DNA Copy Number Variations as Markers of Mutagenic Impact
Abstract
:1. Introduction
2. Radiation-Induced CNVs In Vitro
3. Chemical Mutagen-Induced CNVs In Vitro
4. Radiation-Induced CNVs In Vivo
5. Chemical Mutagen-Induced CNVs In Vivo
6. Chemical Mutagen- and Radiation-Induced CNVs In Vivo
7. Mutagen-Induced CNV in Germline
8. Mutation Breeding and CNV
9. Mutagen-Induced CNVs in Adaptive Evolution
10. Identification of CNV-Inducing Mutagens Through the Mechanisms of CNV Formation
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A-bomb | Atomic bomb |
ARTP | Atmosphere and room temperature plasma |
Ara-C | Cytosine arabinoside |
CFSs | Common fragile sites |
CNV | Copy number variation |
aCGH | Array comparative genomic hybridization |
NGS | Next-generation sequencing |
EMS | Ethyl methanesulfonate |
FRA3B | Fragile Site Aphidicolin Type, Fra(3) |
FRA16D | Fragile Site Aphidicolin Type, Fra(16) |
FOLFOX | Leucovorin-modulated 5-fluorouracil and oxaliplatin combination) |
HU | Hydroxyurea |
IR | Ionizing radiation |
MNU | N-methyl-N-nitrosourea |
MCA | 3-methylcholanthrene |
NHEJ | Non-homologous end joining |
POD-FISH | Parental origin determination fluorescence in situ hybridization |
PTC | Papillary thyroid carcinoma |
SqCCs | Lung squamous cell carcinomas |
SNV | Single-nucleotide variants |
References
- Iafrate, A.J.; Feuk, L.; Rivera, M.N.; Listewnik, M.L.; Donahoe, P.K.; Qi, Y.; Scherer, S.W.; Lee, C. Detection of large-scale variation in the human genome. Nat. Genet. 2004, 36, 949–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Månér, S.; Massa, H.; Walker, M.; Chi, M.; et al. Large-scale copy number polymorphism in the human genome. Science 2004, 305, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Zmieńko, A.; Samelak, A.; Kozłowski, P.; Figlerowicz, M. Copy number polymorphism in plant genomes. Appl. Genet. 2014, 127, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bickhart, D.M.; Liu, G.E. The Challenges and importance of structural variation detection in livestock. Front. Genet. 2014, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, B. Clinical interpretation of copy number variants in the human genome. J. Appl. Genet. 2017, 58, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Lee, A.; Gregersen, P.K. Copy-number-variation and copy-number-alteration region detection by cumulative plots. BMC Bioinform. 2009, 10, 1–11. [Google Scholar] [CrossRef]
- Ostrovnaya, I.; Nanjangud, G.; Olshen, A.B. A classification model for distinguishing copy number variants from cancer-related alterations. BMC Bioinform. 2010, 1–13. [Google Scholar] [CrossRef]
- Tang, Y.C.; Amon, A. Gene copy-number alterations: A cost-benefit analysis. Cell 2013, 152, 394–405. [Google Scholar] [CrossRef]
- Arlt, M.F.; Wilson, T.E.; Glover, T.W. Replication stress and mechanisms of CNV formation. Curr. Opin. Genet. Dev. 2012, 22, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Rice, A.M.; Mclysaght, A. Copy number variant pathogenicity. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gamazon, E.R.; Stranger, B.E. The Impact of Human Copy Number Variation on Gene Expression. Brief. Funct. Genom. 2015, 14, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T. Cytogenetically visible copy number variations (CG-CNVs) in banding and molecular cytogenetics of human; about heteromorphisms and euchromatic variants. Mol. Cytogenet. 2016, 9, 5–11. [Google Scholar] [CrossRef]
- MacDonald, J.R.; Ziman, R.; Yuen, R.K.C.; Feuk, L.; Scherer, S.W. The database of genomic variants: A curated collection of structural variation in the human genome. Nucleic Acids Res. 2014, 42, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Database of Genomic Variants (DGV). Available online: http://dgv.tcag.ca/dgv/app/home (accessed on 23. August 2019).
- Arlt, M.F.; Rajendran, S.; Holmes, S.N.; Wang, K.; Bergin, I.L.; Ahmed, S.; Wilson, T.E.; Glover, T.W. Effects of hydroxyurea on CNV induction in the mouse germline. Environ. Mol. mutagenesis 2018, 714, 698–714. [Google Scholar] [CrossRef] [PubMed]
- Sherborne, A.L.; Davidson, P.R.; Yu, K.; Nakamura, A.O.; Rashid, M.; Nakamura, J.L. Mutational analysis of ionizing radiation induced neoplasms. Cell Rep. 2015, 12, 1915–1926. [Google Scholar] [CrossRef] [PubMed]
- Adewoye, A.B.; Lindsay, S.J.; Dubrova, Y.E.; Hurles, M.E. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Kimmel, R.R.; Agnani, S.; Yang, Y.; Jordan, R.; Schwartz, J.L. DNA Copy-number instability in low-dose gamma-irradiated TK6 lymphoblastoid clones. Radiat. Res. 2008, 169, 259–269. [Google Scholar] [CrossRef]
- Muradyan, A.; Gilbertz, K.; Stabentheiner, S.; Klause, S.; Madle, H.; Meineke, V.; Ullmann, R.; Scherthan, H. Acute high-dose x-radiation-induced genomic changes in A549 cells. Radiat. Res. 2011, 175, 700–707. [Google Scholar] [CrossRef]
- Arlt, M.F.; Rajendran, S.; Birkeland, S.R.; Wilson, T.E.; Glover, T.W. Copy number variants are produced in response to low-dose ionizing radiation in cultured cells. Env. Mol. Mutagen. 2014, 55, 103–113. [Google Scholar] [CrossRef]
- Arlt, M.F.; Mulle, J.G.; Schaibley, V.M.; Ragland, R.L.; Durkin, S.G.; Warren, S.T.; Glover, T.W. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am. J. Hum. Genet. 2009, 84, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Arlt, M.F.; Ozdemir, A.C.; Birkeland, S.R.; Wilson, T.E.; Glover, T.W. Hydroxyurea induces de novo copy number variants in human cells. Proc. Natl. Acad. Sci. USA 2011, 108, 17360–17365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flunkert, J.; Maierhofer, A.; Dittrich, M.; Müller, T.; Horvath, S.; Nanda, I.; Haaf, T. Genetic and epigenetic changes in clonal descendants of irradiated human fibroblasts. Exp. Cell Res. 2018, 370, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Harutyunyan, T.; Hovhannisyan, G.; Sargsyan, A.; Grigoryan, B.; Al-Rikabi, A.H.; Weise, A.; Liehr, T.; Aroutiounian, R. Analysis of copy number variations induced by ultrashort electron beam radiation in human leukocytes in vitro. Mol. Cytogenet. 2019, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Arlt, M.F.; Ozdemir, A.C.; Birkeland, S.R.; Lyons, R.H.; Glover, T.W.; Wilson, T.E. Comparison of constitutional and replication stress-induced genome structural variation by SNP array and mate-pair sequencing. Genetics 2011, 187, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.M.; Freeman, J.L. Chemical exposure generates DNA copy number variants and impacts gene expression. Adv. Toxicol. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Harutyunyan, T.; Hovhannisyan, G.; Babayan, N.; Othman, M.A.K.; Liehr, T. Influence of aflatoxin B1 on copy number variants in human leukocytes in vitro. Mol. Cytogenet. 2015, 1–5. [Google Scholar] [CrossRef]
- Iizuka, D.; Imaoka, T.; Takabatake, T.; Nishimura, M.; Kakinuma, S.; Nishimura, Y.; Shimada, Y. DNA Copy number aberrations and disruption of the P16Ink4a/Rb pathway in radiation-induced and spontaneous rat mammary carcinomas. Radiat. Res. 2010, 174, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Biermann, J.; Langen, B.; Nemes, S.; Holmberg, E.; Parris, T.Z.; Werner Rönnerman, E.; Engqvist, H.; Kovács, A.; Helou, K.; Karlsson, P. Radiation-induced genomic instability in breast carcinomas of the Swedish hemangioma cohort. Genes Chromosom. Cancer 2019, 58, 627–635. [Google Scholar] [CrossRef]
- Zitzelsberger, H.; Unger, K. DNA Copy number alterations in radiation-induced thyroid cancer. Clin. Oncol. 2011, 23, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Zitzelsberger, H.; Lehmann, L.; Hieber, L.; Weier, H.U.G.; Janish, C.; Fung, J.; Negele, T.; Spelsberg, F.; Lengfelder, E.; Demidchik, E.P.; et al. Cytogenetic changes in radiation-induced tumors of the thyroid. Cancer Res. 1999, 59, 135–140. [Google Scholar] [PubMed]
- Richter, H.; Braselmann, H.; Hieber, L.; Thomas, G.; Bogdanova, T.; Tronko, N.; Zitzelsberger, H. Chromosomal imbalances in post-Chernobyl thyroid tumors. Thyroid 2004, 14, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, R.R.; Zhao, L.P.; Nguyen, D.; Lee, S.; Aronszajn, M.; Cheng, C.; Troshin, V.P.; Abrosimov, A.; Delrow, J.; Tuttle, R.M.; et al. Microarray comparative genomic hybridization reveals genome-wide patterns of DNA gains and losses in post-Chernobyl thyroid cancer. Radiat. Res. 2006, 166, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Unger, K.; Malisch, E.; Thomas, G.; Braselmann, H.; Walch, A.; Jackl, G.; Lewis, P.; Lengfelder, E.; Bogdanova, T.; Wienberg, J.; et al. Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC. Oncogene 2008, 27, 4592–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, L.; Rothschild, J.; Luce, J.; Cowell, J.K.; Thomas, G.; Bogdanova, T.I.; Tronko, M.D.; Hawthorn, L. Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from Chernobyl pediatric patients. Thyroid 2010, 20, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.M.; Braselmann, H.; Hess, J.; Klymenko, S.V.; Chumak, V.V.; Zakhartseva, L.M.; Bakhanova, E.V.; Walch, A.K.; Selmansberger, M.; Samaga, D.; et al. A Genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer. Int. J. Cancer 2018, 143, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, M.; Yoshiura, K.; Kondo, H.; Miura, S.; Nagayasu, T.; Nakashima, M. Significance of genomic instability in breast cancer in atomic bomb survivors: Analysis of microarray-comparative genomic hybridization. Radiat. Oncol. 2011, 168, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mullenders, L. Solar UV damage to cellular DNA: From mechanisms to biological effects. Photochem. Photobiol. Sci. 2018, 17, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Lintell, N.A.; Maguire, D.J.; Griffiths, L.R.; McCabe, M. Analysis of SDHD and MMP12 in an affected solar keratosis and control cohort. Adv. Exp. Med. Biol. 2007, 599, 79–85. [Google Scholar] [PubMed]
- Chernoff, K.A.; Bordone, L.; Horst, B.; Simon, K.; Twadell, W.; Lee, K.; Cohen, J.A.; Wang, S.; Silvers, D.N.; Brunner, G.; et al. GAB2 amplifications refine molecular classification of melanoma. Clin. Cancer Res. 2009, 15, 4288–4291. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, P.; Ferguson, B.; Muller, H.K.; Handoko, H.Y.; Walker, G.J. Murine melanomas accelerated by a single UVR exposure carry photoproduct footprints but lack UV signature C > T mutations in critical genes. Oncogene 2016, 35, 3342–3350. [Google Scholar] [CrossRef] [PubMed]
- Shain, A.H.; Joseph, N.M.; Yu, R.; Benhamida, J.; Liu, S.; Prow, T.; Ruben, B.; North, J.; Pincus, L.; Yeh, I.; et al. Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution. Cancer Cell 2018, 34, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, Y.; Liu, Y.; Alexandrov, L.B.; Edmonson, M.N.; Gawad, C.; Zhou, X.; Li, Y.; Rusch, M.C.; Easton, J.; et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 2018, 555, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Feuk, L.; Marshall, C.R.; Wintle, R.F.; Scherer, S.W. Structural variants: Changing the landscape of chromosomes and design of disease studies. Hum. Mol. Genet. 2006, 15, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Nymark, P.; Wikman, H.; Ruosaari, S.; Hollmén, J.; Vanhala, E.; Karjalainen, A.; Anttila, S.; Knuutila, S. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res. 2006, 66, 5737–5743. [Google Scholar] [CrossRef] [PubMed]
- Wikman, H.; Ruosaari, S.; Nymark, P.; Sarhadi, V.K.; Saharinen, J.; Vanhala, E.; Karjalainen, A.; Hollmén, J.; Knuutila, S.; Anttila, S. Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene 2007, 26, 4730–4737. [Google Scholar] [CrossRef] [Green Version]
- Kettunen, E.; Aavikko, M.; Nymark, P.; Ruosaari, S.; Wikman, H.; Vanhala, E.; Salmenkivi, K.; Pirinen, R.; Karjalainen, A.; Kuosma, E.; et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br. J. Cancer 2009, 100, 1336–1342. [Google Scholar] [CrossRef]
- Martinez, V.D.; Buys, T.P.H.; Adonis, M.; Benítez, H.; Gallegos, I.; Lam, S.; Lam, W.L.; Gil, L. Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br. J. Cancer 2010, 103, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.M.; Woods, R.; Chi, L.H.; Schmidt, R.J.; Pessah, I.N.; Kostyniak, P.J.; LaSalle, J.M. Levels of select PCB and PBDE congeners in human postmortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder. Environ. Mol. Mutagen. 2012, 53, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Whetstine, J.R. Different facets of copy number changes: Permanent, transient, and adaptive. Mol. Cell. Biol. 2015, 36, 1050–1063. [Google Scholar] [CrossRef]
- Chung, Y.R.; Kim, H.J.; Kim, M.; Ahn, S.; Park, S.Y. Clinical implications of changes in the diversity of c-myc copy number variation after neoadjuvant chemotherapy in breast cancer. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Höglander, E.K.; Nord, S.; Wedge, D.C.; Lingjærde, O.C.; Silwal-Pandit, L.; Gythfeldt, H.V.L.; Vollan, H.K.M.; Fleischer, T.; Krohn, M.; Schlitchting, E.; et al. Time Series Analysis of Neoadjuvant Chemotherapy and Bevacizumab-Treated Breast Carcinomas Reveals a Systemic Shift in Genomic Aberrations. Genome Med. 2018, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Okamoto, W.; Mimaki, S.; Kawamoto, Y.; Bando, H.; Yamashita, R.; Yuki, S.; Yoshino, T.; Komatsu, Y.; Ohtsu, A.; et al. Comparative sequence analysis of patient-matched primary colorectal cancer, metastatic, and recurrent metastatic tumors after adjuvant FOLFOX chemotherapy. BMC Cancer 2019, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Volk, H.; Girirajan, S.; Pendergrass, S.; Hall, M.A.; Verma, S.S.; Schmidt, R.J.; Hansen, R.L.; Ghosh, D.; Ludena-Rodriguez, Y.; et al. The joint effect of air pollution exposure and copy number variation on risk for autism. Autism Res. 2017, 10, 1470–1480. [Google Scholar] [CrossRef] [PubMed]
- Warth, A.; Endris, V.; Stenzinger, A.; Penzel, R.; Harms, A.; Duell, T.; Abdollahi, A.; Lindner, M.; Schirmacher, P.; Muley, T.; et al. Genetic Changes of Non-Small Cell Lung Cancer under Neo-Adjuvant Therapy. Oncotarget 2016, 7, 29761–29769. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Jang, J.J.; Langford, C.; Shin, S.H.; Park, S.Y.; Chung, Y.J. DNA copy number alterations and expression of relevant genes in mouse thymic lymphomas induced by γ-irradiation and N-methyl-N-nitrosourea. Cancer Genet.Cytogenet. 2006, 166, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Mowery, Y.M.; Daniel, A.R.; Zhang, D.; Sibley, A.B.; Delaney, J.R.; Wisdom, A.J.; Qin, X.; Wang, X.; Caraballo, I.; et al. Mutational Landscape in Genetically Engineered, Carcinogen-Induced, and Radiation-Induced Mouse Sarcoma. JCI Insight 2019, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Guerrero-Bosagna, C.; Haque, M.M. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 2015, 10, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Beal, M.A.; Meier, M.J.; Williams, A.; Rowan-Carroll, A.; Gagné, R.; Lindsay, S.J.; Fitzgerald, T.; Hurles, M.E.; Marchetti, F.; Yauk, C.L. Paternal exposure to benzo(a)pyrene induces genome-wide mutations in mouse offspring. Commun. Biol. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cioppi, F.; Casamonti, E.; Krausz, C. Age-dependent de novo mutations during spermatogenesis and their consequences. In Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology; Baldi, E., Muratori, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 1166, pp. 29–46. [Google Scholar]
- DeMarini, D.M. Declaring the existence of human germ-cell mutagens. Environ. Mol Mutagen. 2012, 53, 166–172. [Google Scholar] [CrossRef]
- Yauk, C.L.; Aardema, M.J.; van Benthem, J.; Bishop, J.B.; Dearfield, K.L.; DeMarini, D.M.; Dubrova, Y.E.; Honma, M.; Lupski, J.R.; Marchetti, F.; et al. Approaches for Identifying Germ Cell Mutagens: Report of the 2013 IWGT Workshop on Germ Cell Assays. Mutat. Res. 2013, 783, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yao, X.; Huang, H.; Guo, Z.; Cheng, X.; Xu, Y.; Shen, Y.; Xu, B.; Li, D. Clinical significance of germline copy number variation in susceptibility of human diseases. J. Genet. Genom. 2018, 45, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Singer, T.M.; Yauk, C.L. Germ cell mutagens: Risk assessment challenges in the 21st century. Environ. Mol. Mutagen. 2010, 51, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Ton, N.D.; Nakagawa, H.; Ha, N.H.; Duong, N.T.; Nhung, V.P.; Hien, L.T.T.; Hue, H.T.T.; Hoang, N.H.; Wong, J.H.; Nakano, K.; et al. Whole genome sequencing and mutation rate analysis of trios with paternal dioxin exposure. Hum. Mutat. 2018, 39, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Connor, E.E.; Wiggans, G.R.; Lu, Y.; Tempelman, R.J.; Schroeder, S.G.; Chen, H.; Liu, G.E. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle. BMC Genom. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Y.C.; Cui, H.R.; Fu, H.W.; Shu, Q.Y.; Huang, J.Z. Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing. J. Zhejiang Univ. Sci. B 2016, 17, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.M.; Zinkgraf, M.S.; Groover, A.T.; Comaia, L. A System for dosage-based functional genomics in poplar. Plant. Cell 2015, 27, 2370–2383. [Google Scholar] [CrossRef]
- Ji-lun, H.; Xiao-Yan, Z.; Gui-Xing, W.; Zhao-Hui, S.; Wei, D.; Ya-Xian, Z.; Fei, S.; Li-Yan, W. Novel breeding approach for japanese flounder using atmosphere and room temperature plasma mutagenesis tool. BMC Genomics 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Bolon, Y.T.; Stec, A.O.; Michno, J.M.; Roessler, J.; Bhaskar, P.B.; Ries, L.; Dobbels, A.A.; Campbell, B.W.; Young, N.P.; Anderson, J.E.; et al. Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 2014, 198, 967–981. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Lu, S.; Wang, H.; Li, S.; Chen, R. An Array-based comparative genomic hybridization platform for efficient detection of copy number variations in fast neutron-induced Medicago truncatula mutants. J. Vis. Exp. 2017, 129, e56470. [Google Scholar] [CrossRef]
- Medicago truncatula Mutant Database. Available online: https://medicago-mutant.noble.org/mutant/FNB.php (accessed on 23 August 2019).
- Cheng, Z.; Lin, J.; Lin, T.; Xu, M.; Huang, Z.; Yang, Z.; Huang, X.; Zheng, J. Genome-wide analysis of radiation-induced mutations in rice (Oryza Sativa L. Ssp. Indica). Mol. Biosyst. 2014, 10, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.E.; Kim, S.; Jung, I.J.; Han, S.M.; Ahn, J.; Kwon, S.; Kim, S.H.; Kang, S.Y.; Kim, D.S.; Kim, J.B. Comparative genomic hybridization analysis of rice dwarf mutants induced by gamma irradiation. Genet. Mol. Res. 2016, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shirasawa, K.; Hirakawa, H.; Nunome, T.; Tabata, S.; Isobe, S. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnol. J. 2016, 14, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Jankowicz-Cieslak, J.; Nielen, S.; Ingelbrecht, I.; Till, B.J. Induction and recovery of copy number variation in banana through gamma irradiation and low-coverage whole-genome sequencing. Plant Biotechnol. J. 2018, 16, 1644–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farslow, J.C.; Lipinski, K.J.; Packard, L.B.; Edgley, M.L.; Taylor, J.; Flibotte, S.; Moerman, D.G.; Katju, V.; Bergthorsson, U. Rapid increase in frequency of gene copy-number variants during experimental evolution in Caenorhabditis elegans. BMC Genom. 2015, 16, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chain, F.J.J.; Flynn, J.M.; Bull, J.K.; Cristescu, M.E. Accelerated rates of large-scale mutations in the presence of copper and nickel. Genome Res. 2019, 29, 64–73. [Google Scholar] [CrossRef]
- Hull, R.M.; Cruz, C.; Jack, C.V.; Houseley, J. Environmental change drives accelerated adaptation through stimulated copy number variation. Plos Biol. 2017, 15, 1–31. [Google Scholar] [CrossRef]
- Lupski, J.R. Structural variation mutagenesis of the human genome: Impact on disease and evolution. Environ. Mol. Mutagen. 2015, 56, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Conover, H.N.; Argueso, J.L. Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens. Environ. Mol. Mutagen. 2016, 57, 3–9. [Google Scholar] [CrossRef]
- Arlt, M.F.; Rajendran, S.; Birkeland, S.R.; Wilson, T.E.; Glover, T.W. De Novo CNV Formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet. 2012, 8, e1002981. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, W.; Zhang, C.; Lupski, J.R.; Jin, L.; Zhang, F. CNV instability associated with DNA replication dynamics: Evidence for replicative mechanisms in CNV mutagenesis. Hum. Mol. Genet. 2015, 24, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Arlt, M.F.; Park, S.H.; Rajendran, S.; Paulsen, M.; Ljungman, M.; Glover, T.W. Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res. 2015, 25, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Umbuzeiro, G.D.A.; Heringa, M.; Zeiger, E. In vitro genotoxicity testing: Significance and use in environmental monitoring. In In Vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology; Reifferscheid, G., Buchinger, S., Eds.; Springer: Cham, Switzerland, 2016; Volume 157, pp. 59–80. [Google Scholar]
- Corvi, R.; Madia, F. In vitro genotoxicity testing-Can the performance be enhanced? Food Chem. Toxicol. 2017, 106, 600–608. [Google Scholar] [CrossRef] [PubMed]
Mutagen | Cells | Chromosomes Most Frequently Involved in Gains | Chromosomes Most Frequently Involved in Losses | Prevailing CNV in the Genome | Reference |
---|---|---|---|---|---|
γ-radiation | Human lymphoblastoid cell line TK6 | 3q, 13q and 20q | X | Gain | [19] |
X-ray | Human lung cancer cell line A549 | 3 and 5 | X, 3 and 5 | Loss | [20] |
X-ray | Human immortalized fibroblasts hTERT | 6p, 7q11.22, 9p and 16q23.1 | 3q13.31 and 15q | Gain | [21] |
X-ray | Primary human fibroblasts | 1q44 and 10q26.11 | 3p14.2, 7q11.2 and 7p12.1-7q11.1 | Loss | [24] |
Accelerated electrons | Human blood leukocytes | 7q11.22 and 9q21.3 | NA | Gain | [25] |
Aphidicolin | Normal human fibroblasts HGMDFN090 | 1q44, 7q21.11-q31.3, 10q25.2 and 15q22.2 | 3q26.3, 3q13.31, 10q11.23-q21.1 13q31.3 and 15q22.2 | Loss | [22] |
Aphidicolin | Human immortalized fibroblasts hTERT | 1, 9, 10 and 16 | 3, 7, 11, 13, 15 and 18 | Loss | [26] |
Hydroxyurea | Human immortalized fibroblasts hTERT | 1p36.31- 1q25.1 and 3p25.3- 3q27.3 | 3q13.31 and 7q11.22-7q33 | Loss | [23] |
EMS | Zebrafish fibroblast cell line | 13 and 20 | 5, 8 and 18 | Loss | [27] |
Cytosine arabinoside | Zebrafish fibroblast cell line | 5 | NA | Gain | [27] |
Aflatoxin B1 | Human blood leukocytes | NA | 8p21.2 and 15q11.2 | Loss | [28] |
Mutagen | Organism and cells | Chromosomes/Genes Most Frequently Involved in Gains | Chromosomes/Genes Most Frequently Involved in Losses | Prevailing CNV in the Genome | Reference |
---|---|---|---|---|---|
γ-radiation | Rat mammary carcinoma | 1q12 | 3q35-q36, 5q32, and 7q11 | Loss | [29] |
γ-radiation | NF1 mutant mouse models of secondary malignant neoplasm | 1 | 11 | Loss | [17] |
γ-radiation | Wild-type mouse models of secondary malignant neoplasm | 1 | 5 and 11 | Gain | [17] |
Radium-226 | Human breast cancer | 2q, 4, 17, 21q, and 22q | 6q | Gain | [30] |
Ionizing radiation during Chernobyl accident | Human papillary thyroid carcinoma | 1p34, 1q21, 2p11.1-pter, 2q11.2-13, 3q26.2-26.3, 5q23-31, 6p21.3-pter, 7q11, 9q13-q33, 12q22-qter, 13q32-qter, 17q11.1-qter, 19, 20, and X | 1q42, 13q21, and 15q11.1-14 | Gain | [32] |
Ionizing radiation during Chernobyl accident | Human childhood thyroid tumors | 2, 7q11.2-21, 13q21-22, and 21 | 16p, 16q, 20q, and 22q | Gain | [33] |
Ionizing radiation during Chernobyl accident | Human childhood thyroid tumors | 19 and 21 | 1p36.31-35.3, 1p33-cen, 1q23.2-32.1, 6, 9p21.1-pter, 9q31.1, 9p23-q33.2, and 13 | Loss | [35] |
Ionizing radiation during Chernobyl accident | Human childhood thyroid tumors | 1p, 5p, 9q, 12q, 13q, 16p, 21q, and 22q | 1q, 6q, 9q, 10q, 13q, 14q, 21q, and 22q | NA | [36] |
Ionizing radiation during Chernobyl accident | Human breast cancer | 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, and 20p11.23-11.21 | 1p21.1, 2q35, and 6p22.2 | Gain | [37] |
A-bomb | Human breast cancer | c-Myc, HER2 | NA | Gain | [38] |
Possibly solar UV radiation | Human whole blood | MMP12 | SDHD | Gain | [40] |
Possibly solar UV radiation | Human primary melanoma | GAB2, KIT | NA | Gain | [41] |
UV radiation | Mouse malignant melanoma | NA | Trp63, Pten | Loss | [42] |
Possibly solar UV radiation | Human melanocytic neoplasms | BRAF, NRAS, and MAP2K1 | NA | NA | [43] |
Asbestos | Human lung cancer | 2p21-p23 | 9p23-pter | Gain | [46] |
Asbestos | Human lung cancer | 2p21–p16.3 | 3p21.31, 5q35.2–q35.3, and 19pl3.3–p13.1 | Loss | [47] |
Asbestos | Human lung cancer | NA | 2p16 | Loss | [48] |
Arsenic | Human lung cancer | 19q13.33 | 1q21.1, 7p22.3, 9q12, and 19q13.31 | Loss | [49] |
Polychlorinated biphenyls and polybrominated diphenyl ethers | Human brain samples | 15q11q13 | NA | Gain | [50] |
Combination of doxorubicin, cyclophophamid and docetaxel | Human breast cancer | c-Myc | NA | Gain | [52] |
Bevacizumab plus neoadjuvant chemotherapy | Human breast cancer | 11q13.2 and 12p11.21 | 6p21.33-p21.3, 8p, 11q13.5-q25, 13q31-q34, and 19q13 | Loss | [53] |
FOLFOX | Human colorectal cancer | 7q21, 10q22, and 10q23 | NA | NA | 54 |
Ozone in the air | Blood from patients with autism | NA | NA | Gain | [55] |
Radio- and chemotherapy | Human lung cancer | FGFR1 | CDKN2A | Gain | [56] |
γ-radiation | Mouse thymic lymphoma | 4, 5, and 15 | 11, 16, and 19 | NA | [57] |
N-methyl-N-nitrosourea | Mouse thymic lymphoma | 10, 14, and 15 | NA | NA | [57] |
γ-radiation | Murine soft-tissue sarcoma | NA | NA | Loss | [58] |
MCA | Murine soft-tissue sarcoma | NA | NA | Loss | [58] |
Vinclozolin | Murine germ cells | 2 and 9 | NA | Gain | [59] |
Benzo(a)pyrene | Murine germ cells | 3, 5 and 16 | 3 | Gain | [60] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovhannisyan, G.; Harutyunyan, T.; Aroutiounian, R.; Liehr, T. DNA Copy Number Variations as Markers of Mutagenic Impact. Int. J. Mol. Sci. 2019, 20, 4723. https://doi.org/10.3390/ijms20194723
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. DNA Copy Number Variations as Markers of Mutagenic Impact. International Journal of Molecular Sciences. 2019; 20(19):4723. https://doi.org/10.3390/ijms20194723
Chicago/Turabian StyleHovhannisyan, Galina, Tigran Harutyunyan, Rouben Aroutiounian, and Thomas Liehr. 2019. "DNA Copy Number Variations as Markers of Mutagenic Impact" International Journal of Molecular Sciences 20, no. 19: 4723. https://doi.org/10.3390/ijms20194723
APA StyleHovhannisyan, G., Harutyunyan, T., Aroutiounian, R., & Liehr, T. (2019). DNA Copy Number Variations as Markers of Mutagenic Impact. International Journal of Molecular Sciences, 20(19), 4723. https://doi.org/10.3390/ijms20194723