Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment of an RT-qPCR-Based Detection Method in B. licheniformis
2.2. Transcriptional Activity of the Xylose Operon at Different Growth Stages
2.3. Transcriptional Activity of the Xylose Operon under Glucose Stress
2.4. Transcriptional Activity of the Xylose Operon at Different Temperatures
2.5. Transcriptional Activity of the Xylose Operon at Different pH Values
2.6. Bioprocess of Recombinant B. licheniformis Based on Transcriptional Analysis
3. Materials and Methods
3.1. Strains, Plasmids, and Culture Conditions
3.2. Development of RT-qPCR Methods for B. licheniformis Fermentation
3.2.1. Establishment of Culture Conditions
3.2.2. Investigation of Transcriptional Activity at Different Growth Stages
3.2.3. Investigation of Transcriptional Activity under Glucose Stress
3.2.4. Investigation of Transcriptional Activity at Different Temperatures
3.2.5. Investigating Transcriptional Activity at Different pH Values
3.3. Relative Quantitative Real-Time PCR (RT-qPCR)
3.4. Construction of Xylose-Inducible Expression Strains and Fermentation
3.5. Analytical Procedures
3.5.1. Cell Density Determination
3.5.2. Sugar Content Analysis during Fermentation
3.5.3. Enzyme Assays
3.5.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jellouli, K.; Ghorbel-Bellaaj, O.; Ayed, H.B.; Manni, L.; Agrebi, R.; Nasri, M. Alkaline-protease from Bacillus licheniformis MP1: Purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process. Biochem. 2011, 46, 1248–1256. [Google Scholar] [CrossRef]
- Božić, N.; Ruiz, J.; López-Santín, J.; Vujčić, Z. Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem. Eng. J. 2011, 53, 203–209. [Google Scholar] [CrossRef]
- Borgi, M.A.; Boudebbouze, S.; Aghajari, N.; Szukala, F.; Pons, N.; Maguin, E.; Rhimi, M. The attractive recombinant phytase from Bacillus licheniformis: Biochemical and molecular characterization. Appl. Microbiol. Biotechnol. 2014, 98, 5937–5947. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.-S.; Li, W.; Zhang, D.-D.; Xie, M.-F.; Yang, B.; Zhang, R.-X.; Li, H.; Lu, Z.-M.; Xu, Z.-H.; Shi, J.-S. Biochemical characterization of an arginine-specific alkaline trypsin from Bacillus licheniformis. Int. J. Mol. Sci. 2015, 16, 30061–30074. [Google Scholar] [CrossRef] [PubMed]
- Wittrup, M.; Jahic, M.; Hult, K.; Enfors, S.-O. Inducible versus constitutive expression of a lipase in Pichia pastoris: A comparative study using different fermentation techniques. J. Biotechnol. 2007, 131, S149. [Google Scholar] [CrossRef]
- Brophy, J.A.; Voigt, C.A. Principles of genetic circuit design. Nat. Methods 2014, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Mogk, A.; Schumann, W. A xylose-inducible Bacillus subtilis integration vector and its application. Gene 1996, 181, 71–76. [Google Scholar] [CrossRef]
- Terpe, K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biot. 2006, 72, 211. [Google Scholar] [CrossRef]
- Li, Y.; Jin, K.; Zhang, L.; Ding, Z.; Gu, Z.; Shi, G. Development of an inducible secretory expression system in Bacillus licheniformis based on an engineered xylose operon. J. Agric. Food Chem. 2018, 66, 9456–9464. [Google Scholar] [CrossRef]
- Scheler, A.; Hillen, W. Regulation of xylose utilization in Bacillus licheniformis: Xyl repressor-xyl-operator interaction studied by DNA modification protection and interference. Mol. Microbiol. 1994, 13, 505–512. [Google Scholar] [CrossRef]
- Dahl, M.K.; Schmiedel, D.; Hillen, W. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization. J. Bacteriol. 1995, 177, 5467–5472. [Google Scholar] [CrossRef] [PubMed]
- Rygus, T.; Hillen, W. Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Appl. Microbiol. Biot. 1991, 35, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Demeke, M.M.; Dumortier, F.; Li, Y.; Broeckx, T.; Foulquié-Moreno, M.R.; Thevelein, J.M. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol. Biofuels 2013, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Leakey, A.D.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.C.; Ort, D.R.; Placella, S.A.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J. Gene expression profiling: Opening the black box of plant ecosystem responses to global change. Glob. Chang. Biol. 2009, 15, 1201–1213. [Google Scholar] [CrossRef]
- Kaiser, M.; Jug, F.; Julou, T.; Deshpande, S.; Pfohl, T.; Silander, O.K.; Myers, G.; Van Nimwegen, E. Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat. Commun. 2018, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, O.; Lakaniemi, A.-M.; Santala, V.; Karp, M.; Mangayil, R. Quantitative real-time PCR monitoring dynamics of Thermotoga neapolitana in synthetic co-culture for biohydrogen production. Int. J. Hydrogen Energy 2018, 43, 3133–3141. [Google Scholar] [CrossRef]
- Kang, T.S. Identification of undeclared ingredients in red pepper products sold on the South Korea commercial market using real-time PCR methods. Food Control. 2018, 90, 73–80. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, W.; yan Hou, J.; Xiao, W.; Cao, L. Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2018, 102, 7207–7217. [Google Scholar] [CrossRef]
- Liu, L.; Pan, J.; Wang, Z.; Yan, X.; Yang, D.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234. J. Ind. Microbiol. Biotechnol. 2018, 45, 141–151. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Z.; Shen, L.; Wang, Y.; Li, Q.; Yan, S.; Zhong, C.J.; He, N. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants. Biotechnol. Bioeng. 2016, 113, 797–806. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, M.H.; Nguyen, H.T.; Nguyen, H.A.; Le, T.H.; Schweder, T.; Jürgen, B. A phosphate starvation-inducible ribonuclease of Bacillus licheniformis. J. Microbiol. Biotechnol. 2016, 26, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, J.; Li, L.; Wen, Z.; Nomura, C.T.; Wu, S.; Chen, S. Engineering Bacillus licheniformis for the production of meso-2, 3-butanediol. Biotechnol. Biofuels 2016, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Wecke, T.; Bauer, T.; Harth, H.; Mäder, U.; Mascher, T. The rhamnolipid stress response of Bacillus subtilis. FEMS Microbiol. Lett. 2011, 323, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.; Junker, A.; Helmann, J.D.; Mascher, T. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: Identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J. Bacteriol. 2006, 188, 5153–5166. [Google Scholar] [CrossRef] [PubMed]
- Rachinger, M.; Volland, S.; Meinhardt, F.; Daniel, R.; Liesegang, H. First insights into the completely annotated genome sequence of Bacillus licheniformis strain 9945A. Genome Announc. 2013, 1, e00525-13. [Google Scholar] [CrossRef]
- Yang, S.; Du, G.; Chen, J.; Kang, Z. Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2017, 101, 4151–4161. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N.; Köhler, T.; Rekik, M.; Harayama, S. Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes. J. Bacteriol. 1990, 172, 6651–6660. [Google Scholar] [CrossRef] [Green Version]
- Chao, Y.-P.; Wen, C.-S.; Chiang, C.-J.; Wang, J.-J. Construction of the expression vector based on the growth phase-and growth rate-dependent rmf promoter: Use of cell growth rate to control the expression of cloned genes in Escherichia coli. Biotechnol. Lett. 2001, 23, 5–11. [Google Scholar] [CrossRef]
- Batyrova, K.; Hallenbeck, P.C. Hydrogen production by a Chlamydomonas reinhardtii strain with inducible expression of photosystem II. Int. J. Mol. Sci. 2017, 18, 647. [Google Scholar] [CrossRef]
- Zheng, Z.; Jiang, T.; Zou, L.; Ouyang, S.; Zhou, J.; Lin, X.; He, Q.; Wang, L.; Yu, B.; Xu, H. Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. Biotechnol. Biofuels 2018, 11, 320. [Google Scholar] [CrossRef]
- Ammar, E.M.; Wang, X.; Rao, C.V. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: Arabinose, lactose, and xylose. Sci. Rep. 2018, 8, 609. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, D.; Geissendörfer, M.; Hillen, W. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J. Bacteriol. 1988, 170, 3102–3109. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, Z.; Federle, M.J.; Marra, D.; De Vos, W.M.; Kuipers, O.P.; Kleerebezem, M.; Scott, J.R. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: Comparison of induction level and promoter strength. Appl. Environ. Microbiol. 1998, 64, 2763–2769. [Google Scholar]
- BREMER, E. Coping with osmotic challenges: Osmoregulation through accumulation and release of compatible solutes in bacteria. Bacter. Stress Respon. 2000, 79–97. [Google Scholar] [CrossRef]
- Schroeter, R.; Hoffmann, T.; Voigt, B.; Meyer, H.; Bleisteiner, M.; Muntel, J.; Jürgen, B.; Albrecht, D.; Becher, D.; Lalk, M. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS ONE 2013, 8, e80956. [Google Scholar] [CrossRef] [PubMed]
- Voigt, B.; Schroeter, R.; Jürgen, B.; Albrecht, D.; Evers, S.; Bongaerts, J.; Maurer, K.H.; Schweder, T.; Hecker, M. The response of Bacillus licheniformis to heat and ethanol stress and the role of the Sig B regulon. Proteomics 2013, 13, 2140–2161. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhou, Y.; Chen, J.; Cai, D.; Wang, D.; Qi, G.; Chen, S. Efficient expression of nattokinase in Bacillus licheniformis: Host strain construction and signal peptide optimization. J. Ind. Microbiol. Biotechnol. 2015, 42, 287–295. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, T.; Zhao, X.; Chamu, J. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2, 3-butanediol production. Biotechnol. Bioeng. 2012, 109, 1610–1621. [Google Scholar] [CrossRef]
- Çalık, P.; Bilir, E.; Çalık, G.; Özdamar, T.H. Influence of pH conditions on metabolic regulations in serine alkaline protease production by Bacillus licheniformis. Enzym. Microb. Tech. 2002, 31, 685–697. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.-S.; Park, H.; Lee, D.-H.; Boles, E.; Chung, D.; Park, Y.-C. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzym. Microb. Technol. 2017, 107, 7–14. [Google Scholar] [CrossRef]
- Chen, Y.; Nielsen, J. Biobased organic acids production by metabolically engineered microorganisms. Curr. Opin. Biotech. 2016, 37, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enjalbert, B.; Cocaign-Bousquet, M.; Portais, J.-C.; Letisse, F. Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition. J. Bacteriol. 2015, 197, 3173–3181. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Dineshkumar, R.; Dhanarajan, G.; Sen, R.; Mishra, S. Improvement of ε-polylysine production by marine bacterium Bacillus licheniformis using artificial neural network modeling and particle swarm optimization technique. Biochem. Eng. J. 2017, 126, 8–15. [Google Scholar] [CrossRef]
- Zuo, S.; Xiao, J.; Zhang, Y.; Zhang, X.; Nomura, C.T.; Chen, S.; Wang, Q. Rational design and medium optimization for shikimate production in recombinant Bacillus licheniformis strains. Process. Biochem. 2018, 66, 19–27. [Google Scholar] [CrossRef]
- Malick, A.; Khodaei, N.; Benkerroum, N.; Karboune, S. Production of exopolysaccharides by selected Bacillus strains: Optimization of media composition to maximize the yield and structural characterization. Int. J. Biol. Macromol. 2017, 102, 539–549. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Z.; Zhang, L.; Ding, Z.; Shi, G. Inducible expression of trehalose synthase in Bacillus licheniformis. Protein Expr. Purif. 2017, 130, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Jair, H.-W.; Lu, H.-F.; Huang, Y.-W.; Pan, S.-Y.; Lin, I.; Huang, H.-H.; Yang, T.-C. Roles of the Two-MnSOD system of Stenotrophomonas maltophilia in the alleviation of superoxide stress. Int. J. Mol. Sci. 2019, 20, 1770. [Google Scholar] [CrossRef]
- Hoffmann, K.; Wollherr, A.; Larsen, M.; Rachinger, M.; Liesegang, H.; Ehrenreich, A.; Meinhardt, F. Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl. Env. Microbiol. 2010, 76, 5046–5057. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Zhang, L.; Ding, Z.; Gu, Z.; Shi, G. Unraveling the specific regulation of the shikimate pathway for tyrosine accumulation in Bacillus licheniformis. J. Ind. Microbiol. Biot. 2019, 46, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Marsden, W.L.; Gray, P.P.; Nippard, G.J.; Quinlan, M.R. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J. Chem. Technol. Biot. 1982, 32, 1016–1022. [Google Scholar] [CrossRef]
Time (h) | pH Values | ||||
---|---|---|---|---|---|
A | B | C | D | E | |
8 * | 6.84 a | 6.82 a | 6.86 a | 6.83 a | 6.87 a |
8 ** | 4.15 e | 5.71 d | 6.51 c | 7.14 b | 8.20 a |
9 | 4.12 e | 5.67 d | 6.35 c | 6.94 b | 7.93 a |
Strain or Plasmid | Description | Source/Reference |
---|---|---|
Escherichia coli JM109 | endA1, recA1, gyrA96, thi, hsdR17 (rk−, mk+), relA1, supE44, Δ( lac-proAB), [F′ traD36, proAB, laqIqZΔM15] | CICIM-CU 1 |
Bacillus licheniformis 9945a | Wild-type strain | CICIM-CU |
Bacillus licheniformis GM2 | Bacillus licheniformis 9945a derivative, deficient in ΔamyL, ΔaprE | GY. Shi, this lab |
pHY300-PLK | E.coli/Bacillus shuttle vector, ApR/TetR | TaKaRa |
pBLxyl | pHY300-PLK derivative with the xylose regulon from B. licheniformis 9945a | This work |
pBLSY | pHY300-PLK derivative with the xylose regulon from B. licheniformis 9945a, the signal peptide from the levansucrase-encoding gene of B. subtilis 168 (sacBss), and the maltogenic amylase (yvdF)-encoding gene and terminator sequence from B. licheniformis DSM13 | This work |
pBSSY | pHY300-PLK derivative with the xylose regulon from B. subtilis 168, the signal peptide from the levansucrase encoding gene of B. subtilis 168 (sacBss), and the maltogenic amylase (yvdF)-encoding gene and terminator sequence from B. licheniformis DSM13 | GY. Shi, this lab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, X.; Zhang, L.; Ding, Z.; Xu, S.; Gu, Z.; Shi, G. Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization. Int. J. Mol. Sci. 2019, 20, 4615. https://doi.org/10.3390/ijms20184615
Li Y, Liu X, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization. International Journal of Molecular Sciences. 2019; 20(18):4615. https://doi.org/10.3390/ijms20184615
Chicago/Turabian StyleLi, Youran, Xiang Liu, Liang Zhang, Zhongyang Ding, Sha Xu, Zhenghua Gu, and Guiyang Shi. 2019. "Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization" International Journal of Molecular Sciences 20, no. 18: 4615. https://doi.org/10.3390/ijms20184615
APA StyleLi, Y., Liu, X., Zhang, L., Ding, Z., Xu, S., Gu, Z., & Shi, G. (2019). Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization. International Journal of Molecular Sciences, 20(18), 4615. https://doi.org/10.3390/ijms20184615