Cellular Mechanism Underlying rTMS Treatment for the Neural Plasticity of Nervous System in Drosophila Brain
Abstract
:1. Introduction
2. Results
2.1. The Effects of rTMS (at 1 Hz, with 1%, 10%, 50%, and 100% Intensities, and at 1 Hz, 2 Hz, 5 Hz, and 10 Hz, with 1% Intensity) on the mEPSC of PNs
2.2. The Acute and Chronic Effects of 100% rTMS at 1 Hz on the mEPSC from PNs
2.3. The sAP Is Significantly Affected by 1% rTMS at 1 Hz
2.4. The Calcium Channel Current Is Significantly Affected by 1% rTMS at 1 Hz
3. Discussion
4. Material and Methods
4.1. Animals
4.2. Application of rTMS
4.3. Electrophysiology Experiments
4.4. Biocytin Staining and Confocal Image of Neuron
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dougall, N.; Maayan, N.; Soares-Weiser, K.; McDermott, L.M.; McIntosh, A. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst. Rev. 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kakuda, W.; Yamada, N.; Shimizu, M.; Hagino, H.; Abo, M. Effect of low-frequency r TMS on motor neuron excitability after stroke. Acta Neurol. Scand. 2013, 127, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Dobek, C.E.; Blumberger, D.M.; Downar, J.; Daskalakis, Z.J.; Vila-Rodriguez, F. Risk of seizures in transcranial magnetic stimulation: A clinical review to inform consent process focused on bupropion. Neuropsychiatr. Dis. Treat. 2015, 11, 2975–2987. [Google Scholar] [PubMed]
- Nyffeler, T.; Müri, R. Comment on: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research, by Rossi et al. (2009). Clin. Neurophysiol. 2010, 121, 980. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, W.; Abo, M.; Kobayashi, K.; Momosaki, R.; Yokoi, A.; Fukuda, A.; Ito, H.; Tominaga, A.; Umemori, T.; Kameda, Y. Anti-spastic effect of low-frequency rTMS applied with occupational therapy in post-stroke patients with upper limb hemiparesis. Brain Inj. 2011, 25, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Yozbatiran, N.; Alonso-Alonso, M.; See, J.; Demirtas-Tatlidede, A.; Luu, D.; Motiwala, R.R.; Pascual-Leone, A.; Cramer, S.C. Safety and behavioral effects of high-frequency repetitive transcranial magnetic stimulation in stroke. Stroke 2009, 40, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Speer, A.M.; Kimbrell, T.A.; Wassermann, E.M.; Repella, J.D.; Willis, M.W.; Herscovitch, P.; Post, R.M. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol. Psychiatr. 2000, 48, 1133–1141. [Google Scholar] [CrossRef]
- Heath, A.; Lindberg, D.R.; Makowiecki, K.; Gray, A.; Asp, A.J.; Rodger, J.; Choi, D.-S.; Croarkin, P.E. Medium-and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Transl. Psychiatr. 2018, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.D.; Bennett, W.; Hadrill, C.; Collins, J.; Fulopova, B.; Wills, K.; Bindoff, A.; Puri, R.; Garry, M.I.; Hinder, M.R. Low intensity repetitive transcranial magnetic stimulation modulates skilled motor learning in adult mice. Sci. Rep. 2018, 8, 4016. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, K.; He, S.; Fan, Y.; Yu, J.; Zhang, X. Effects of repetitive magnetic stimulation on the growth of primarily cultured hippocampus neurons in vitro and their expression of iron-containing enzymes. Neuropsychatr. Dis. Treat. 2019, 15, 927. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Zheng, T.; Hu, S.; Dong, Y.; Du, D.; Wu, S.; Wang, X.; Shi, Q. Protective effect of low-intensity transcranial ultrasound stimulation after differing delay following an acute ischemic stroke. Brain Res. Bull. 2019, 146, 22–27. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, G.; Panuccio, G.; Tancredi, V.; Avoli, M. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks. Neurobiol. Dis. 2005, 19, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strafella, A.P.; Paus, T.; Barrett, J.; Dagher, A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 2001, 21, RC157. [Google Scholar] [CrossRef] [PubMed]
- Pei, Q.; Zhuo, Z.; Jing, B.; Meng, Q.; Ma, X.; Mo, X.; Liu, H.; Liang, W.; Ni, J.; Li, H. The effects of repetitive transcranial magnetic stimulation on the whole-brain functional network of postherpetic neuralgia patients. Medicine 2019, 98, e16105. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.F.; Anholt, R.R. Of Flies and Man: Drosophila as a model for human complex traits. Annu. Rev. Genomics Hum. Genet. 2006, 7, 339–367. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.; Evans, J.M.; Hendricks, J.C.; Sehgal, A. A Drosophila model for age-associated changes in sleep: Wake cycles. Proc. Natl. Acad. Sci. USA 2006, 103, 13843–13847. [Google Scholar] [CrossRef]
- Jefferis, G.S.; Potter, C.J.; Chan, A.M.; Marin, E.C.; Rohlfing, T.; Maurer, C.R., Jr.; Luo, L. Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell 2007, 128, 1187–1203. [Google Scholar] [CrossRef]
- Jefferis, G.S.; Potter, C.J.; Chan, A.M.; Marin, E.C.; Rohlfing, T.; Maurer, C.R.; Luo, L.D.; Sizemore, T.R.; Dacks, A.M. Serotonergic Modulation ifferentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster. Sci. Rep. 2016, 6, 37119. [Google Scholar]
- Wong, A.M.; Wang, J.W.; Axel, R. Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum. Cell 2002, 109, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Africa, C.; Mattias, A.; Dickson, B.J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 2005, 15, 1535–1547. [Google Scholar]
- Nagel, K.I.; Hong, E.J.; Wilson, R.I. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics. Nat. Neurosci. 2015, 18, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Koch, G.; Versace, V.; Mori, F.; Rossi, S.; Brusa, L.; Grossi, K.; Torelli, F.; Prosperetti, C.; Cervellino, A.; et al. Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology 2007, 68, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Kazama, H.; Wilson, R.I. Origins of correlated activity in an olfactory circuit. Nat. Neurosci. 2009, 12, 1136. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.J.; Wolf, S.L. Putting the brain on the map: Use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys. Ther. 2007, 87, 719–736. [Google Scholar] [CrossRef] [PubMed]
- Classen, J.; Stefan, K.J. Changes in TMS. In The Oxford Handbook of Transcranial Stimulation; Wassermann, E.M., Ulf, Z., Walsh, V., Paus, T., Lisanby, S., Eds.; Oxford University Press Inc.: New York, NY, USA, 2008; pp. 185–200. [Google Scholar]
- Houdayer, E.; Degardin, A.; Cassim, F.; Bocquillon, P.; Derambure, P.; Devanne, H. The effects of low-and high-frequency repetitive TMS on the input/output properties of the human corticospinal pathway. Exp. Brain Res. 2008, 187, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, T.; Ren, G.; Yang, Z. Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology 2012, 6, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Tateno, T.; Harsch, A.; Robinson, H. Threshold firing frequency–current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics. J. Neurophysiol. 2004, 92, 2283–2294. [Google Scholar] [CrossRef]
- Nowak, L.G.; Azouz, R.; Sanchez-Vives, M.V.; Gray, C.M.; McCormick, D.A. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J. Neurophysiol. 2003, 89, 1541–1566. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.S.; McNamara, J.O.; White, L.E. Neuroscience, 4th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2008. [Google Scholar]
- Ran, D.; Xie, B.; Gan, Z.; Sun, X.; Gu, H.; Yang, J. Melatonin attenuates hLRRK2-induced long-term memory deficit in a Drosophila model of Parkinson’s disease. Biomed. Rep. 2018, 9, 221–226. [Google Scholar] [CrossRef]
- Gu, H.; O’Dowd, D.K. Whole cell recordings from brain of adult Drosophila. JoVE 2007, 6, e248. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Yang, J.; Wang, H.; Gan, Z.; Ran, D. Cellular Mechanism Underlying rTMS Treatment for the Neural Plasticity of Nervous System in Drosophila Brain. Int. J. Mol. Sci. 2019, 20, 4625. https://doi.org/10.3390/ijms20184625
Luo Y, Yang J, Wang H, Gan Z, Ran D. Cellular Mechanism Underlying rTMS Treatment for the Neural Plasticity of Nervous System in Drosophila Brain. International Journal of Molecular Sciences. 2019; 20(18):4625. https://doi.org/10.3390/ijms20184625
Chicago/Turabian StyleLuo, Ying, Junqing Yang, Hong Wang, Zongjie Gan, and Donzhi Ran. 2019. "Cellular Mechanism Underlying rTMS Treatment for the Neural Plasticity of Nervous System in Drosophila Brain" International Journal of Molecular Sciences 20, no. 18: 4625. https://doi.org/10.3390/ijms20184625
APA StyleLuo, Y., Yang, J., Wang, H., Gan, Z., & Ran, D. (2019). Cellular Mechanism Underlying rTMS Treatment for the Neural Plasticity of Nervous System in Drosophila Brain. International Journal of Molecular Sciences, 20(18), 4625. https://doi.org/10.3390/ijms20184625