H.; Wilson, A.; Kochumon, S.; Thomas, R.; Shenouda, S.; Al-Mulla, F.; Ahmad, R.; Sindhu, S. Oxidative Stress Induces Expression of the Toll-Like Receptors (TLRs) 2 and 4 in the Human Peripheral Blood Mononuclear Cells: Implications for Metabolic Inflammation. Cell. Physiol. Biochem. 2019, 53, 1–18. [Google Scholar]
- Nisr, R.B.; Shah, D.S.; Ganley, I.G.; Hundal, H.S. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell. Mol. Life Sci. 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef]
- Koenen, T.B.; Stienstra, R.; Van Tits, L.J.; Joosten, L.A.B.; Van Velzen, J.F.; Hijmans, A.; Pol, J.A.; Van Der Vliet, J.A.; Netea, M.G.; Tack, C.J.; et al. The inflammasome and caspase-1 activation: A new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology 2011, 152, 3769–3778. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019, 10, 128. [Google Scholar] [CrossRef]
- Gianfrancesco, M.A.; Dehairs, J.; L’homme, L.; Herinckx, G.; Esser, N.; Jansen, O.; Habraken, Y.; Lassence, C.; Swinnen, J.V.; Rider, M.H.; et al. Saturated fatty acids induce NLRP3 activation in human macrophages through K + efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 1017–1030. [Google Scholar] [CrossRef]
- Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P.-L. Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector? Antioxid. Redox Signal. 2015, 22, 1111–1129. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Gris, D.; Lei, Y.; Jha, S.; Zhang, L.; Huang, M.T.H.; Brickey, W.J.; Ting, J.P.Y. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011, 12, 408–415. [Google Scholar] [CrossRef]
- He, Y.; Zeng, M.Y.; Yang, D.; Motro, B.; Núñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016, 530, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Pagliassotti, M.J.; Kim, P.Y.; Estrada, A.L.; Stewart, C.M.; Gentile, C.L. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism 2016, 65, 1238–1246. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.B.; Mercado, E.L.; Hoffmann, A.; Niwa, M. ER Stress Activates NF-κB by Integrating Functions of Basal IKK Activity, IRE1 and PERK. PLoS ONE 2012, 7, e45078. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal. Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Boaru, S.G.; Borkham-Kamphorst, E.; Van De Leur, E.; Lehnen, E.; Liedtke, C.; Weiskirchen, R. NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochem. Biophys. Res. Commun. 2015, 458, 700–706. [Google Scholar] [CrossRef]
- Ali Khan, H.; Mutus, B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front. Chem. 2014, 2, 70. [Google Scholar] [CrossRef] [Green Version]
- Parakh, S.; Atkin, J.D. Novel roles for protein disulphide isomerase in disease states: A double edged sword? Front. Cell Dev. Biol. 2015, 3, 30. [Google Scholar] [CrossRef]
- Zeeshan, H.M.A.; Lee, G.H.; Kim, H.R.; Chae, H.J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 2016, 17, 327. [Google Scholar] [CrossRef]
- Kawasaki, N.; Asada, R.; Saito, A.; Kanemoto, S.; Imaizumi, K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci. Rep. 2012, 2, 799. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef] [Green Version]
- Engin, A.B. Adipocyte-macrophage cross-talk in obesity. Adv. Exp. Med. Biol. 2017, 960, 327–343. [Google Scholar]
- Locati, M.; Mantovani, A.; Sica, A. Macrophage Activation and Polarization as an Adaptive Component of Innate Immunity. Adv. Immunol. 2013, 120, 163–184. [Google Scholar]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Goossens, G.H.; Blaak, E.E. Adipose tissue dysfunction and impaired metabolic health in human obesity: A matter of oxygen? Front. Endocrinol. 2015, 6, 55. [Google Scholar] [CrossRef]
- Fujisaka, S.; Usui, I.; Ikutani, M.; Aminuddin, A.; Takikawa, A.; Tsuneyama, K.; Mahmood, A.; Goda, N.; Nagai, Y.; Takatsu, K.; et al. Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 2013, 56, 1403–1412. [Google Scholar] [CrossRef]
- Sabio, G.; Davis, R.J. TNF and MAP kinase signalling pathways. Semin. Immunol. 2014, 26, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.Y.; Wang, N.; Li, S.; Hong, M.; Wang, X.; Feng, Y. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid. Med. Cell. Longev. 2016, 2016, 2795090. [Google Scholar] [CrossRef]
- Yang, J.; Park, Y.; Zhang, H.; Xu, X.; Laine, G.A.; Dellsperger, K.C.; Zhang, C. Feed-forward signaling of TNF-α and NF-κB via IKK-β pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am. J. Physiol. Circ. Physiol. 2009, 296, H1850–H1858. [Google Scholar] [CrossRef]
- Takada, Y.; Mukhopadhyay, A.; Kundu, G.C.; Mahabeleshwar, G.H.; Singh, S.; Aggarwal, B.B. Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65. Evidence for the involvement of IκBα kinase and Syk protein-tyrosine kinase. J. Biol. Chem. 2003, 278, 24233–24241. [Google Scholar] [CrossRef]
- Li, Q.; Harraz, M.M.; Zhou, W.; Zhang, L.N.; Ding, W.; Zhang, Y.; Eggleston, T.; Yeaman, C.; Banfi, B.; Engelhardt, J.F. Nox2 and Rac1 Regulate H2O2-Dependent Recruitment of TRAF6 to Endosomal Interleukin-1 Receptor Complexes. Mol. Cell. Biol. 2006, 26, 140–154. [Google Scholar] [CrossRef]
- Park, H.S.; Jung, H.Y.; Park, E.Y.; Kim, J.; Lee, W.J.; Bae, Y.S. Cutting Edge: Direct Interaction of TLR4 with NAD(P)H Oxidase 4 Isozyme Is Essential for Lipopolysaccharide-Induced Production of Reactive Oxygen Species and Activation of NF-κB. J. Immunol. 2004, 173, 3589–3593. [Google Scholar] [CrossRef]
- Gloire, G.; Legrand-Poels, S.; Piette, J. NF-κB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 2006, 72, 1493–1505. [Google Scholar] [CrossRef]
- Drougard, A.; Fournel, A.; Valet, P.; Knauf, C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front. Neurosci. 2015, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Toda, C.; Santoro, A.; Kim, J.D.; Diano, S. POMC Neurons: From Birth to Death. Annu. Rev. Physiol. 2017, 79, 209–236. [Google Scholar] [CrossRef] [Green Version]
- Gyengesi, E.; Paxinos, G.; B Andrews, Z. Oxidative Stress in the Hypothalamus: The Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation. Curr. Neuropharmacol. 2012, 10, 344–353. [Google Scholar] [CrossRef]
- Trayhurn, P.; Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001, 60, 329–339. [Google Scholar] [CrossRef]
- Luo, L.; Liu, M. Adipose tissue in control of metabolism. J. Endocrinol. 2016, 231, R77–R99. [Google Scholar] [CrossRef] [Green Version]
- Sethi, J.K.; Vidal-Puig, A.J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 2007, 48, 1253–1262. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019. [Google Scholar] [CrossRef]
- Morrison, S.; McGee, S.L. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 2015, 4, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Kraus, N.A.; Ehebauer, F.; Zapp, B.; Rudolphi, B.; Kraus, B.J.; Kraus, D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 2016, 5, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Arçari, D.P.; Santos, J.C.; Gambero, A.; Ribeiro, M.L. The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogenesis. Food Chem. 2013, 141, 809–815. [Google Scholar] [CrossRef]
- Shin, S.S.; Yoon, M. Korean red ginseng (Panax ginseng) inhibits obesity and improves lipid metabolism in high fat diet-fed castrated mice. J. Ethnopharmacol. 2018, 210, 80–87. [Google Scholar] [CrossRef]
- Kim, S.J.; Choung, S.Y. Inhibitory effects of Aster spathulifolius extract on adipogenesis and lipid accumulation in 3T3-L1 preadipocytes. J. Pharm. Pharmacol. 2016, 68, 107–118. [Google Scholar] [CrossRef]
- González-Castejón, M.; García-Carrasco, B.; Fernández-Dacosta, R.; Dávalos, A.; Rodriguez-Casado, A. Reduction of adipogenesis and lipid accumulation by taraxacum officinale (dandelion) extracts in 3T3L1 adipocytes: An in vitro study. Phyther. Res. 2014, 28, 745–752. [Google Scholar] [CrossRef]
- Sirichaiwetchakoon, K.; Lowe, G.M.; Thumanu, K.; Eumkeb, G. The Effect of Pluchea indica (L.) Less. Tea on Adipogenesis in 3T3-L1 Adipocytes and Lipase Activity. Evidence-Based Complement. Altern. Med. 2018, 2018, 4108787. [Google Scholar] [CrossRef]
- Hengpratom, T.; Lowe, G.M.; Thumanu, K.; Suknasang, S.; Tiamyom, K.; Eumkeb, G. Oroxylum indicum (L.) Kurz extract inhibits adipogenesis and lipase activity in vitro. BMC Complement. Altern. Med. 2018, 18, 177. [Google Scholar] [CrossRef]
- Mangal, P.; Khare, P.; Jagtap, S.; Bishnoi, M.; Kondepudi, K.K.; Bhutani, K.K. Screening of six Ayurvedic medicinal plants for anti-obesity potential: An investigation on bioactive constituents from Oroxylum indicum (L.) Kurz bark. J. Ethnopharmacol. 2017, 197, 138–146. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Shin, T.S.; Kim, M.Y.; Cho, N.J.; Kim, J.D. Anthocyanins from Cornus kousa ethanolic extract attenuate obesity in association with anti-angiogenic activities in 3T3-L1 cells by down-regulating adipogeneses and lipogenesis. PLoS ONE 2018, 13, e0208556. [Google Scholar] [CrossRef]
- Fathima, A.; Khanum, F.; Ilaiyaraja, N. In-vitro anti-obesity efficacy of selected plants in 3T3-l1 cell line. Int. J. Pharm. Sci. Res. 2018, 9, 4666–4673. [Google Scholar]
- Song, Y.; Park, H.J.; Kang, S.N.; Jang, S.H.; Lee, S.J.; Ko, Y.G.; Kim, G.S.; Cho, J.H. Blueberry Peel Extracts Inhibit Adipogenesis in 3T3-L1 Cells and Reduce High-Fat Diet-Induced Obesity. PLoS ONE 2013, 8, e69925. [Google Scholar] [CrossRef]
- Chayaratanasin, P.; Caobi, A.; Suparpprom, C.; Saenset, S.; Pasukamonset, P.; Suanpairintr, N.; Barbieri, M.A.; Adisakwattana, S. Clitoria ternatea Flower Petal Extract Inhibits Adipogenesis and Lipid Accumulation in 3T3-L1 Preadipocytes by Downregulating Adipogenic Gene Expression. Molecules 2019, 24, 1894. [Google Scholar] [CrossRef]
- Thomas, S.S.; Kim, M.; Lee, S.J.; Cha, Y.S. Antiobesity Effects of Purple Perilla (Perilla frutescens var. acuta) on Adipocyte Differentiation and Mice Fed a High-fat Diet. J. Food Sci. 2018, 83, 2384–2393. [Google Scholar] [CrossRef]
- Han, Y.; Jung, H.W.; Bae, H.S.; Kang, J.S.; Park, Y.K. The extract of Cinnamomum cassia twigs inhibits adipocyte differentiation via activation of the insulin signaling pathway in 3T3-L1 preadipocytes. Pharm. Biol. 2013, 51, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Woon, S.M.; Seng, Y.W.; Ling, A.P.K.; Chye, S.M.; Koh, R.Y. Anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidea and var. angustifolia on 3T3-L1 adipocytes. J. Zhejiang Univ. Sci. B 2014, 15, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wang, Y.; Jiang, W.-W.; Luo, X.-F.; Dai, T.-Y.; Peng, L.; Song, S.; Li, L.-F.; Tao, L.; Shi, C.-Y.; et al. Moringa oleifera Leaf Petroleum Ether Extract Inhibits Lipogenesis by Activating the AMPK Signaling Pathway. Front. Pharmacol. 2018, 9, 1447. [Google Scholar] [CrossRef] [Green Version]
- Velusami, C.C.; Agarwal, A.; Mookambeswaran, V. Effect of nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity. Evid. Based Complement. Altern. Med. 2013, 2013, 145925. [Google Scholar]
- Ahn, J.H.; Kim, E.S.; Lee, C.; Kim, S.; Cho, S.H.; Hwang, B.Y.; Lee, M.K. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects. Bioorganic Med. Chem. Lett. 2013, 23, 3604–3608. [Google Scholar] [CrossRef]
- Saji, J.A.; Veena, R. An In vitro Approach to Evaluate the Anti Adipogenesis Activity of Passiflora edulis f Flavicarpa Degener Leaf Extracts in 3T3-L1 Cell Lines. J. Clin. Exp. Pharmacol. 2018, 8, 5. [Google Scholar]
- Yang, J.H.; Choi, M.H.; Yang, S.H.; Cho, S.S.; Park, S.J.; Shin, H.J.; Ki, S.H. Potent Anti-Inflammatory and Antiadipogenic Properties of Bamboo (Sasa coreana Nakai) Leaves Extract and Its Major Constituent Flavonoids. J. Agric. Food Chem. 2017, 65, 6665–6673. [Google Scholar] [CrossRef]
- Chaiittianan, R.; Sutthanut, K.; Rattanathongkom, A. Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes. J. Ethnopharmacol. 2017, 201, 9–16. [Google Scholar] [CrossRef]
- Ha, D.T.; Nam Trung, T.; Bich Thu, N.; Van On, T.; Hai Nam, N.; Van Men, C.; Thi Phuong, T.; Bae, K.H. Adlay seed extract (Coix lachryma-jobi L.) decreased adipocyte differentiation and increased glucose uptake in 3T3-L1 cells. J. Med. Food 2010, 13, 1331–1339. [Google Scholar] [CrossRef]
- Kim, H.L.; Sim, J.E.; Choi, H.M.; Choi, I.Y.; Jeong, M.Y.; Park, J.; Jung, Y.; Youn, D.H.; Cho, J.H.; Kim, J.H.; et al. The AMPK pathway mediates an anti-adipogenic effect of fruits of Hovenia dulcis Thunb. Food Funct. 2014, 5, 2961–2968. [Google Scholar] [CrossRef]
- Duangjai, A.; Nuengchamnong, N.; Suphrom, N.; Trisat, K.; Limpeanchob, N.; Saokaew, S. Potential of coffee fruit extract and quinic acid on adipogenesis and lipolysis in 3T3-L1 adipocytes. Kobe J. Med. Sci. 2018, 64, E84–E92. [Google Scholar]
- Da Silva Lima, N.; De Paula Numata, E.; De Souza Mesquita, L.M.; Dias, P.H.; Vilegas, W.; Gambero, A.; Ribeiro, M.L. Modulatory effects of guarana (Paullinia cupana) on adipogenesis. Nutrients 2017, 9, 635. [Google Scholar] [CrossRef]
- Choi, E.H.; Lee, D.Y.; Park, H.S.; Shim, S.M. Changes in the profiling of bioactive components with the roasting process in Lycium chinense leaves and the anti-obesity effect of its bioaccessible fractions. J. Sci. Food Agric. 2019, 99, 4482–4492. [Google Scholar] [CrossRef]
- Lowe, M.E. Structure and function of pancreatic lipase and colipase. Annu. Rev. Nutr. 1997, 17, 141–158. [Google Scholar] [CrossRef]
- Bustanji, Y.; Mohammad, M.; Hudaib, M.; Tawaha, K.; Al-Masri, I.M.; AlKhatib, H.S.; Issa, A.; Alali, F.Q. Screening of some medicinal plants for their pancreatic lipase inhibitory potential. Jordan J. Pharm. Sci. 2011, 4, 81–88. [Google Scholar]
- Drew, B.S.; Dixon, A.F.; Dixon, J.B. Obesity management: Update on orlistat. Vasc. Health Risk Manag. 2007, 3, 817–821. [Google Scholar]
- Fei, H.; Li, M.; Liu, W.; Sun, L.; Li, N.; Cao, L.; Meng, Z.; Huang, W.; Ding, G.; Wang, Z.; et al. Potential lipase inhibitors from Chinese medicinal herbs. Pharm. Biol. 2016, 54, 2845–2850. [Google Scholar] [CrossRef]
- Dechakhamphu, A.; Wongchum, N. Screening for anti-pancreatic lipase properties of 28 traditional Thai medicinal herbs. Asian Pac. J. Trop. Biomed. 2015, 5, 1042–1045. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rahman, H.; Saari, N.; Abas, F.; Ismail, A.; Mumtaz, M.W.; Abdul Hamid, A. Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. Int. J. Food Prop. 2017, 20, 2616–2629. [Google Scholar] [CrossRef]
- Marrelli, M.; Morrone, F.; Gambacorta, L.; Argentieri, M.P.; Conforti, F.; Avato, P. Phytochemical and biological profile of Moricandia arvensis (L.) DC.: An inhibitor of pancreatic lipase. Molecules 2018, 23, 2829. [Google Scholar] [CrossRef]
- Rani, N.; Vasudeva, N.; Sharma, S.K. Quality assessment and anti-obesity activity of Stellaria media (Linn.) Vill. BMC Complement. Altern. Med. 2012, 12, 145. [Google Scholar] [CrossRef]
- Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G.A.; Menichini, F. Wild mediterranean dietary plants as inhibitors of pancreatic lipase. Phyther. Res. 2012, 26, 600–604. [Google Scholar] [CrossRef]
- Adnyana, I.K.; Abuzaid, A.S.; Iskandar, E.Y.; Kurniati, N.F. Pancreatic lipase and α-amylase inhibitory potential of mangosteen (Garcinia Mangostana Linn.) pericarp extract. Int. J. Med. Res. Health. Sci. 2016, 5, 23–28. [Google Scholar] [CrossRef]
- Chanda, J.; Mukherjee, P.K.; Biswas, R.; Malakar, D.; Pillai, M. Study of pancreatic lipase inhibition kinetics and LC–QTOF–MS-based identification of bioactive constituents of Momordica charantia fruits. Biomed. Chromatogr. 2019, 33, e4463. [Google Scholar] [CrossRef]
- Kim, G.N.; Shin, M.R.; Shin, S.H.; Lee, A.R.; Lee, J.Y.; Seo, B.I.; Kim, M.Y.; Kim, T.H.; Noh, J.S.; Rhee, M.H.; et al. Study of Antiobesity Effect through Inhibition of Pancreatic Lipase Activity of Diospyros kaki Fruit and Citrus unshiu Peel. Biomed. Res. Int. 2016, 2016, 1723042. [Google Scholar] [CrossRef]
- Abd Rahman, R.N.Z.R. Anti-obesity Potential of Selected Tropical Plants via Pancreatic Lipase Inhibition. Adv. Obes. Weight Manag. Control. 2017, 6, 00163. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Marrelli, M.; Pugliese, A.; Conforti, F.; Nadjafi, F.; Menichini, F.; Tundis, R. Crocus cancellatus subsp. damascenus stigmas: Chemical profile, and inhibition of amylase, glucosidase and lipase, key enzymes related to type 2 diabetes and obesity. J. Enzyme Inhib. Med. Chem. 2016, 31, 212–218. [Google Scholar] [CrossRef]
- Casacchia, T.; Sofo, A.; Casaburi, I.; Marrelli, M.; Conforti, F.; Statti, G.A. Antioxidant, enzyme-inhibitory and antitumor activity of the wild dietary plant Muscari comosum (L.) Mill. Int. J. Plant. Biol. 2017, 8, 6895. [Google Scholar] [CrossRef]
- Teixeira, L.S.; Lima, A.S.; Boleti, A.P.A.; Lima, A.A.N.; Libório, S.T.; De Paula, L.; Oliveira, M.I.B.; Lima, E.F.; Costa, G.M.; Reginatto, F.H.; et al. Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. J. Nat. Med. 2014, 68, 316–325. [Google Scholar] [CrossRef]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Tomás, H.; Castilho, P.C. Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food Chem. Toxicol. 2019, 123, 443–452. [Google Scholar] [CrossRef]
- Marrelli, M.; Menichini, F.; Conforti, F. Hypolipidemic and Antioxidant Properties of Hot Pepper Flower (Capsicum annuum L.). Plant. Foods Hum. Nutr. 2016, 71, 301–306. [Google Scholar] [CrossRef]
- Mnafgui, K.; Hamden, K.; Ben Salah, H.; Kchaou, M.; Nasri, M.; Slama, S.; Derbali, F.; Allouche, N.; Elfeki, A. Inhibitory activities of Zygophyllum album: A natural weight-lowering plant on key enzymes in high-fat diet-fed rats. Evid. Based Complement. Altern. Med. 2012, 2012, 620384. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kim, M.J.; Kim, J.H.; Kim, S.H.; Go, H.K.; Kweon, M.H.; Kim, D.H. Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharm. Biol. 2018, 56, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.Y.; Kim, D.S.; Kim, S.H.; Kim, H.K. Aqueous and ethanolic extracts of welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. BMC Complement. Altern. Med. 2018, 18, 105. [Google Scholar] [CrossRef]
- Jabri, M.A.; Sakly, M.; Marzouki, L.; Sebai, H. Chamomile (Matricaria recutita L.) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress. Biomed. Pharmacother. 2017, 87, 153–159. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wat, E.; Koon, C.M.; Wong, C.W.; Cheung, D.W.S.; Leung, P.C.; Zhao, Q.S.; Fung, K.P.; Lau, C.B.S. The beneficial potential of polyphenol-enriched fraction from Erigerontis Herba on metabolic syndrome. J. Ethnopharmacol. 2016, 187, 94–103. [Google Scholar] [CrossRef]
- Choi, Y.; Yanagawa, Y.; Kim, S.; Whang, W.K.; Park, T. Artemisia iwayomogi extract attenuates high-fat diet-induced obesity by decreasing the expression of genes associated with adipogenesis in mice. Evid. Based Complement. Altern. Med. 2013, 2013, 915953. [Google Scholar]
- Lee, H.M.; Yang, G.; Ahn, T.G.; Kim, M.D.; Nugroho, A.; Park, H.J.; Lee, K.T.; Park, W.; An, H.J. Antiadipogenic effects of aster glehni extract: In vivo and in vitro effects. Evid. Based Complement. Altern. Med. 2013, 2013, 859624. [Google Scholar] [CrossRef]
- Gwon, S.Y.; Ahn, J.Y.; Chung, C.H.; Moon, B.; Ha, T.Y. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of lithospermum erythrorhizon, inhibits adipocyte differentiation. J. Agric. Food Chem. 2012, 60, 9089–9096. [Google Scholar] [CrossRef]
- Mahesh Kumar, P.; Venkataranganna, M.V.; Manjunath, K.; Viswanatha, G.L.; Ashok, G. Momordica cymbalaria fruit extract attenuates high-fat dietinduced obesity and diabetes in C57BL/6 mice. Iran. J. Basic Med. Sci. 2018, 21, 1083–1090. [Google Scholar]
- Jeong, E.J.; Jegal, J.; Ahn, J.; Kim, J.; Yang, M.H. Anti-obesity effect of Dioscorea oppositifolia extract in high-fat diet-induced obese mice and its chemical characterization. Biol. Pharm. Bull. 2016, 39, 409–414. [Google Scholar] [CrossRef]
- Peixoto, T.C.; Moura, E.G.; de Oliveira, E.; Soares, P.N.; Guarda, D.S.; Bernardino, D.N.; Ai, X.X.; da ST Rodrigues, V.; de Souza, G.R.; da Silva, A.J.R.; et al. Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur. J. Nutr. 2018, 57, 1829–1844. [Google Scholar] [CrossRef]
- Seyedan, A.; Alshawsh, M.A.; Alshagga, M.A.; Mohamed, Z. Antiobesity and Lipid Lowering Effects of Orthosiphon stamineus in High-Fat Diet-Induced Obese Mice. Planta Med. 2017, 83, 684–692. [Google Scholar] [CrossRef]
- Tzeng, T.F.; Lu, H.J.; Liou, S.S.; Chang, C.J.; Liu, I.M. Reduction of lipid accumulation in white adipose tissues by Cassia tora (Leguminosae) seed extract is associated with AMPK activation. Food Chem. 2013, 136, 1086–1094. [Google Scholar] [CrossRef]
- Lei, F.; Zhang, X.N.; Wang, W.; Xing, D.M.; Xie, W.D.; Su, H.; Du, L.J. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int. J. Obes. 2007, 31, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Retnasamy, G.; Adikay, S. Effect of Hiptage madablota Gaertn. on high fat diet—Induced obese rats. Jordan J. Biol. Sci. 2014, 7, 113–118. [Google Scholar] [CrossRef]
- Yimam, M.; Jiao, P.; Hong, M.; Brownell, L.; Lee, Y.C.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Jia, Q. Morus alba, a Medicinal Plant for Appetite Suppression and Weight Loss. J. Med. Food 2019, 22, 741–751. [Google Scholar] [CrossRef]
- Peng, C.H.; Lin, H.T.; Chung, D.J.; Huang, C.N.; Wang, C.J. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. J. Food Drug Anal. 2018, 26, 778–787. [Google Scholar] [CrossRef]
- Lim, H.H.; Lee, S.O.; Kim, S.Y.; Yang, S.J.; Lim, Y. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp. Biol. Med. 2013, 238, 1160–1169. [Google Scholar] [CrossRef]
- You, J.S.; Lee, Y.J.; Kim, K.S.; Kim, S.H.; Chang, K.J. Anti-obesity and hypolipidaemic effects of Nelumbo nucifera seed ethanol extract in human pre-adipocytes and rats fed a high-fat diet. J. Sci. Food Agric. 2014, 94, 568–575. [Google Scholar] [CrossRef]
- Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol. 2013, 149, 263–269. [Google Scholar] [CrossRef]
- Shen, Y.; Song, S.J.; Keum, N.; Park, T. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid. Based Complement. Altern. Med. 2014, 2014, 971890. [Google Scholar] [CrossRef]
- Kim, N.-H.; Heo, J.-D.; Rho, J.-R.; Yang, M.H.; Jeong, E.J. Anti-obesity Effect of Halophyte Crop, Limonium tetragonum in High-Fat Diet-Induced Obese Mice and 3T3-L1 Adipocytes. Biol. Pharm. Bull. 2017, 40, 1856–1865. [Google Scholar] [CrossRef]
- Jambocus, N.G.S.; Ismail, A.; Khatib, A.; Mahomoodally, F.; Saari, N.; Mumtaz, M.W.; Hamid, A.A. Morinda citrifolia L. leaf extract prevent weight gain in Sprague-Dawley rats fed a high fat diet. Food Nutr. Res. 2017, 61, 1338919. [Google Scholar] [CrossRef]
- Karmase, A.; Birari, R.; Bhutani, K.K. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine 2013, 20, 805–812. [Google Scholar] [CrossRef]
- Chung, A.P.Y.S.; Gurtu, S.; Chakravarthi, S.; Moorthy, M.; Palanisamy, U.D. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats. Front. Nutr. 2018, 5, 17. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, X.; Liu, L.; Shen, J. Polyphenol-rich extracts from Oiltea camellia prevent weight gain in obese mice fed a high-fat diet and slowed the accumulation of triacylglycerols in 3T3-L1 adipocytes. J. Funct. Foods 2014, 9, 148–155. [Google Scholar] [CrossRef]
- Jung, C.H.; Jang, S.J.; Ahn, J.; Gwon, S.Y.; Jeon, T.I.; Kim, T.W.; Ha, T.Y. Alpinia officinarum Inhibits Adipocyte Differentiation and High-Fat Diet-Induced Obesity in Mice Through Regulation of Adipogenesis and Lipogenesis. J. Med. Food 2012, 15, 959–967. [Google Scholar] [CrossRef]
- Grove, K.A.; Lambert, J.D. Laboratory, Epidemiological, and Human Intervention Studies Show That Tea (Camellia sinensis) May Be Useful in the Prevention of Obesity. J. Nutr. 2010, 140, 446–453. [Google Scholar] [CrossRef]
- Basu, A.; Sanchez, K.; Leyva, M.J.; Wu, M.; Betts, N.M.; Aston, C.E.; Lyons, T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010, 29, 31–40. [Google Scholar] [CrossRef]
- Naderi Nabi, B.; Sedighinejad, A.; Haghighi, M.; Farzi, F.; Rimaz, S.; Atrkarroushan, Z.; Biazar, G. The Anti-Obesity Effects of Green Tea: A Controlled, Randomized, Clinical Trial. Iran. Red Crescent Med. J. 2018, 20, e55950. [Google Scholar] [CrossRef]
- Riaz, G.; Chopra, R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed. Pharmacother. 2018, 102, 575–586. [Google Scholar] [CrossRef]
- Chang, H.C.; Peng, C.H.; Yeh, D.M.; Kao, E.S.; Wang, C.J. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014, 5, 734–739. [Google Scholar] [CrossRef]
- Blair, M.W.; Soler, A.; Cortés, A.J. Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.). PLoS ONE 2012, 7, e49488. [Google Scholar] [CrossRef] [Green Version]
- Celleno, L.; Tolaini, M.V.; D’Amore, A.; Perricone, N.V.; Preuss, H.G. A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int. J. Med. Sci. 2007, 4, 45–52. [Google Scholar] [CrossRef]
- Wu, X.; Xu, X.; Shen, J.; Perricone, N.V.; Preuss, H.G. Enhanced weight loss from a dietary supplement containing standardized Phaseolus vulgaris extract in overweight men and women. J. Appl. Res. 2010, 10, 73–79. [Google Scholar]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Datau, E.A.; Wardhana; Surachmanto, E.E.; Pandelaki, K.; Langi, J.A. Fias Efficacy of Nigella sativa on serum free testosterone and metabolic disturbances in central obese male. Acta Med. Indones. 2010, 42, 130–134. [Google Scholar]
- Park, S.H.; Huh, T.L.; Kim, S.Y.; Oh, M.R.; Tirupathi Pichiah, P.B.; Chae, S.W.; Cha, Y.S. Antiobesity effect of Gynostemma pentaphyllum extract (actiponin): A randomized, double-blind, placebo-controlled trial. Obesity 2014, 22, 63–71. [Google Scholar] [CrossRef]
- Lee, M.H.; Han, A.R.; Jang, M.; Choi, H.K.; Lee, S.Y.; Kim, K.T.; Lim, T.G. Antiskin inflammatory activity of black ginger (Kaempferia parviflora) through antioxidative activity. Oxid. Med. Cell. Longev. 2018, 2018, 5967150. [Google Scholar] [CrossRef]
- Yoshino, S.; Awa, R.; Miyake, Y.; Fukuhara, I.; Sato, H.; Ashino, T.; Tomita, S.; Kuwahara, H. Daily intake of Kaempferia parviflora extract decreases abdominal fat in overweight and preobese subjects: A randomized, double-blind, placebo-controlled clinical study. Diabetes Metab. Syndr. Obes. 2018, 11, 447–458. [Google Scholar] [CrossRef]
- Johri, R. Cuminum cyminum and Carum carvi: An update. Pharmacogn. Rev. 2011, 5, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Sawangjit, R.; Puttarak, P.; Saokaew, S.; Chaiyakunapruk, N. Efficacy and Safety of Cissus quadrangularis L. in Clinical Use: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Phyther. Res. 2017, 31, 555–567. [Google Scholar] [CrossRef]
- Oben, J.; Kuate, D.; Agbor, G.; Momo, C.; Talla, X. The use of a Cissus quadrangularis formulation in the management of weight loss and metabolic syndrome. Lipids Health Dis. 2006, 5, 24. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Mollaei, H.; Hoshyar, R. Ziziphus Jujube: A review study of its anticancer effects in various tumor models invitro and invivo. Cell. Mol. Biol. 2017, 63, 122–127. [Google Scholar] [CrossRef]
- Mostafa, U.E.S.; Labban, L. The effect of zizyphus jujube on serum lipid profile and some anthropometric measurements. Pakistan J. Nutr. 2013, 12, 538–543. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols Antioxidants and Beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ. 2015, 22, 1399–1401. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.W.; Pereira, Q.C.; Teixeira, L.; Gambero, A.; Villena, J.A.; Ribeiro, M.L. Effects of polyphenols on thermogenesis and mitochondrial biogenesis. Int. J. Mol. Sci. 2018, 19, 2757. [Google Scholar] [CrossRef]
- Qiu, H.; Schlegel, V. Impact of nutrient overload on metabolic homeostasis. Nutr. Rev. 2018, 76, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Pourreza, N. Phenolic compounds as potential antioxidant. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Samodien, E.; Johnson, R.; Pheiffer, C.; Mabasa, L.; Erasmus, M.; Louw, J.; Chellan, N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol. Metab. 2019, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
Nr | Plant Sources | Family Name | Tissue Sampled | Class/Bioactive Compounds | Concentration of Extract | Ref. |
---|---|---|---|---|---|---|
1. | Ilex paraguariensis (A.St.-Hil.) | Aquifoliaceae | leaf and unripe fruit | Polyphenols | 50–500 µg/mL | [112] |
2. | Panax ginseng (C.A. Mey.) | Araliaceae | root | Ginsenosides including Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3 | 10 µg/mL | [113] |
3. | Aster spathulifolius (Maxim) | Asteraceae | leaf | Chlorogenic acid, isoquercitrin, luteolin-7-O-rutinoside, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, upatilin. | 150–250 µg/mL | [114] |
4. | Taraxacum officinale (Weber ex F. H. Wigg.) | Asteraceae | leaf and root | Caffeic and chlorogenic acids | 300–600 µg/mL | [115] |
5. | Pluchea indica (L.) | Asteraceae | whole plant | Polyphenols | 250–1000 µg/mL | [116] |
6. | Oroxylum indicum (L.) Kurz | Bignoniaceae | fruit pods | Flavonoids, alkaloids, steroids, glycoside, and tannins | 50–200 µg/mL | [117] |
7. | Oroxylum indicum (L.) Kurz | Bignoniaceae | bark | Oroxylin A, chrysin and baicalein | 50 µg/mL | [118] |
8. | Cornus kousa (L.) | Cornaceae | leaf | Cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside | 5–100 µg/mL | [119] |
9. | Cyprus rotundus (L.) | Cyperaceae | root | Flavonoids, tannins, alkaloid, triterpenoids, saponin | 125 µg/mL | [120] |
10. | Vaccinium corymbosum (L.) | Ericaceae | fruit peel | Polyphenols | 50–300 µg/mL | [121] |
11. | Clitoria ternatea (L.) | Fabaceae | flower | Preternatin A3, ternatin B2, ternatin D2, quercetin-3-rutinoside, ternatin D1, kaemferol-3-O-(2-rhamnosyl) rutinoside, delphinidin-3-glucoside, kaemferol-3-O-rutinoside, delphinidin-3-O-(6-O-p-coumaryl)glucoside-pyruvic acid, (+)-catechin 7-O-β-glucoside, syringetin-3-O-glucoside, quercetin triglycoside, and delphinidin derivatives | 500–1000 µg/mL | [122] |
12. | Perilla frutescens (L.) | Lamiaceae | leaf | Eugenyl glucoside, luteolin-7-O-glucoside, apigenin-7-O-β-d-glucuronide, kaempferol-3-O-β-d-glucuronide and rosmarinic acid | 100–400 µg/mL | [123] |
13. | Cinnamomum cassia (Presl.) | Lauraceae | twig | Coumarin (1), 2-hydroxyl cinnamaldehyde (2), cinnamyl alcohol (3), cinnamic acid (4), cinnamaldehyde (5), 2-methoxy cinnamaldehyde (6), and eugenol | 100–500 µg/mL | [124] |
14. | Ficus deltoidei (Jack) | Moraceae | leaf | polyphenols, triterpenoids | 150–300 µg/mL | [125] |
15. | Moringa oleifera (Lam.) | Moringaceae | leaf | Isoquercitrin, chrysin-7-glucoside, and quercitrin | 25–400 µg/mL | [126] |
16. | Nelumbo nucifera (Gaertn.) | Nymphaeaceae | petal | Quercetin and kaempferol glycosides | 2–100 µg/mL | [127] |
17. | Nelumbo nucifera (Gaertn.) | Nymphaeaceae | leaf | Megastigmanes, alkaloids, flavonoids | 100 µM | [128] |
18. | Passiflora edulis f. Flavicarpa (Degener) | Passifloraceae | leaf | Flavonoids, phenolics, triterpenes, alkaloids | 130.56 µg/mL | [129] |
19. | Sasa coreana (Nakai) | Poaceae | leaf | Caffeic acid, isoorientin, orientin, p-coumaric acid, vitexin, isovitexin, ferulic acid, hesperidin, naringin, luteolin | 50–100 µg/mL | [130] |
20. | Zea mays (L.) | Poaceae | purple corn silk | phenolic acids, flavonoids, anthocyanins | 125–1000 µg/mL | [131] |
21. | Coix lachryma-jobi (L.) | Poaceae | seed | Gallic acid, chlorogenic acid, caffeic acid, ferulic acid | 5–30 µg/mL | [132] |
22. | Hovenia dulcis (Thunb.) | Rhamnaceae | fruit | Quercetin | 10–100 µg/mL | [133] |
23. | Coffea arabica (L). | Rubiaceae | fruits: green dry/fresh; yellow dry/fresh; red dry/fresh | Caffeoylquinic acid, chlorogenic acid, caffeic acid | 200–1000 µg/mL | [134] |
24. | Paullinia cupana (Kunth) | Sapindaceae | seed | Polyphenols | 150 µg/mL | [135] |
25. | Lycium chinense (Miller) | Solanaceae | leaf | Chlorogenic acid, kaempferol-3-sophoroside-7-glucoside, kaempferol-3-sophoroside, kaempferol-3-glucoside, kaempferol | 200 µg/mL | [136] |
Nr | Plant Sources | Family Name | Tissue Sampled | Class/Bioactive Compounds | Concentration of Extract | Ref. |
---|---|---|---|---|---|---|
1. | Panax notoginseng (Burk.) | Araliaceae | root | ginsenoside Rh4, 20(S)-ginsenoside Rg3 and 20(R)-ginsenoside Rg3 | 200 μg/mL | [140] |
2. | Cryptolepis elegans (Wall.) | Asclepiadaceae | leaf | Polyphenols | 100 µg/mL | [141] |
3. | Cosmos caudatus (Kunth.) | Asteraceae | leaf | Quercetin-3-rhamnoside, 1-caffeyolquinic acid, catechin, kaempherol, kaempherol glucoside, quercetin, quercetin-3-glucoside, quercetin-O-pentoside, quercetin-rhamnosyl galactoside, quinic acid, monogalloyl glucose, and procyanidin B1 | 60–1000 µg/mL | [142] |
4. | Oroxylum indicum (L.) Kurz | Bignoniaceae | fruit pods | flavonoids, alkaloids, steroids, glycosides, and tannins | 100–1250 µg/mL | [117] |
5. | Oroxylum indicum (L.) Kurz | Bignoniaceae | bark | Oroxylin A, chrysin and baicalein | 250 µg/mL | [118] |
6. | Moricandia arvensis (L.) | Brassicaceae | aerial parts | Kaempferol and quercetin | 1000–2500 µg/mL | [143] |
7. | Stellaria media (Linn.) Vill | Caryophylaceae | whole plant | Polyphenols | 1000–5000 µg/mL | [144] |
8. | Silene vulgaris (Moench) | Caryophyllaceae | leaf | Polyphenols | 100 µg/mL | [145] |
9. | Garcinia mangostana (Linn.) | Clusiaceae | pericarp | Polyphenols, terpenoids | 3.91–125 µg/mL | [146] |
10. | Momordica charantia (L.) | Cucurbitaceae | fruit | Hydroxybenzoic acids, hydroxycinnamic acid, flavonol, isoflavonoid, flavanone, hydroxycoumarin | 100–400 µg/mL | [147] |
11. | Diospyros kaki (Thunb.) | Ebenaceae | fruit | Polyphenols | 100–200 µg/mL | [148] |
12. | Phyllanthus niruri (L.) | Euphorbiaceae | whole plant | Polyphenols | 500 µg/mL | [149] |
13. | Phyllanthus chamaepeuce (Ridl.) | Euphorbiaceae | leaf | Polyphenols | 100 µg/mL | [141] |
14. | Garcinia vilersiana (Pierre) | Guttiefrae | leaf | Polyphenols | 100 µg/mL | [141] |
15. | Crocus cancellatus subsp. Damascenus (Herb.) | Iridaceae | stigma | Catechin hydrate, ferulic and caffeic acids | 5000 µg/mL | [150] |
16. | Muscari comosum (L.) | Liliaceae | bulb | Polyphenols | [151] | |
17. | Magnolia officinalis (Rehd. et Wils) | Magnoliaceae | bark | Polyphenols (Honokiol) | 200 μg/mL | [140] |
18. | Memecylon edule (Roxb.) | Melastomataceae | leaf | Polyphenols | 100 µg/mL | [141] |
19. | Nelumbo nucifera (Gaertn.) | Nymphaeaceae | leaf | Megastigmanes, alkaloids, flavonoids | 100 µM | [128] |
20. | Passiflora nitida (Kunth) | Passifloraceae | leaf | Orientin, vitexin, swertisina | 100 µg/mL | [152] |
21. | Portulaca oleracea (L.) | Portulacaceae | leaf | Polyphenols | 100 µg/mL | [145] |
22. | Rubus grandifolius (Lowe) | Rosaceae | fruit and leaf | Polyphenols | 300–4450 µg/mL | [153] |
23. | Citrus unshiu (S. Marcov.) | Rutaceae | peel | Polyphenols | 100–200 µg/mL | [148] |
24. | Lycium chinense (Miller) | Solanaceae | leaf | Chlorogenic acid, kaempferol-3-sophoroside-7-glucoside, kaempferol-3-sophoroside, kaempferol-3-glucoside, kaempferol | 10–1000 µg/mL | [136] |
25. | Capsicum annuum (L.) | Solanaceae | flower | Polyphenols | 100–1000 µg/mL | [154] |
26. | Zygophyllum album (L.) | Zygophyllaceae | Leaf and flower | Polyphenols | 50–200 µg/mL | [155] |
Nr | Plant Sources | Family Name | Tissue Sampled | Class/Bioactive Compounds | Species of Animals | Concentration of Extract | Duration of Diet | Mechanisms of Action | Ref. |
---|---|---|---|---|---|---|---|---|---|
1. | Salicornia europaea (L.) | Amaranthaceae | desalted leaves, branches and stems | Trans-ferulic acid, caffeic acid, p-coumaric acid and isorhamnetin-3-β-d-glucoside | Sprague–Dawley (SD) rats | 250 and 500 mg/kg | 12 weeks | down-regulation the adipogenesis-related gene expression of sterol regulatory element-binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα) and fatty acid (FA) synthase | [156] |
2. | Allium fistulosum (L.) | Amaryllidaceae | dried bulbs and roots | Ferulic acid and quercetin | C57BL/6 J mice | 100 mg/kg | 6 weeks | attenuation HFD-induced changes in serum leptin and insulin-like growth factor 1 levels, liver expression of AMPK, and adipose tissue expression of uncoupling protein 2 (UCP2) | [157] |
3. | Ilex paraguariensis (A.St.-Hil.) | Aquifoliaceae | leaf and unripe fruit | Polyphenols | Swiss mice | 1 mg/kg | 8 weeks | down-regulation the expression of genes that regulate adipogenesis, such as Creb-1and C/EBPα, and the extract up-regulated the expression of genes related to the inhibition of adipogenesis, including Dlk1, Gata2, Gata3, Klf2, Lrp5, Pparγ2, Sfrp1, Tcf7l2, Wnt10b, and Wnt3a | [112] |
4. | Matricaria recutita (L.) | Asteraceae | flower | Gallic acid, protocatechuic acid, chlorogenic acid, cafeic acid, cafeoylquinic acid, salicylic acid, quercetin, quinic acid derivative, hydroxybenzoic acid-o-hexoside, 5,7,4′-trihydroxy-6,3′-imethoxyflavone | Wistar rats | 100 mg/kg | 6 weeks | protective effect against obesity and oxidative stress: inhibiting effect on intestinal glucose absorption and/or by negatively regulating the studied intracellular mediators such as calcium, hydrogen peroxide and free iron | [158] |
5. | Erigeron breviscapus (Vant.) | Asteraceae | whole plant | Scutellarin, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid | C57Bl/6 mice | 2% (w/w) | 8 weeks | regulation the expressions of Cyp7α1, CD36 and PPAR-γ | [159] |
6. | Artemisia iwayomogi (Kitam.) | Asteraceae | whole plant | Scopolin, acetophenone glycoside, scopoletin | C57BL/6J mice | 0.5% (w/w) | 11 weeks | downregulation of adipogenic transcription factors: PPARγ and C/EBPα and their target genes: CD36, aP2, and FAS; decreased gene expression of proinflammatory cytokines: TNFα, MCP1, IL-6, IFNα, and INFβ in epididymal adipose tissue | [160] |
7. | Aster glehni (Franchet et Schmidt) | Asteraceae | leaf | Astragalin and kaempferol | C57BL/6J mice | 5% (w/w) | 10 weeks | inhibition the expression of PPARγ, C/EBPα, SREBP-1, liver X receptor, and leptin genes in the epididymal adipose tissue | [161] |
8. | Lithospermum erythrorhizon (Siebold & Zucc.) | Boraginaceae | root | Shikonin derivatives | C57BL/6 mice | 0.25%–0.5% (w/w) | 8 weeks | downregulation of genes involved in the adipogenesis pathway | [162] |
9. | Stellaria media (Linn.) Vill | Caryophylaceae | whole plant | Polyphenols | Swiss albino mice | 400 and 900 mg/kg | 6 weeks | delay the intestinal absorption of dietary fat and carbohydrate by inhibiting digestive enzymes | [144] |
10. | Momordica cymbalaria (Hook.) | Cucurbitaceae | fruit | Gallic acid and rutin | C57BL/6 mice | 25–50 mg/kg | 10 weeks | amelioration insulin resistance in HFD diet fed C57 mice | [163] |
11. | Dioscorea oppositifolia (L.) | Dioscoreaceae | rhizome | Polyphenols | ICR mice | 0.5% (w/w) | 8 weeks | suppression of feeding efficiency and fat absorption | [164] |
12. | Vaccinium macrocarpon (Aiton) | Ericaceae | fruit | Delphinidin 3-sambubioside, cyanidin 3-lathyroside, rutin, quercitrin, kaempferol robinobioside, myricetin rhamnoside as well as their aglycones, oligomeric flavan3-ol type B and A, catechin, epicatechin and their gallates, hydroxybenzoic and hydroxycinnamic acids, caffeoylquinic acid, a dihydroxybenzoic acid hexoside and feruloylquinic acid | Wistar rats | 200 mg/kg | 30 days | improve the metabolic profile and reduced oxidative damage and steatosis | [165] |
13. | Vaccinium corymbosum (L.) | Ericaceae | fruit peel | Polyphenols | SD rats | 60–150 mg/kg | 5 weeks | down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells | [121] |
14. | Orthosiphon stamineus (Benth.) | Lamiaceae | leaf | rosmarinic acid | C57BL/6J mice | 200 and 400 mg/kg | 8 weeks | impact on lipid metabolism | [166] |
15. | Perilla frutescens (L.) | Lamiaceae | leaf | Eugenyl glucoside, luteolin-7-O-glucoside, apigenin-7-O-β-d-glucuronide, kaempferol-3-O-β-d-glucuronide and rosmarinic acid | C57BL/6J mice | 100 and 400 mg/kg | 12 weeks | downregulation adipogenic gene and upregulating lipolytic gene expressions | [123] |
16. | Cassia tora (L.) | Leguminosae | seed | Emodin, aloe-emodin | Wistar rats | 100–300 mg/kg | 8 weeks | attenuation lipid accumulation in white adipose tissue via AMPKsignaling pathway activation | [167] |
17. | Punica granatum (L.) | Lythraceae | leaf | Polyphenols | ICR mice | 400–800 mg/kg | 5 weeks | suppression energy intake | [168] |
18. | Hiptage madablota (Gaertn.) | Malpighiaceae | root | Terpenoids, polyphenols | Wistar rats | 100–400 mg/ | 40 days | hypophagic and hypolipidemic effects and provoke the brain serotonin level | [169] |
19. | Morus alba (L.) | Moraceae | root-bark | Kuwanon G, and Albanin G | C57BL/6J mice | 250 and 500 mg/kg | 7 weeks | appetite control | [170] |
20. | Morus alba (L.) | Moraceae | leaf | Neochlorogenic acid, cryptochlorogenic, chlorogenic, rutin, isoquercitrin, astragalin acid, nicotiflorin, and protocatechuic acid | Wistar rats | 0.5%–2% (w/w) | 4 weeks | regulation adipocytokines, inflammation and oxidative stress | [171] |
21. | Morus alba (L.) | Moraceae | leaf and fruit | 1-deoxynojirimycin, cyanidin-3-glucoside, rutin and resveratrol | C57BL/6 mice | 67–167 mg/kg | 12 weeks | modulation of obesity-induced inflammation and oxidative stress | [172] |
22. | Moringa oleifera (Lam.) | Moringaceae | leaf | Isoquercitrin, chrysin-7-glucoside, and quercitrin | C57BL/6J mice | 125–500 mg/kg | 14 weeks | downregulation the expression of adipogenesis-associated proteins: (PPARγ, C/EBPα and C/EBPβ), and fatty acid synthase (FAS); increased the degree of phosphorylation of AMP-activated protein kinase α (AMPKα) and acetyl-CoA carboxylase (ACC) | [126] |
23. | Nelumbo nucifera (Gaertn.) | Nelumbonaceae | seed | Polyphenols | SD rats | 400 mg/kg | 7 weeks | decrease expression of PPARγ, GLUT4, and leptin in cultured human adipocytes | [173] |
24. | Nelumbo nucifera (Gaertn.) | Nelumbonaceae | leaf | Polyphenols | Wistar rats | 70–280 mg/kg | 8 weeks | reduction the lipid components | [174] |
25. | Olea europaea (L.) | Oleaceae | leaf | Oleuropein | C57BL/6N mice | 0.15% (w/w) | 8 weeks | reversion the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) moreover downregulation of thermogenic genes involved in uncoupled respiration: SIRT1, peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α), and UCP1; and mitochondrial biogenesis: transcription factor A, mitochondrial, nuclear respiratory factor-1, and cyclooxygenase-2) was also reversed | [175] |
26. | Passiflora nitida (Kunth) | Passifloraceae | leaf | Orientin, vitexin, swertisina | SD rats | 100 mg/kg | 4 weeks | reduction of lipid absorption and pancreatic lipase inhibition | [162] |
27. | Limonium tetragonum (Thunb.) | Plumbaginaceae | aerial part | (−)-epigallocatechin-3-(3″-O-methyl) gallate, (−)-epigallocatechin-3-gallate, and myricetin-3-O-β-D-galactopyranoside | C57BL/6J mice | 100 mg/kg | 8 weeks | suppression of adipogenesis-related transcription factors including PPARγ, C/EBPα, SREBP-1 and adipocyte-specific proteins such as fatty acid synthase (FAS), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein (aP2) | [176] |
28. | Morinda citrifolia (L.) | Rubiaceae | leaf | Rutin | SD rats | 150 and 350 mg/kg | 12 weeks | positive influence on the lipid profiles and a reduction in LDL levels | [177] |
29. | Aegle marmelos (L.) | Rutaceae | leaf | Umbelliferone, esculetin | SD rats | 30 mg/kg | 2 weeks | counteract the obesity by lipolysis in adipocytes | [178] |
30. | Nephelium lappaceum (L.) | Sapindaceae | fruit | Geraniin | SD rats | 10 and 50 mg/kg | 4 weeks | restore the oxidative stress observed in the HFD rats | [179] |
31. | Camellia oleifera (C.Abel) | Theaceae | fruit | Gallic acid, ellagic acid, 3-O-methylellagic acid 4′-O-β-D-glucopyranoside | ICR mice | 100–300 mg/kg | 30 days | inhibition fatty acid synthase activity | [180] |
32. | Alpinia officinarum (Hance) | Zingiberaceae | whole plant | Galangin | C57BL/6J mice | 0.5% (w/w) | 8 weeks | suppression protein expressions of C/EBPα, fatty acid synthase, SREBP-1, and PPARγ in the liver and adipose tissue | [181] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielinska-Blizniewska, H.; Sitarek, P.; Merecz-Sadowska, A.; Malinowska, K.; Zajdel, K.; Jablonska, M.; Sliwinski, T.; Zajdel, R. Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. Int. J. Mol. Sci. 2019, 20, 4556. https://doi.org/10.3390/ijms20184556
Zielinska-Blizniewska H, Sitarek P, Merecz-Sadowska A, Malinowska K, Zajdel K, Jablonska M, Sliwinski T, Zajdel R. Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. International Journal of Molecular Sciences. 2019; 20(18):4556. https://doi.org/10.3390/ijms20184556
Chicago/Turabian StyleZielinska-Blizniewska, Hanna, Przemyslaw Sitarek, Anna Merecz-Sadowska, Katarzyna Malinowska, Karolina Zajdel, Marta Jablonska, Tomasz Sliwinski, and Radoslaw Zajdel. 2019. "Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties" International Journal of Molecular Sciences 20, no. 18: 4556. https://doi.org/10.3390/ijms20184556
APA StyleZielinska-Blizniewska, H., Sitarek, P., Merecz-Sadowska, A., Malinowska, K., Zajdel, K., Jablonska, M., Sliwinski, T., & Zajdel, R. (2019). Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. International Journal of Molecular Sciences, 20(18), 4556. https://doi.org/10.3390/ijms20184556