PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood
Abstract
:1. Introduction
- (1)
- to develop and to functionally evaluate a new PGE1-containing DC/DCleu generating protocol to produce DCs and DCleu from healthy and leukemic PBMCs;
- (2)
- to develop and to functionally evaluate an immunomodulatory Kit M (containing GM-CSF and PGE1) to produce DCs and DCleu directly from healthy and leukemic WB, thereby simulating in vivo conditions;
- (3)
- to deduce an optimized protocol for the ex vivo generation of DC/DCleu which might be used for an adoptive cell transfer; and,
- (4)
- to deduce immunomodulatory Kits that might be able to convert myeloid leukemic blasts in vivo to DC/DCleu.
2. Results
2.1. Prolog
2.2. DC/DCleu-Generation from Healthy and Leukemic PBMCs
2.2.1. Significantly Higher Amounts of DCs Generated from Healthy and Leukemic PBMCs with Pici-PGE1 and Pici-PGE2 Compared to Controls
2.2.2. Efficiency of Sufficient DC-Generation is Higher with Pici-PGE1 Compared to Pici-PGE2 from Leukemic PBMCs
2.2.3. Pici-PGE1 and Pici-PGE2 Do Not Induce Blast Proliferation During DC/DCleu-Culture from Leukemic PBMCs
2.3. DC/DCleu-Generation from Healthy and Leukemic WB
2.3.1. Comparable DC-Amounts can be Generated with Immunomodulatory Kits and Picis
2.3.2. Significantly Higher Amounts of DC+/WB Generated from Healthy and Leukemic WB with Immunomodulatory Kit M, Kit K and Kit I Compared to Control
2.3.3. Kits Do Not Induce Blast-Proliferation Compared to Control
2.4. Stimulatory Effect of DC/DCleu (Generated with Kits from Leukemic WB) on T Cell Enriched Immunoreactive Cells in MLC and the Corresponding Blast-Lysis Activity
2.4.1. Comparison of T Cell Amounts, Phenotypes, and Blast Lysis Activity in Uncultured Cells, after MLCWB-DC Kits and after MLCWB
2.4.2. Comparison of T Cell Amounts, Phenotypes and Blast Lytic Activity after MLCWB-DC Kit M and MLCWB-DC Kit K
2.5. Cytokine-Release-Profiles in Serum and after WB DC/DCleu-Culture
2.5.1. Significantly Higher Concentrations of the Inflammatory Cytokine and Antitumor Response Related Cytokine Found after WB-DC/DCleu-Culture with Kits Compared to Serum
2.5.2. Significantly Higher Concentrations of MCP-1 (CCL-2) Found after DC/DCleu-Culture with Kit M and Kit K Compared to Control
3. Discussion
3.1. DC and DCleu Based Immunotherapy for Patients with AML
3.2. The PGE1-Containing Protocol Pici-PGE1 is More Reliable to Generate DCs in Sufficient Amounts from Healthy and Leukemic PBMCs Compared to the PGE2-Containing Protocol Pici-PGE2
3.3. Successful Generation of DCs and DCleu from Healthy and Leukemic WB Cultures
4. Material and Methods
4.1. Sample Collection
4.2. Patients’ Characteristics and Diagnostics
4.3. DC/DCleu-Generation from Isolated PBMCs
4.4. DC/DCleu-Generation from WB
4.4.1. Picibanil-PGE1 (Pici-PGE1)
4.4.2. Picibanil-PGE2 (Pici-PGE2)
4.4.3. Kit M:
4.4.4. Kit K:
4.4.5. Kit I:
4.5. Cell-Characterization by Flow Cytometry
4.6. Mixed-Lymphocyte-Culture (MLC) of T Cell-Enriched Immunoreactive Cells with WB-Stimulator-Cell-Suspensions, Preincubated or Not Preincubated with DC/DCleu-Generating Protocols
4.7. Cytotoxicity (Fluorolysis) Assay
4.8. Enzyme-Linked Immunosorbent Assay (ELISA)
4.9. Statistical Methods
5. Conclusion: DC/DCleu Based Treatment Protocols for AML-Patients
- (1)
- PGE1-containing protocols qualify to generate and to maturate monocyte derived DCs from healthy or even patients’ PBMCs ex vivo that could, in consequence, be manipulated (e.g., pulsed with LAA) and (re-) administrated to the patients as a vaccine.
- (2)
- PGE1-containing protocols qualify to produce ex vivo DCleu from leukemic PBMCs. These DC/DCleu could be (re-) administered to the patient in the course of an adaptive cell transfer.
- (3)
- GM-CSF, PGE1, and Picibanil are drugs that are approved for human treatment, and so we conclude that, for example, the PGE1-containing Kit M qualify to convert (residual) myeloid blasts to DCs and DCleu in vivo after the application of Kits to AML-patients. This could contribute to stabilize remission or the disease by presentation of the complete leukemic antigen repertoire to T cells and other immunoreactive cells independent of mutation or transplantation status, cytogenetic markers, FAB-classification, as well as sex or age of the patients.
- (4)
- In vivo trials with PGE1-containing Kits (in animals and humans with AML) have to be performed to study safety, the efficiency of DC/DCleu-generation, the mediation of anti-leukemic reactions, and the establishment of immunological effects in vivo.
6. Patent
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lowenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med. 1999, 341, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 7 July 2019).
- Schurch, C.M.; Riether, C.; Ochsenbein, A.F. Dendritic cell-based immunotherapy for myeloid leukemias. Front. Immunol. 2013, 4, 496. [Google Scholar] [CrossRef] [PubMed]
- Lichtenegger, F.S.; Krupka, C.; Haubner, S.; Kohnke, T.; Subklewe, M. Recent developments in immunotherapy of acute myeloid leukemia. J. Hematol. Oncol. 2017, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Anguille, S.; Smits, E.L.; Bryant, C.; Van Acker, H.H.; Goossens, H.; Lion, E.; Fromm, P.D.; Hart, D.N.; Van Tendeloo, V.F.; Berneman, Z.N. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol. Rev. 2015, 67, 731–753. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Dendritic cells: A link between innate and adaptive immunity. J. Clin. Immunol. 1999, 19, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Dupasquier, M. Dendritic cells in vivo and in vitro. Cell. Mol. Immunol. 2005, 2, 28–35. [Google Scholar]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Lanzavecchia, A.; Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 2001, 106, 263–266. [Google Scholar] [CrossRef]
- Grakoui, A.; Bromley, S.K.; Sumen, C.; Davis, M.M.; Shaw, A.S.; Allen, P.M.; Dustin, M.L. The immunological synapse: A molecular machine controlling T cell activation. Science 1999, 285, 221–227. [Google Scholar] [CrossRef]
- Smits, E.L.; Berneman, Z.N.; Van Tendeloo, V.F. Immunotherapy of acute myeloid leukemia: Current approaches. Oncologist 2009, 14, 240–252. [Google Scholar] [CrossRef]
- Rein, L.A.; Chao, N.J. WT1 vaccination in acute myeloid leukemia: New methods of implementing adoptive immunotherapy. Expert Opin. Investig. Drugs 2014, 23, 417–426. [Google Scholar] [CrossRef]
- Osman, Y.; Takahashi, M.; Zheng, Z.; Toba, K.; Liu, A.; Furukawa, T.; Narita, M.; Aizawa, Y.; Koike, T.; Shibata, A. Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: Its applicability for antileukemia immunotherapy. J. Exp. Clin. Cancer Res. 1999, 18, 485–492. [Google Scholar] [PubMed]
- Van Driessche, A.; Van de Velde, A.L.; Nijs, G.; Braeckman, T.; Stein, B.; De Vries, J.M.; Berneman, Z.N.; Van Tendeloo, V.F. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 2009, 11, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Van Tendeloo, V.F.; Van de Velde, A.; Van Driessche, A.; Cools, N.; Anguille, S.; Ladell, K.; Gostick, E.; Vermeulen, K.; Pieters, K.; Nijs, G.; et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl. Acad. Sci. USA 2010, 107, 13824–13829. [Google Scholar] [CrossRef] [PubMed]
- Schmetzer, H.M.; Kremser, A.; Loibl, J.; Kroell, T.; Kolb, H.J. Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo. Leukemia 2007, 21, 1338–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremser, A.; Dressig, J.; Grabrucker, C.; Liepert, A.; Kroell, T.; Scholl, N.; Schmid, C.; Tischer, J.; Kufner, S.; Salih, H.; et al. Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: An evaluation of different methods. J. Immunother. 2010, 33, 185–199. [Google Scholar] [CrossRef]
- Johnson, L.A.; Jackson, D.G. Control of dendritic cell trafficking in lymphatics by chemokines. Angiogenesis 2014, 17, 335–345. [Google Scholar] [CrossRef]
- Plett, C.; Amberger, D.C.; Rabe, A.; Deen, D.; Stankova, Z.; Hirn Lopez, A.; Vokac, Y.; Werner, J.O.; Krämer, D.; Rank, A.; et al. Kits do not induce AML-blasts’ proliferation ex vivo. IPO-38 is an appropriate and reliable marker to detect and quantify proliferating blasts. J. Immunother. Cancer 2017, 52, S398. [Google Scholar]
- Sato, M.; Takayama, T.; Tanaka, H.; Konishi, J.; Suzuki, T.; Kaiga, T.; Tahara, H. Generation of mature dendritic cells fully capable of T helper type 1 polarization using OK-432 combined with prostaglandin E(2). Cancer Sci. 2003, 94, 1091–1098. [Google Scholar] [CrossRef]
- Lee, A.W.; Truong, T.; Bickham, K.; Fonteneau, J.F.; Larsson, M.; Da Silva, I.; Somersan, S.; Thomas, E.K.; Bhardwaj, N. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: Implications for immunotherapy. Vaccine 2002, 20 (Suppl. 4), A8–A22. [Google Scholar] [CrossRef]
- Houtenbos, I.; Westers, T.M.; Stam, A.G.; de Gruijl, T.D.; Scheper, R.J.; Ossenkoppele, G.J.; van de Loosdrecht, A.A. Serum-free generation of antigen presenting cells from acute myeloid leukaemic blasts for active specific immunisation. Cancer Immunol. Immunother. 2003, 52, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Woiciechowsky, A.; Regn, S.; Kolb, H.J.; Roskrow, M. Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukemia-specific cytotoxic T cell response from patients with acute myeloid leukemia. Leukemia 2001, 15, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirn Lopez, A.; Deen, D.; Fischer, Z.; Rabe, A.; Ansprenger, C.; Stein, K.; Vogt, V.; Schick, J.; Kroell, T.; Kraemer, D.; et al. Role of Interferon (IFN)alpha in “Cocktails” for the Generation of (Leukemia-derived) Dendritic Cells (DCleu) from Blasts in Blood from Patients (pts) with Acute Myeloid Leukemia (AML) and the Induction of Antileukemic Reactions. J. Immunother. 2019, 42, 143–161. [Google Scholar] [CrossRef]
- Grabrucker, C.; Liepert, A.; Dreyig, J.; Kremser, A.; Kroell, T.; Freudenreich, M.; Schmid, C.; Schweiger, C.; Tischer, J.; Kolb, H.J.; et al. The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. J. Immunother. 2010, 33, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Liepert, A.; Grabrucker, C.; Kremser, A.; Dreyssig, J.; Ansprenger, C.; Freudenreich, M.; Kroell, T.; Reibke, R.; Tischer, J.; Schweiger, C.; et al. Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Cell. Immunol. 2010, 265, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Schick, J.; Vogt, V.; Zerwes, M.; Kroell, T.; Kraemer, D.; Kohne, C.H.; Hausmann, A.; Buhmann, R.; Tischer, J.; Schmetzer, H. Antileukemic T-cell responses can be predicted by the composition of specific regulatory T-cell subpopulations. J. Immunother. 2013, 36, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Vogt, V.; Schick, J.; Ansprenger, C.; Braeu, M.; Kroell, T.; Kraemer, D.; Kohne, C.H.; Hausmann, A.; Buhmann, R.; Tischer, J.; et al. Profiles of activation, differentiation-markers, or beta-integrins on T cells contribute to predict T cells’ antileukemic responses after stimulation with leukemia-derived dendritic cells. J. Immunother. 2014, 37, 331–347. [Google Scholar] [CrossRef]
- Boeck, C.L.; Amberger, D.C.; Doraneh-Gard, F.; Sutanto, W.; Guenther, T.; Schmohl, J.; Schuster, F.; Salih, H.; Babor, F.; Borkhardt, A.; et al. Significance of Frequencies, Compositions, and/or Antileukemic Activity of (DC-stimulated) Invariant NKT, NK and CIK Cells on the Outcome of Patients With AML, ALL and CLL. J. Immunother. 2017, 40, 224–248. [Google Scholar] [CrossRef]
- Kupsa, T.; Horacek, J.M.; Jebavy, L. The role of cytokines in acute myeloid leukemia: A systematic review. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2012, 156, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Driss, V.; Quesnel, B.; Brinster, C. Monocyte chemoattractant protein 1 (MCP-1/CCL2) contributes to thymus atrophy in acute myeloid leukemia. Eur. J. Immunol. 2015, 45, 396–406. [Google Scholar] [CrossRef]
- Ersvaer, E.; Liseth, K.; Skavland, J.; Gjertsen, B.T.; Bruserud, O. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol. 2010, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Paul, W.E. Heterogeneity and plasticity of T helper cells. Cell Res. 2010, 20, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, A.; Mackiewicz, J.; Mackiewicz, A. Therapeutic gene modified cell based cancer vaccines. Gene 2013, 525, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Fischbacher, D.; Merle, M.; Liepert, A.; Grabrucker, C.; Kroell, T.; Kremser, A.; Dreyssig, J.; Freudenreich, M.; Schuster, F.; Borkhardt, A.; et al. Cytokine Release Patterns in Mixed Lymphocyte Culture (MLC) of T-Cells with Dendritic Cells (DC) Generated from AML Blasts Contribute to Predict anti-Leukaemic T-Cell Reactions and Patients’ Response to Immunotherapy. Cell Commun. Adhes. 2015, 22, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.M.; Breyer, M.D. Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 2008, 70, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Breyer, M.D.; Harris, R.C. Cyclooxygenase 2 and the kidney. Curr. Opin. Nephrol. Hypertens. 2001, 10, 89–98. [Google Scholar] [CrossRef]
- Smith, W.L. Prostanoid biosynthesis and mechanisms of action. Am. J. Physiol. 1992, 263 Pt 2, F181–F191. [Google Scholar] [CrossRef] [Green Version]
- Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J. 1998, 12, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef]
- Simmet, T.; Peskar, B.A. Prostaglandin E1 and arterial occlusive disease: Pharmacological considerations. Eur. J. Clin. Investig. 1988, 18, 549–554. [Google Scholar] [CrossRef]
- Reiter, M.; Bucek, R.A.; Stumpflen, A.; Minar, E. Prostanoids for intermittent claudication. Cochrane Database Syst. Rev. 2004, 1, CD000986. [Google Scholar]
- Akkinapally, S.; Hundalani, S.G.; Kulkarni, M.; Fernandes, C.J.; Cabrera, A.G.; Shivanna, B.; Pammi, M. Prostaglandin E1 for maintaining ductal patency in neonates with ductal-dependent cardiac lesions. Cochrane Database Syst. Rev. 2018, 2, CD011417. [Google Scholar] [CrossRef]
- Reddy, S.C.; Saxena, A. Prostaglandin E1: First stage palliation in neonates with congenital cardiac defects. Indian J. Pediatr. 1998, 65, 211–216. [Google Scholar] [CrossRef]
- Gluckman, E.; Jolivet, I.; Scrobohaci, M.L.; Devergie, A.; Traineau, R.; Bourdeau-Esperou, H.; Lehn, P.; Faure, P.; Drouet, L. Use of prostaglandin E1 for prevention of liver veno-occlusive disease in leukaemic patients treated by allogeneic bone marrow transplantation. Br. J. Haematol. 1990, 74, 277–281. [Google Scholar] [CrossRef]
- Shulman, H.M.; McDonald, G.B.; Matthews, D.; Doney, K.C.; Kopecky, K.J.; Gauvreau, J.M.; Thomas, E.D. An analysis of hepatic venocclusive disease and centrilobular hepatic degeneration following bone marrow transplantation. Gastroenterology 1980, 79, 1178–1191. [Google Scholar] [CrossRef]
- Kugler, C.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Deen, D.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Stankova, Z.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Hirn Lopez, A.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Vokac, Y.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Rabe, A.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Kroell, T.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany; Krämer, D.; Department for Hematology and Oncology, University Hospital of Oldenburg, 26133 Oldenburg, Germany; Kolb, H.J.; Department for Hematology-Oncology Immunology Infectious Diseases, Klinikum München-Schwabing, Munich, Germany; Tischer, J.; Medical Department 3, University Hospital Munich, 81377 Munich, Germany; et al. Immunmodulation of blasts in AML-patients (pts) with clinically approved response modifiers to improve antileukemic T-cell reactivity: An ex vivo simulation of the clinical situation. Personal Communication, 2019. in preparation. [Google Scholar]
- Rosenblatt, J.; Stone, R.M.; Uhl, L.; Neuberg, D.; Joyce, R.; Levine, J.D.; Arnason, J.; McMasters, M.; Luptakova, K.; Jain, S.; et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci. Transl. Med. 2016, 8, 368ra171. [Google Scholar] [CrossRef]
- Weinstock, M.; Rosenblatt, J.; Avigan, D. Dendritic Cell Therapies for Hematologic Malignancies. Mol. Ther. Methods Clin. Dev. 2017, 5, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Subklewe, M.; Geiger, C.; Lichtenegger, F.S.; Javorovic, M.; Kvalheim, G.; Schendel, D.J.; Bigalke, I. New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia. Cancer Immunol. Immunother. 2014, 63, 1093–1103. [Google Scholar] [CrossRef]
- Brouwer, R.E.; van der Hoorn, M.; Kluin-Nelemans, H.C.; van Zelderen-Bhola, S.; Willemze, R.; Falkenburg, J.H. The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum. Immunol. 2000, 61, 565–574. [Google Scholar] [CrossRef]
- Kremser, A.; Kufner, S.; Konhaeuser, E.; Kroell, T.; Hausmann, A.; Tischer, J.; Kolb, H.J.; Zitzelsberger, H.; Schmetzer, H. Combined immunophenotyping and fluorescence in situ hybridization with chromosome-specific DNA probes allows quantification and differentiation of ex vivo generated dendritic cells, leukemia-derived dendritic cells and clonal leukemic cells in patients with acute myeloid leukemia. Leuk. Lymphoma 2013, 54, 1297–1308. [Google Scholar]
- Hull, M.A.; Ko, S.C.; Hawcroft, G. Prostaglandin EP receptors: Targets for treatment and prevention of colorectal cancer? Mol. Cancer Ther. 2004, 3, 1031–1039. [Google Scholar]
- Eisinger, A.L.; Prescott, S.M.; Jones, D.A.; Stafforini, D.M. The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat. 2007, 82, 147–154. [Google Scholar] [CrossRef]
- Montrose, D.C.; Nakanishi, M.; Murphy, R.C.; Zarini, S.; McAleer, J.P.; Vella, A.T.; Rosenberg, D.W. The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 2015, 116–117, 26–36. [Google Scholar] [CrossRef]
- Leone, V.; di Palma, A.; Ricchi, P.; Acquaviva, F.; Giannouli, M.; Di Prisco, A.M.; Iuliano, F.; Acquaviva, A.M. PGE2 inhibits apoptosis in human adenocarcinoma Caco-2 cell line through Ras-PI3K association and cAMP-dependent kinase A activation. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G673–G681. [Google Scholar] [CrossRef]
- Greenhough, A.; Smartt, H.J.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009, 30, 377–386. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, S.Y. Anti-cancer activities of omega-6 polyunsaturated fatty acids. Biomed. J. 2014, 37, 112–119. [Google Scholar]
- Tabolacci, C.; Lentini, A.; Provenzano, B.; Gismondi, A.; Rossi, S.; Beninati, S. Similar antineoplastic effects of nimesulide, a selective COX-2 inhibitor, and prostaglandin E1 on B16-F10 murine melanoma cells. Melanoma Res. 2010, 20, 273–279. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Maeta, M.; Kaibara, N. Cisplatin combined with prostaglandin E1 chemotherapy in rat peritoneal carcinomatosis. Int. J. Cancer 2000, 88, 474–478. [Google Scholar] [CrossRef]
- Araki, Y.; Suganami, A.; Endo, S.; Masuda, Y.; Fukushima, K.; Regan, J.W.; Murayama, T.; Tamura, Y.; Fujino, H. PGE1 and E3 show lower efficacies than E2 to beta-catenin-mediated activity as biased ligands of EP4 prostanoid receptors. FEBS Lett. 2017, 591, 3771–3780. [Google Scholar] [CrossRef]
- Graf, M.; Hecht, K.; Reif, S.; Pelka-Fleischer, R.; Pfister, K.; Schmetzer, H. Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): Implications for future therapeutical strategies. Eur. J. Haematol. 2004, 72, 89–106. [Google Scholar] [CrossRef]
- Malissein, E.; Reynaud, S.; Bordessoule, D.; Faucher, J.L.; Turlure, P.; Trimoreau, F.; Denizot, Y. PGE(2) receptor subtype functionality on immature forms of human leukemic blasts. Leuk. Res. 2006, 30, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Platt, A.M.; Randolph, G.J. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv. Immunol. 2013, 120, 51–68. [Google Scholar] [PubMed]
- Randolph, G.J.; Angeli, V.; Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Forster, R.; Davalos-Misslitz, A.C.; Rot, A. CCR7 and its ligands: Balancing immunity and tolerance. Nat. Rev. Immunol. 2008, 8, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Doraneh-Gard, F.; Amberger, D.C.; Gunsilius, C.; Kugler, C.; Schmetzer, H.; Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany. Influence of Hypoxia on immunereactive processes during DC-stimulation of T-cells. Personal Communication, 2019. in preparation. [Google Scholar]
- Brune, M.; Castaigne, S.; Catalano, J.; Gehlsen, K.; Ho, A.D.; Hofmann, W.K.; Hogge, D.E.; Nilsson, B.; Or, R.; Romero, A.I.; et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: Results of a randomized phase 3 trial. Blood 2006, 108, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Lenig, D.; Forster, R.; Lipp, M.; Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401, 708–712. [Google Scholar] [CrossRef]
- Trabanelli, S.; Lecciso, M.; Salvestrini, V.; Cavo, M.; Ocadlikova, D.; Lemoli, R.M.; Curti, A. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J. Immunol. Res. 2015, 2015, 253191. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; Longman, R.S.; Albert, M.L. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 2005, 106, 2375–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellor, A.L.; Munn, D.H. Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation? Immunol. Today 1999, 20, 469–473. [Google Scholar] [CrossRef]
- Wobser, M.; Voigt, H.; Houben, R.; Eggert, A.O.; Freiwald, M.; Kaemmerer, U.; Kaempgen, E.; Schrama, D.; Becker, J.C. Dendritic cell based antitumor vaccination: Impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol. Immunother. 2007, 56, 1017–1024. [Google Scholar] [CrossRef]
- Krause, P.; Singer, E.; Darley, P.I.; Klebensberger, J.; Groettrup, M.; Legler, D.F. Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: Enhanced T cell stimulatory capacity despite IDO. J. Leukoc. Biol. 2007, 82, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
DC/DCleu-Generating Protocols | Composition | Concentration | Sources of DC/DCleu | Mode of Action | Culture Time | Reference |
---|---|---|---|---|---|---|
Picibanil-PGE1 | GM-CSF | 500 U/mL | PBMC WB | GM-CSF: induction of myeloid (DC-) differentiation IL-4: induction of DC-differentiation Picibanil (OK-432): lysis product from streptococcus pyogenes; stimulates DC-differentiation PGE2: increases CCR7-expression and enhances DC-migration PGE1: effects are comparable to PGE2 | 7–10 days | |
(Pici-PGE1) | IL-4 | 250 U/mL | ||||
OK-432 | 10 µg/mL | |||||
PGE1 | 1 µg/mL | |||||
Picibanil-PGE2 | GM-CSF | 500 U/mL | PBMC WB | 7–10 days | [17,20] | |
(Pici-PGE2) | IL-4 | 250 U/mL | ||||
OK-432 | 10 µg/mL | |||||
PGE2 | 1 µg/mL | |||||
Kit M# | GM-CSF | 800 U/mL | WB | 7–10 days | [47] | |
PGE1 | 10 µg/mL | |||||
Kit K# | GM-CSF | 800 U/mL | WB | 7–10 days | [47] | |
PGE2 | 1 µg/mL | |||||
Kit I# | GM-CSF | 800 U/mL | WB | 7–10 days | [47] | |
OK-432 | 1 µg/mL |
MLCWB-DC Kits | MLCWB | Uncultured Cells | p-Values | |||
---|---|---|---|---|---|---|
% of Cells in the Corresponding Subgroup | MLCWB-DC Kits vs. MLCWB | MLCWB-DC Kits vs. Uncultured Cells | MLCWB vs. Uncultured Cells | |||
T Cell Subtypes | ||||||
CD3+CD4+/CD3+ | 44.7 ± 16.1 | 57.0 ± 18.6 | 63.6 ± 21.4 | <0.08* | <0.02** | <0.44 |
CD3+CD8+/CD3+ | 55.3 ± 16.1 | 43.0 ± 18.6 | 36.4 ± 21.4 | <0.08* | <0.02** | <0.44 |
Proliferating T Cells | ||||||
CD3+CD71+/CD3+ | 22.8 ± 18.3 | 17.8 ± 9.2 | 1.1 ± 0.6 | <0.3 | <0.000001*** | <0.00001*** |
CD3+CD69+/CD3+ | 23.0 ± 16.7 | 18.4 ± 15.5 | 3.1 ± 4.4 | <0.4 | <0.00001*** | <0.009*** |
Non-Naïve or Naïve T cells | ||||||
CD3+CD45RO+/CD3+ | 73.5 ± 15.9 | 67.0 ± 16.9 | 48.8 ± 15.6 | <0.3 | <0.0003*** | <0.02** |
CD3+CD8+CD45RO+/CD3+ | 34.6 ± 13.4 | 26.4 ± 14.6 | 16.8 ± 12.4 | <0.13 | <0.001*** | <0.14 |
CD3+CD4+CD45RO+/CD3+ | 38.9 ± 17.3 | 40.7 ± 16.1 | 32.0 ± 12.5 | <0.19 | <0.17 | |
CD3+CD45RO− (including subsets) | 26.2 ± 15.6 | 32.7 ± 16.9 | 51.1 ± 15.5 | <0.3 | <0.0003*** | <0.02** |
Effector (Memory) T Cells | ||||||
CD3+CCR7−CD45RO+/CD3+ | 62.8 ± 18.9 | 55.5 ± 21.8 | 36.8 ± 16.6 | <0.23 | <0.0005*** | <0.04** |
CD3+ CCR7+CD45RO+/CD3+ | 10.3 ± 14.0 | 11.5 ± 15.5 | 11.9 ± 16.7 | <0.84 | <0.79 | <0.95 |
MLCWB-DC Kit M | MLCWB-DC Kit K | |
---|---|---|
T Cell Subtypes | ||
CD3+CD8+/CD3+ | 59.4 ± 13.9 | 59.0 ± 14.3 |
CD3+CD4+/CD3+ | 40.6 ± 13.9 | 41.0 ± 14.3 |
Proliferating T Cells | ||
CD3+CD71+/CD3+ | 20.7 ± 12.1 | 19.7 ± 13.5 |
Non-Naïve or Naïve T Cells | ||
CD3+CD45RO+/CD3+ | 71.8 ± 17.7 | 74.6 ± 16.4 |
Age at | Subtype | Blasts | Conducted | Conducted | |||||
---|---|---|---|---|---|---|---|---|---|
Stage | Pat. # | dgn. | Sex | FAB | Blast Phenotype (CD) | in PB % | DC/DCleu-Cultures | Experiments | |
AML | First Diagnosis | P1419 | 64 | f | p/M1 | 34, 117, 33, 15, 13 | 93 | PBMC | |
P1426 | 61 | f | s/M5 | 34, 117, 64, 33, 13 | 40 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1430 | 79 | m | p/M5 | 34, 117, 33, 13 | 70 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1432 | 34 | m | p/M5 | 34, 64, 33, 13 | 81 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1434 | 61 | f | s/n.d. | 34, 117, 64, 56, 33, 13, 7 | 61 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1439 | 61 | f | s/M5 | 34, 117, 33, 13 | 17 | PBMC, WB | MLCWB, MLCWB-DC | ||
P1441 | 60 | m | s/M4 | 117, 65, 64, 33, 13, 14, | 81 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1442 | 73 | f | s/M4 | 117, 138, 61, 33 | 14 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1443 | 64 | m | p/n.d. | 34, 117, 33, 13 | 50 | PBMC, WB | |||
P1447 | 21 | m | p/M5 | 56, 33, 45 | 65 | WB | CTX | ||
P1449 | 78 | m | s/n.d. | 15, 65, 64, 45, 4 | 62 | WB | MLCWB, MLCWB-DC, CTX | ||
P1452 | 44 | m | p/n.d. | 34, 117, 45, 33, 13 | 55 | PBMC, WB | CTX | ||
P1453 | 54 | f | p/M4 | 15, 64, 56, 33, 14 | 52 | PBMC, WB | MLCWB, MLCWB-DC | ||
P1454 | 60 | f | s/n.d. | 34, 117, 61, 20 | 33 | WB | |||
P1459 | 54 | m | p/M4 | 56, 64, 38, 33, 11c, 11b | 14 | PBMC, WB | MLCWB, MLCWB-DC, CTX | ||
P1460 | 78 | f | p/M4 | 15, 34, 117 | 68 | PBMC, WB | MLCWB, MLCWB-DC | ||
P1462 | 49 | f | p/M5 | 34, 56, 64, 45, 33, 13 | 60 | WB | |||
P1466 | 47 | f | p/n.d. | 34, 117, 33, 15, 13 | 15 | PBMC | |||
P1471 | 40 | m | p/M1 | 34, 117, 33, 13 | 69 | PBMC, WB | |||
P1472 | 33 | f | p/M2 | 117, 34, 15, 13 | 30 | WB | |||
Relapse Before or after HSCT | P1474 | 70 | m | p/n.d. | 117, 34, 56, 33 | 80 | PBMC, WB | ||
P1475 | 77 | m | s/n.d. | 117, 34, 33, 13 | 20 | PBMC, WB | |||
P1455 | 63 | m | s/n.d. | 34, 117, 13 | 12 | WB | |||
P1463 | 60 | f | s/n.d. | 34, 56, 33, 13, 2 | 8 | PBMC, WB | CTX | ||
P1469 | 49 | m | p/M4 | 34, 117, 65, 33, 13 | 94 | PBMC | |||
P1470 | 67 | m | p/n.d. | 56, 117, 34, 33, 13, | 9 | PBMC, WB | |||
Persisting Disease | P1464 | 72 | m | s/n.d. | 34, 117, 71, 20 | 44 | PBMC, WB | MLCWB, MLCWB-DC, CTX | |
P1467 | 59 | f | s/n.d. | 34, 117, 33, 15, 13 | 30 | PBMC, WB | |||
P1468 | 66 | m | p/n.d. | 117, 56, 34, 33 | 75 | PBMC, WB | |||
Healthy | P1418 | 22 | m | PBMC, WB | |||||
P1420 | 26 | f | PBMC, WB | ||||||
P1421 | 27 | f | PBMC | ||||||
P1422 | 20 | f | PBMC, WB | ||||||
P1428 | 56 | f | PBMC, WB | ||||||
P1429 | 22 | f | WB | ||||||
P1436 | 25 | m | PBMC, WB | ||||||
P1438 | 31 | f | PBMC, WB | ||||||
P1445 | 27 | f | PBMC, WB | ||||||
P1446 | 25 | m | PBMC, WB |
Cell Type | Average of Cells in WB/PBMCs (%) | Range of Cells in WB/PBMCS (%) | |
---|---|---|---|
AML | Leukemic blasts * | 46.2/45.3 | 8.0–81.0/8.0–93.0 |
CD3+T cells | 9.9/6.3 | 1.5–23.3/0.4–24.0 | |
CD19+B cells | 2.8/2.4 | 0.1–8.4/0.2–7.6 | |
CD56+CD3-NK-cells | 4.8/1.9 | 0.4–9.8/0.2–6.3 | |
CD14+monocytes | 3.4/1.8 | 0.1–11.5/0.1–5.7 | |
Heathy | CD14+monocytes | 5.6/7.0 | 4.4–8.5/2.6–12.7 |
CD3+T cells | 19.4/36.3 | 13.6–26.3/21.1–46.7 | |
CD56+CD3-NK-cells | 3.4/4.8 | 2.3–6.9/3.5–6.6 | |
CD19+B cells | 2.3/6.0 | 0.8–4.8/1.7–11.8 |
Names of Subgroups | Referred to | Surface Marker | Abbreviation | Explanatory Note Premise for Analysis | Reference | |
---|---|---|---|---|---|---|
DC/DCleu | leukemic blasts | cells (PBMC, WB) | CD15, CD34, CD65, CD117 | Bla+/cells [PBMC, WB] | [16] | |
dentritic cells | cells (PBMC, WB) | CD80, CD83, CD86, CD206, CD209 | DC+/cells [PBMC, WB] | [16] | ||
DCleu in DC fraction | DC+ | DC+Bla+ | DCleu/DC | ≥ 10% DC+ in cells | [16] | |
blasts converted to DCleu | Bla+ | DC+Bla+ | DCleu/Bla+ | ≥ 10% DC+ in cells | [16] | |
leukemia derived DC | cells (PBMC, WB) | DC+Bla+ | DCleu/cells [PBMC, WB] | ≥ 10% DC+ in cells | [16] | |
migratory mature DC in DC fraction | DC+ | DC+CCR7+ | DCmig/DC | ≥ 10% DC+ in cells | [25] | |
proliferating blasts | cells (PBMC, WB) | Bla+DC−CD71+ | Blaprol-CD71/cells [PBMC, WB] | [19] | ||
proliferating blasts | cells (PBMC, WB) | Bla+DC−IPO-38+ | Blaprol-IPO38/cells [PBMC, WB] | [19] | ||
T cell subsets | CD3+ pan T cells | gated cells | CD3+ | CD3+/cells | [27] | |
CD4+ coexpressing T cells | CD3+ | CD3+CD4+ | CD4+CD3+/CD3+ | CD4+ T cells | [27] | |
CD8+ coexpressing T cells | CD3+ | CD3+CD8+ | CD8+CD3+/CD3+ | CD8+ T cells | [27] | |
early proliferating T cells | CD3+ | CD3+CD69+ | Tprol/CD3+ | proliferating T cells | [27] | |
proliferating T cells | CD3+ | CD3+CD71+ | Tprol/CD3+ | proliferating T cells | [27] | |
naive T cells | CD3+ | CD3+CD45RO− | Tnaive/CD3+ | Unprimed T cells | [28] | |
naive CD4+ T cells | CD3+ | CD3+CD4+CD45RO− | TCD4-naive/CD3+ | Unprimed CD4+ T cells | [28] | |
naive CD8+ T cells | CD3+ | CD3+CD8+CD45RO− | TCD8-naive/CD3+ | Unprimed CD8+ T cells | [28] | |
non-naive T cells | CD3+ | CD3+CD45RO+ | Tnon-naive/CD3+ | Memory + effector T cells | [28] | |
non-naive CD4+ T cells | CD3+ | CD3+CD4+CD45RO+ | TCD4-non-naive/CD3+ | Memory + effector CD4+ T cells | [28] | |
non-naive CD8+ T cells | CD3+ | CD3+CD8+CD45RO+ | TCD8-non-naive/CD3+ | Memory + effector CD8+ T cells | [28] | |
central (memory) T cells | CD3+ | CD3+CCR7+CD45RO+ | Tcm/CD3+ | Long-term immunity | [28] | |
effector (memory) T cells | CD3+ | CD3+CCR7−CD45RO+ | TeffTems/CD3+ | [28] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amberger, D.C.; Doraneh-Gard, F.; Gunsilius, C.; Weinmann, M.; Möbius, S.; Kugler, C.; Rogers, N.; Böck, C.; Ködel, U.; Werner, J.-O.; et al. PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. Int. J. Mol. Sci. 2019, 20, 4590. https://doi.org/10.3390/ijms20184590
Amberger DC, Doraneh-Gard F, Gunsilius C, Weinmann M, Möbius S, Kugler C, Rogers N, Böck C, Ködel U, Werner J-O, et al. PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. International Journal of Molecular Sciences. 2019; 20(18):4590. https://doi.org/10.3390/ijms20184590
Chicago/Turabian StyleAmberger, Daniel Christoph, Fatemeh Doraneh-Gard, Carina Gunsilius, Melanie Weinmann, Sabine Möbius, Christoph Kugler, Nicole Rogers, Corinna Böck, Uwe Ködel, Jan-Ole Werner, and et al. 2019. "PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood" International Journal of Molecular Sciences 20, no. 18: 4590. https://doi.org/10.3390/ijms20184590
APA StyleAmberger, D. C., Doraneh-Gard, F., Gunsilius, C., Weinmann, M., Möbius, S., Kugler, C., Rogers, N., Böck, C., Ködel, U., Werner, J. -O., Krämer, D., Eiz-Vesper, B., Rank, A., Schmid, C., & Schmetzer, H. M. (2019). PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. International Journal of Molecular Sciences, 20(18), 4590. https://doi.org/10.3390/ijms20184590