Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation
Abstract
:1. Introduction
2. Results
2.1. Relaxation Behavior during Hydrolytic Degradation
2.2. Comparison of the Relaxation Behavior between Scaffolds and Native Lapine ACL Tissue
2.3. Ultimate Tensile Properties of Degraded Scaffolds after Preconditioning
2.4. Lapine ACL Cell Survival on Embroidered Scaffolds
2.5. Protein Expression of Lapine ACL Cells on the Scaffolds in Comparison to Native ACLs
2.6. Mechanical Properties of Cell-Seeded Scaffolds
3. Discussion
4. Materials and Methods
4.1. Scaffold Fabrication
4.2. Lapine Anterior Cruciate Ligament Cell Isolation by Explant Culture
4.3. Scaffold Seeding: Dynamical Culture
4.4. Scaffold Seeding: Spheroid Culture
4.5. Live-Death Assay
4.6. Immunofluorescence Analysis of Marker Expression
4.7. Mechanical Testing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
ACL | Anterior cruciate ligament |
bico | Bi-component scaffold made of PLA as upper thread and P(LA-CL) as lower thread |
DAPI | 4′,6-diamidino-2-phenylindole |
DMEM | Dulbecco’s Modified Eagle’s |
ECM | Extracellular matrix |
EO | Ethylene-oxide gas sterilization |
FCS | Fetal calf serum |
FDA | Fluorescein diacetate |
moco | Mono-component scaffold made of PLA threads |
NZW | New Zealand White rabbit |
PBS | Phosphate buffered saline |
PFA | Paraformaldehyde |
PI | Propidium iodide |
PLA | Polylactic acid |
P(LA-CL) | Poly(lactic-co-ε-caprolactone) |
PT | Patellar tendon |
RT | Room temperature |
S | Stiffness in N/mm |
SD | Standard deviation |
TBS | TRIS buffered saline |
TE | Tissue engineering |
UTE | Ultimate tensile elongation in % |
UTL | Ultimate tensile load in N |
References
- Murray, M.M. History of ACL treatment and current gold standard of care. In The ACL Handbook; Murray, M.M., Vavken, P., Fleming, B., Eds.; Springer: New York, NY, USA, 2013; pp. 19–28. ISBN 978-1-4614-0759-1. [Google Scholar]
- Bollen, S. Epidemiology of knee injuries: Diagnosis and triage. Br. J. Sports Med. 2000, 34, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Teh, T.K.H.; Goh, J.C.H. Tissue engineering approaches to regeneration of anterior cruciate ligament. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 194–215. ISBN 978-0-08-100692-4. [Google Scholar]
- Woo, S.L.-Y.; Mau, J.R.; Kang, H.; Liang, R.; Almarza, A.J.; Fisher, M.B. Functional tissue engineering of ligament and tendon injuries. In Principles of Regenerative Medicine; Atala, A., Lanza, R., Mikos, A.G., Nerem, R., Eds.; Academic Press: Boston, MA, USA, 2019; pp. 1179–1198. ISBN 978-0-12-809880-6. [Google Scholar]
- Fung, Y.C. (Ed.) Biomechanics-Mechanical Properties of Living Tissues, 2nd ed.; Springer: New York, NY, USA, 1993; ISBN 978-1-4757-2257-4. [Google Scholar]
- Woo, S.L.-Y. Mechanical properties of tendons and ligaments I. Quasi-static and nonlinear viscoelastic properties. In Proceedings of the Biorheology; Pergamon Press: Oxford, UK, 1982; Volume 19, pp. 385–396. [Google Scholar]
- Hutmacher, D.W.; Woodfield, T.B.F.; Dalton, P.D. Scaffold design and fabrication. In Tissue Engineering; Blitterswijk, C.A., de van Boer, J., Eds.; Academic Press, Elsevier: San Diego, CA, USA, 2014; pp. 311–346. ISBN 978-0-12-420145-3. [Google Scholar]
- Oluwadamilola, A.; Yousaf, S.; Zare, M.; Mozafari, M.; Youseffi, M.; Twigg, P.; Sefat, F. 14-Scaffolds for ligament tissue engineering. In Handbook of Tissue Engineering Scaffolds; Mozafari, M., Sefat, F., Atala, A., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Duxford, UK, 2019; pp. 299–327. ISBN 978-0-08-102563-5. [Google Scholar]
- Amis, A.A. Artificial ligaments. In Repair and regeneration of ligaments, tendons, and joint capsule; Walsh, W.A., Ed.; Humana Press: New Jersey, NJ, USA, 2006; pp. 233–256. ISBN 978-1-58829-174-5. [Google Scholar]
- Frank, C.B. Ligament structure, physiology and function. J. Musculoskelet. Neuronal Interact. 2004, 4, 199–201. [Google Scholar] [PubMed]
- Provenzano, P.P.; Vanderby, R. Collagen fibril morphology and organization: Implications for force transmission in ligament and tendon. Matrix Biol. 2006, 25, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Ristaniemi, A.; Stenroth, L.; Mikkonen, S.; Korhonen, R.K. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon. J. Biomech. 2018, 79, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danto, M.I.; Woo, S.L.-Y. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J. Orthop. Res. 1993, 11, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Pioletti, D.P.; Rakotomanana, L.R. On the independence of time and strain effects in the stress relaxation of ligaments and tendons. J. Biomech. 2000, 33, 1729–1732. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Courtney, T.W. High-speed subfailure stretch of rabbit anterior cruciate ligament: Changes in elastic, failure and viscoelastic characteristics. Clin. Biomech. 2001, 334–340. [Google Scholar] [CrossRef]
- Rao, R. Design and Characterization of the Tensile Properties of 3-d Braid-Twist Ligament Scaffolds; The State University of New Jersey: New Brunswick, NJ, USA, 2015. [Google Scholar]
- Laurencin, C.T.; Freeman, J.W. Ligament tissue engineering: An evolutionary materials science approach. Biomaterials 2005, 7530–7536. [Google Scholar] [CrossRef]
- Cooper, J.A.; Lu, H.H.; Ko, F.K.; Freeman, J.W.; Laurencin, C.T. Fiber-based tissue-engineered scaffold for ligament replacement: Design considerations and in vitro evaluation. Biomaterials 2005, 26, 1523–1532. [Google Scholar] [CrossRef]
- Lu, H.H.; Cooper, J.A.; Manuel, S.; Freeman, J.W.; Attawia, M.A.; Ko, F.K.; Laurencin, C.T. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: In vitro optimization studies. Biomaterials 2005, 26, 4805–4816. [Google Scholar] [CrossRef]
- Fan, H.; Liu, H.; Toh, S.L.; Goh, J.C.H. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 2009, 30, 4967–4977. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qi, Y.-Y.; Wang, L.-L.; Yin, Z.; Yin, G.-L.; Zou, X.-H.; Ouyang, H.-W. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials 2008, 29, 3683–3692. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Goh, J.C.H.; Wang, L.; Tan, E.P.S.; Lee, E.H. Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering. J. Biomater. Sci. Polym. Ed. 2005, 16, 1179–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, J.W.; Woods, M.D.; Laurencin, C.T. Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. J. Biomech. 2007, 40, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Altman, G.H.; Horan, R.L.; Lu, H.H.; Moreau, J.; Martin, I.; Richmond, J.C.; Kaplan, D.L. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002, 23, 4131–4141. [Google Scholar] [CrossRef]
- Walters, V.I.; Kwansa, A.L.; Freeman, J.W. Design and analysis of braid-twist collagen scaffolds. Connect. Tissue Res. 2012, 53, 255–266. [Google Scholar] [CrossRef]
- Freeman, J.W.; Woods, M.D.; Cromer, D.A.; Wright, L.D.; Laurencin, C.T. Tissue engineering of the anterior cruciate ligament: The viscoelastic behavior and cell viability of a novel braid–twist scaffold. J. Biomater. Sci. Polym. Ed. 2009, 20, 1709–1728. [Google Scholar] [CrossRef] [PubMed]
- Hahner, J.; Hinüber, C.; Breier, A.; Siebert, T.; Brünig, H.; Heinrich, G. Adjusting the mechanical behavior of embroidered scaffolds to lapin anterior cruciate ligaments by varying the thread materials. Text. Res. J. 2015, 85, 1431–1444. [Google Scholar] [CrossRef]
- Breier, A.; Hahn, J.; Hinüber, C.; Brünig, H.; Schulze-Tanzil, G.; Hoyer, M.; Meyer, M.; Schröpfer, M.; Spickenheuer, A.; Heinrich, G. Tissue Engineering einer vorderen Kreuzbandplastik auf der Basis resorbierbarer, gestickter Träger. Teil 1. GAK Gummi Fasern Kunstst. 2018, 71, 582–587. [Google Scholar]
- Hoyer, M.; Drechsel, N.; Meyer, M.; Meier, C.; Hinüber, C.; Breier, A.; Hahner, J.; Heinrich, G.; Rentsch, C.; Garbe, L.-A.; et al. Embroidered polymer–collagen hybrid scaffold variants for ligament tissue engineering. Mater. Sci. Eng.: C 2014, 43, 290–299. [Google Scholar] [CrossRef]
- Breier, A.; Schulze-Tanzil, G.; Meyer, M.; Rentsch, B.; Hoyer, M.; Rentsch, C.; Schröpfer, M.; Hahn, J.; Spickenheuer, A.; Heinrich, G. Tissue Engineering einer vorderen Kreuzbandplastik auf der Basis resorbierbarer, gestickter Träger. Teil 2. GAK Gummi Fasern Kunstst. 2019, 72, 110–117. [Google Scholar]
- Obukhov, A.S. The relationship between stress and deformation of polymers in the linear stress state. Polym. Mech. 1968, 1, 16–18. [Google Scholar] [CrossRef]
- Hahn, J.; Breier, A.; Brünig, H.; Heinrich, G. Long-term hydrolytic degradation study on polymer-based embroidered scaffolds for ligament tissue engineering. J. Ind. Text. 2018, 47, 1305–1320. [Google Scholar] [CrossRef]
- Hoyer, M.; Meier, C.; Breier, A.; Hahner, J.; Heinrich, G.; Drechsel, N.; Meyer, M.; Rentsch, C.; Garbe, L.-A.; Ertel, W.; et al. In vitro characterization of self-assembled anterior cruciate ligament cell spheroids for ligament tissue engineering. Histochem. Cell Biol. 2015, 143, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, M.; Meier, C.; Kohl, B.; Lohan, A.; Kokozidou, M.; Schulze-Tanzil, G. Histological and biochemical characteristics of the rabbit anterior cruciate ligament in comparison to potential autografts. Histol. Histopathol. 2016, 31, 867–877. [Google Scholar]
- Nagai, K.; Gale, T.; Chiba, D.; Su, F.; Fu, F.H.; Anderst, W. The complex relationship between in vivo ACL elongation and knee kinematics during walking and running. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2019, 37, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Cerrada, M.L. Introduction to the viscoelastic response in polymers. In Proceedings of the Thermal Analysis, Fundamentals and Applications to Material Characterization: Proceedings of the International Seminar: Thermal Analysis and Rheology, La Coruna, Spain, 30 June 2013–04 July 2003; pp. 167–182, ISBN 84-9749-100-9. [Google Scholar]
- Gentleman, E.; Lay, A.N.; Dickerson, D.A.; Nauman, E.A.; Livesay, G.A.; Dee, K.C. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 2003, 24, 3805–3813. [Google Scholar] [CrossRef]
- Wu, Y.; Wong, Y.S.; Fuh, J.Y.H. Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. J. Biomed. Mater. Res. Part. A 2017, 105, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Schröpfer, M.; Junghans, F.; Voigt, D.; Beutner, R.; Meyer, M.; Breier, A.; Schulze-Tanzil, G.; Prade, I. Surface modification by gas phase fluorination for improved cell adhesion and spreading on PLA. 2019; in press. [Google Scholar]
- Hahn, J.; Schröpfer, M.; Brünig, H.; Meyer, M.; Breier, A. Influence of fluorination and sterilisation on the mechanical properties of polylactide and poly(lactid-co-ε-caprolactone) thread materials for use in ligament tissue engineering. In Proceedings of the 30th Annual Conference of the European Society for Biomaterials Abstract Booklet, Publisher: Prof. Dr. Michael Gelinsky, Conference Chair. Dresden, Germany, 9–13 September 2019; pp. 1414–1415. [Google Scholar]
- Lydon, C.; Crisco, J.; Panjabi, M.; Galloway, M. Effect of elongation rate on the failure properties of the rabbit anterior cruciate ligament. Clin. Biomech. 1995, 10, 428–433. [Google Scholar] [CrossRef]
- Azangwe, G.; Mathias, K.J.; Marshall, D. Preliminary comparison of the rupture of human and rabbit anterior cruciate ligaments. Clin. Biomech. 2001, 913–917. [Google Scholar] [CrossRef]
- Negahi Shirazi, A.; Chrzanowski, W.; Khademhosseini, A.; Dehghani, F. Anterior cruciate ligament: Structure, injuries and regenerative treatments. In Engineering Mineralized and Load Bearing Tissues; Bertassoni, L.E., Coelho, P.G., Eds.; Springer: Cham, Switzerland, 2015; Volume 881, pp. 161–186. ISBN 978-3-319-22344-5. [Google Scholar]
- Leong, N.L.; Jiang, J.; McAllister, D.R. 142-Outlook for tissue engineering strategies for anterior cruciate ligament reconstruction. In The Anterior Cruciate Ligament; Prodromos, C.C., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 573–577. ISBN 978-0-323-38962-4. [Google Scholar]
- Breier, A. Embroidery technology for hard-tissue scaffolds. In Biomedical textiles for orthopaedic and surgical applications: Fundamentals, applications and tissue engineering; Blair, T., Ed.; Elsevier: Cambridge, UK, 2015; pp. 23–44. ISBN 978-1-78242-026-2. [Google Scholar]
Relaxation Time (s) | Force (N) at Different Degradation Measuring Points (Days) (Mean ± SD) | ||||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 28 | 84 | 168 | ||
moco | 10 | 63.8 ± 14.2 | 67.8 ± 6.6 | 66.6 ± 5.4 | 72.4 ± 7.7 | 84.4 ± 7.9 | 79.3 ± 6.6 |
180 | 53.0 ± 11.5 | 58.0 ± 5.4 | 56.8 ± 4.7 | 61.4 ± 6.9 | 71.1 ± 6.4 | 66.5 ± 5.8 | |
300 | 51.2 ± 11.1 | 56.2 ± 5.2 | 55.2 ± 4.5 | 59.6 ± 6.6 | 68.8 ± 6.1 | 64.8 ± 5.4 | |
600 | 48.6 ± 10.7 | 53.9 ± 5.0 | 53.0 ± 4.4 | 57.1 ± 6.4 | 65.8 ± 5.9 | 61.7 ± 5.6 | |
bico | 10 | 67.8 ± 5.0 | 71.6 ± 5.8 | 73.6 ± 7.6 | 76.2 ± 6.8 | 88.1 ± 11.3 | 35.4 ± 8.7 |
180 | 54.5 ± 4.2 | 59.4 ± 5.0 | 61.1 ± 7.1 | 63.7 ± 6.2 | 75.5 ± 10.4 | 28.5 ± 7.5 | |
300 | 52.2 ± 4.0 | 57.5 ± 4.9 | 59.3 ± 6.9 | 61.8 ± 5.9 | 73.5 ± 10.1 | 27.4 ± 7.3 | |
600 | 49.2 ± 4.0 | 54.8 ± 4.6 | 56.7 ± 6.7 | 59.2 ± 5.8 | 70.7 ± 9.8 | 26.1 ± 7.1 |
moco | bico | ||||||
---|---|---|---|---|---|---|---|
UTL (N) | UTE (%) | S (N/mm) | UTL (N) | UTE (%) | S (N/mm) | ||
Group A | 0 d | 405.8 ± 12.1 | 53.6 ± 5.4 | 151.0 ± 23.0 | 334.4 ± 14.8 | 40.2 ± 3.0 | 196.0 ± 19.2 |
7 d | 394.6 ± 16.0 | 62.4 ± 2.6 | 170.8 ± 22.4 | 338.1 ± 6.0 | 55.1 ± 1.1 | 255.4 ± 18.6 | |
14 d | 409.3 ± 17.9 | 62.2 ± 3.5 | 202.2 ± 29.8 | 323.4 ± 17.5 | 53.5 ± 2.6 | 239.1 ± 31.5 | |
28 d | 388.1 ± 13.4 | 58.6 ± 5.6 | 210.7 ± 36.0 | 326.5 ± 12.9 | 54.9 ± 2.4 | 281.2 ± 9.2 | |
84 d | 360.4 ± 5.0 | 41.8 ± 1.8 | 224.8 ± 14.3 | 290.6 ± 15.0 | 43.4 ± 2.3 | 206.9 ± 34.5 | |
168 d | 330.0 ± 9.6 | 44.0 ± 2.7 | 261.8 ± 27.9 | 232.6 ± 36.5 | 46.8 ± 5.5 | 259.8 ± 70.5 | |
Group B | 0 d | 401.2 ± 19.8 | 50.4 ± 7.2 | 160.2 ± 28.8 | 333.1 ± 7.7 | 39.4 ± 2.6 | 192.0 ± 8.6 |
7 d | 410.1 ± 15.3 | 61.6 ± 3.2 | 204.3 ± 17.1 | 329.4 ± 19.0 | 53.0 ± 3.9 | 240.7 ± 9.0 | |
14 d | 402.2 ± 13.6 | 61.2 ± 3.2 | 199.8 ± 19.6 | 319.2 ± 9.4 | 52.4 ± 2.3 | 246.8 ± 14.2 | |
28 d | 394.9 ± 8.7 | 58.4 ± 3.0 | 218.3 ± 21.9 | 323.0 ± 16.5 | 53.0 ± 2.6 | 254.7 ± 14.6 | |
84 d | 348.7 ± 6.8 | 43.8 ± 2.0 | 192.6 ± 11.8 | 295.9 ± 15.6 | 45.6 ± 2.1 | 231.3 ± 46.4 | |
168 d | 329.2 ± 29.8 | 44.8 ± 4.5 | 235.4 ± 26.7 | 210.9 ± 27.8 | 47.0 ± 5.8 | 114.7 ± 31.9 |
Test | Group A | Group B 1 |
---|---|---|
1 | ||
pause | 45 min | |
2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, J.; Schulze-Tanzil, G.; Schröpfer, M.; Meyer, M.; Gögele, C.; Hoyer, M.; Spickenheuer, A.; Heinrich, G.; Breier, A. Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation. Int. J. Mol. Sci. 2019, 20, 4655. https://doi.org/10.3390/ijms20184655
Hahn J, Schulze-Tanzil G, Schröpfer M, Meyer M, Gögele C, Hoyer M, Spickenheuer A, Heinrich G, Breier A. Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation. International Journal of Molecular Sciences. 2019; 20(18):4655. https://doi.org/10.3390/ijms20184655
Chicago/Turabian StyleHahn, Judith, Gundula Schulze-Tanzil, Michaela Schröpfer, Michael Meyer, Clemens Gögele, Mariann Hoyer, Axel Spickenheuer, Gert Heinrich, and Annette Breier. 2019. "Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation" International Journal of Molecular Sciences 20, no. 18: 4655. https://doi.org/10.3390/ijms20184655
APA StyleHahn, J., Schulze-Tanzil, G., Schröpfer, M., Meyer, M., Gögele, C., Hoyer, M., Spickenheuer, A., Heinrich, G., & Breier, A. (2019). Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation. International Journal of Molecular Sciences, 20(18), 4655. https://doi.org/10.3390/ijms20184655