APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease
Abstract
:1. Introduction
2. Results
2.1. Identified Gene Mutations of APP
2.2. Identified Gene Mutations of PSEN1
2.3. Identified Gene Mutations of PSEN2
3. Discussion
4. Materials and Methods
4.1. Genetic Analyses
4.2. Bioinformatics
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giau, V.V.; Bagyinszky, E.; An, S.S.A.; Kim, S. Clinical genetic strategies for early onset neurodegenerative diseases. Mol. Cell. Toxicol. 2018, 14, 123–142. [Google Scholar]
- Van Giau, V.; An, S.S.A.; Bagyinszky, E.; Kim, S. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol. Cell. Toxicol. 2015, 11, 89–143. [Google Scholar]
- Sun, L.; Zhou, R.; Yang, G.; Shi, Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. Proc. Nat. Acad. Sci. USA 2017, 114, E476–E485. [Google Scholar] [PubMed]
- Cai, Y.; An, S.S.A.; Kim, S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging 2015, 10, 1163–1172. [Google Scholar]
- Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349, 704–706. [Google Scholar] [PubMed]
- Chartier-Harlin, M.C.; Crawford, F.; Houlden, H.; Warren, A.; Hughes, D.; Fidani, L.; Goate, A.; Rossor, M.; Roques, P.; Hardy, J.; et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 1991, 353, 844–846. [Google Scholar] [PubMed]
- Rovelet-Lecrux, A.; Hannequin, D.; Raux, G.; le Meur, N.; Laquerriere, A.; Vital, A.; Dumanchin, C.; Feuillette, S.; Brice, A.; Vercelletto, M.; et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 2006, 38, 24–26. [Google Scholar]
- Giau, V.V.; Lee, H.; Shim, K.H.; Bagyinszky, E.; An, S.S.A. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer’s disease. Clin. Interv. Aging 2018, 13, 221–233. [Google Scholar]
- Giau, V.V.; Pyun, J.-M.; Bagyinszky, E.; An, S.S.A.; Kim, S. A pathogenic PSEN2 p.His169Asn mutation associated with early-onset Alzheimer’s disease. Clin. Interv. Aging 2018, 13, 1321–1329. [Google Scholar]
- Giau, V.V.; Senanarong, V.; Bagyinszky, E.; An, S.S.A.; Kim, S. Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 1514. [Google Scholar] [CrossRef]
- Giau, V.V.; Wang, M.J.; Bagyinszky, E.; Youn, Y.C.; An, S.S.A.; Kim, S. Novel PSEN1 p.Gly417Ala mutation in a Korean patient with early-onset Alzheimer’s disease with parkinsonism. Neurobiol. Aging 2018, 72, 188.e13–188.e17. [Google Scholar]
- Van Giau, V.; Senanarong, V.; Bagyinszky, E.; Limwongse, C.; An, S.S.A.; Kim, S. Identification of a novel mutation in APP gene in a Thai subject with early-onset Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2018, 14, 3015–3023. [Google Scholar] [PubMed]
- Campion, D.; Dumanchin, C.; Hannequin, D.; Dubois, B.; Belliard, S.; Puel, M.; Thomas-Anterion, C.; Michon, A.; Martin, C.; Charbonnier, F.; et al. Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999, 65, 664–670. [Google Scholar] [PubMed]
- Selkoe, D.J. Alzheimer’s disease: Genotypes, phenotypes, and treatments. Science 1997, 275, 630–631. [Google Scholar] [CrossRef] [PubMed]
- Giau, V.V.; Bagyinszky, E.; Yang, Y.S.; Youn, Y.C.; An, S.S.A.; Kim, S.Y. Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing. Sci. Rep. 2019, 9, 8368. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; An, S.S.A.; Bagyinszky, E.; van Giau, V.; Choi, S.H.; Kim, S.Y. Novel GRN mutations in Koreans with Alzheimer’s disease. Mol. Cell. Toxicol. 2019, 15, 345–352. [Google Scholar]
- Bagyinszky, E.; Giau, V.V.; Shim, K.; Suk, K.; An, S.S.A.; Kim, S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurol. Sci. 2017, 376, 242–254. [Google Scholar]
- Bagyinszky, E.; Kang, M.J.; Pyun, J.; Giau, V.V.; An, S.S.A.; Kim, S. Early-onset Alzheimer’s disease patient with prion (PRNP) p.Val180Ile mutation. Neuropsychiatr. Dis. Treat. 2019, 15, 2003–2013. [Google Scholar]
- Giau, V.V.; Bagyinszky, E.; An, S.S.A. Potential Fluid Biomarkers for the Diagnosis of Mild Cognitive Impairment. Int. J. Mol. Sci. 2019, 20, 4149. [Google Scholar] [Green Version]
- Giau, V.V.; Wu, S.Y.; Jamerlan, A.; An, S.S.A.; Kim, S.Y.; Hulme, J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients 2018, 10, 1765. [Google Scholar] [CrossRef]
- Wang, M.J.; Yi, S.; Han, J.Y.; Park, S.Y.; Jang, J.W.; Chun, I.K.; Giau, V.V.; Bagyinszky, E.; Lim, K.T.; Kang, S.M.; et al. Analysis of Cerebrospinal Fluid and [11C]PIB PET Biomarkers for Alzheimer’s Disease with Updated Protocols. J. Alzheimer’s Dis. JAD 2016, 52, 1403–1413. [Google Scholar]
- Van Giau, V.; An, S.S.A.; Hulme, P.J. Mitochondrial therapeutic interventions in Alzheimer’s disease. J. Neurol. Sci. 2018, 395, 62–70. [Google Scholar] [PubMed]
- Lanoiselee, H.M.; Nicolas, G.; Wallon, D.; Rovelet-Lecrux, A.; Lacour, M.; Rousseau, S.; Richard, A.C.; Pasquier, F.; Rollin-Sillaire, A.; Martinaud, O.; et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017, 14, e1002270. [Google Scholar] [CrossRef] [PubMed]
- Bagyinszky, E.; Youn, Y.C.; An, S.S.A.; Kim, S. Mutations, associated with early-onset Alzheimer’s disease, discovered in Asian countries. Clin. Interv. Aging 2016, 11, 1467–1488. [Google Scholar] [PubMed]
- Wakutani, Y.; Watanabe, K.; Adachi, Y.; Wada-Isoe, K.; Urakami, K.; Ninomiya, H.; Saido, T.C.; Hashimoto, T.; Iwatsubo, T.; Nakashima, K. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1039–1042. [Google Scholar] [PubMed]
- Tomiyama, T.; Nagata, T.; Shimada, H.; Teraoka, R.; Fukushima, A.; Kanemitsu, H.; Takuma, H.; Kuwano, R.; Imagawa, M.; Ataka, S.; et al. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol. 2008, 63, 377–387. [Google Scholar] [PubMed]
- Thajeb, P.; Wang, P.; Chien, C.L.; Harrigan, R. Novel polymorphisms of the amyloid precursor protein (APP) gene in Chinese/Taiwanese patients with Alzheimer’s disease. J. Clin. Neurosci. 2009, 16, 259–263. [Google Scholar] [PubMed]
- Pasalar, P.; Najmabadi, H.; Noorian, A.R.; Moghimi, B.; Jannati, A.; Soltanzadeh, A.; Krefft, T.; Crook, R.; Hardy, J. An Iranian family with Alzheimer’s disease caused by a novel APP mutation (Thr714Ala). Neurology 2002, 58, 1574–1575. [Google Scholar] [PubMed]
- Park, H.K.; Na, D.L.; Lee, J.H.; Kim, J.W.; Ki, C.S. Identification of PSEN1 and APP gene mutations in Korean patients with early-onset Alzheimer’s disease. J. Korean Med. Sci. 2008, 23, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Miki, T.; Katsuya, T.; Ogihara, T.; Sakaki, Y. The 717Val—Ile substitution in amyloid precursor protein is associated with familial Alzheimer’s disease regardless of ethnic groups. Biochem. Biophys. Res. Commun. 1991, 178, 1141–1146. [Google Scholar] [PubMed]
- Jiao, B.; Tang, B.; Liu, X.; Xu, J.; Wang, Y.; Zhou, L.; Zhang, F.; Yan, X.; Zhou, Y.; Shen, L. Mutational analysis in early-onset familial Alzheimer’s disease in Mainland China. Neurobiol. Aging 2014, 35, 1957.e1–1957.e6. [Google Scholar] [CrossRef] [PubMed]
- Kamino, K.; Sato, S.; Sakaki, Y.; Yoshiiwa, A.; Nishiwaki, Y.; Takeda, M.; Tanabe, H.; Nishimura, T.; Ii, K.; George-Hyslop, P.H.S.; et al. Three different mutations of presenilin 1 gene in early-onset Alzheimer’s disease families. Neurosci. Lett. 1996, 208, 195–198. [Google Scholar] [PubMed]
- Fang, B.; Jia, L.; Jia, J. Chinese Presenilin-1 V97L mutation enhanced Abeta42 levels in SH-SY5Y neuroblastoma cells. Neurosci. Lett. 2006, 406, 33–37. [Google Scholar] [PubMed]
- Akbari, L.; Noroozian, M.; Azadfar, P.; Shaibaninia, S.; Assarzadegan, F.; Houshmand, M. Investigation of PSEN1, 2 Hot Spots in Iranian Early-Onset Alzheimer’s Disease Patients. Zahedan J. Res. Med. Sci. 2015, 17, 57–59. [Google Scholar]
- Yasuda, M.; Maeda, K.; Hashimoto, M.; Yamashita, H.; Ikejiri, Y.; Bird, T.D.; Tanaka, C.; Schellenberg, G.D. A pedigree with a novel presenilin 1 mutation at a residue that is not conserved in presenilin 2. Arch. Neurol. 1999, 56, 65–69. [Google Scholar]
- Fang, B.Y.; Jia, J.P. The effect of two newly Chinese presenilin-1 mutations on the sensitivity to trophic factor withdrawal in human neuroblastoma cells. Zhonghua Yi Xue Za Zhi 2007, 87, 336–340. [Google Scholar] [PubMed]
- Kim, H.J.; Kim, H.Y.; Ki, C.S.; Kim, S.H. Presenilin 1 gene mutation (M139I) in a patient with an early-onset Alzheimer’s disease: Clinical characteristics and genetic identification. Neurol. Sci. 2010, 31, 781–783. [Google Scholar]
- Arai, N.; Kishino, A.; Takahashi, Y.; Morita, D.; Nakamura, K.; Yokoyama, T.; Watanabe, T.; Ida, M.; Goto, J.; Tsuji, S. Familial cases presenting very early onset autosomal dominant Alzheimer’s disease with I143T in presenilin-1 gene: Implication for genotype-phenotype correlation. Neurogenetics 2008, 9, 65–67. [Google Scholar]
- Niu, F.; Yu, S.; Zhang, Z.; Yi, X.; Ye, L.; Tang, W.; Qiu, C.; Wen, H.; Sun, Y.; Gao, J.; et al. Novel mutation in the PSEN2 gene (N141Y) associated with early-onset autosomal dominant Alzheimer’s disease in a Chinese Han family. Neurobiol. Aging 2014, 35, 2420.e1–2420.e5. [Google Scholar]
- Shi, Z.; Wang, Y.; Liu, S.; Liu, M.; Liu, S.; Zhou, Y.; Wang, J.; Cai, L.; Huo, Y.R.; Gao, S.; et al. Clinical and neuroimaging characterization of Chinese dementia patients with PSEN1 and PSEN2 mutations. Dement. Geriatr. Cogn. Disord. 2015, 39, 32–40. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.; Shi, Y.; Wang, W.; Ren, Z.; Xia, M.; Zhang, Y.; Yang, M. Gene mutations in a Han Chinese Alzheimer’s disease cohort. Brain Behav. 2018, 9, e01180. [Google Scholar] [PubMed]
- Ishikawa, A.; Piao, Y.S.; Miyashita, A.; Kuwano, R.; Onodera, O.; Ohtake, H.; Suzuki, M.; Nishizawa, M.; Takahashi, H. A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. Ann. Neurol. 2005, 57, 429–434. [Google Scholar] [PubMed]
- Guo, J.; Wei, J.; Liao, S.; Wang, L.; Jiang, H.; Tang, B. A novel presenilin 1 mutation (Ser169del) in a Chinese family with early-onset Alzheimer’s disease. Neurosci. Lett. 2010, 468, 34–37. [Google Scholar] [PubMed]
- Sugiyama, N.; Suzuki, K.; Matsumura, T.; Kawanishi, C.; Onishi, H.; Yamada, Y.; Iseki, E.; Kosaka, K. A novel missense mutation (G209R) in exon 8 of the presenilin 1 gene in a Japanese family with presenile familial Alzheimer’s disease. Hum. Mutat. 1999, 14, 90. [Google Scholar] [PubMed]
- Matsushita, S.; Arai, H.; Okamura, N.; Ohmori, T.; Takasugi, K.; Matsui, T.; Maruyama, M.; Iwatsubo, T.; Higuchi, S. Clinical and biomarker investigation of a patient with a novel presenilin-1 mutation (A431V) in the mild cognitive impairment stage of Alzheimer’s disease. Biol. Psychiatry 2002, 52, 907–910. [Google Scholar] [PubMed]
- Yasuda, M.; Maeda, S.; Kawamata, T.; Tamaoka, A.; Yamamoto, Y.; Kuroda, S.; Maeda, K.; Tanaka, C. Novel presenilin-1 mutation with widespread cortical amyloid deposition but limited cerebral amyloid angiopathy. J. Neurol. Neurosurg. Psychiatry 2000, 68, 220–223. [Google Scholar] [Green Version]
- Hattori, S.; Sakuma, K.; Wakutani, Y.; Wada, K.; Shimoda, M.; Urakami, K.; Kowa, H.; Nakashima, K. A novel presenilin 1 mutation (Y154N) in a patient with early onset Alzheimer’s disease with spastic paraparesis. Neurosci. Lett. 2004, 368, 319–322. [Google Scholar]
- Hong, K.S.; Kim, S.P.; Na, D.L.; Kim, J.G.; Suh, Y.L.; Kim, S.E.; Kim, J.W. Clinical and genetic analysis of a pedigree of a thirty-six-year-old familial Alzheimer’s disease patient. Biol. Psychiatry 1997, 42, 1172–1176. [Google Scholar]
- Syama, A.; Sen, S.; Kota, L.N.; Viswanath, B.; Purushottam, M.; Varghese, M.; Jain, S.; Panicker, M.M.; Mukherjee, O. Mutation burden profile in familial Alzheimer’s disease cases from India. Neurobiol. Aging 2018, 64, 158.e7–158.e13. [Google Scholar]
- Kasuga, K.; Ohno, T.; Ishihara, T.; Miyashita, A.; Kuwano, R.; Onodera, O.; Nishizawa, M.; Ikeuchi, T. Depression and psychiatric symptoms preceding onset of dementia in a family with early-onset Alzheimer disease with a novel PSEN1 mutation. J. Neurol. 2009, 256, 1351–1353. [Google Scholar] [CrossRef]
- Yasuda, M.; Maeda, K.; Ikejiri, Y.; Kawamata, T.; Kuroda, S.; Tanaka, C. A novel missense mutation in the presenilin-1 gene in a familial Alzheimer’s disease pedigree with abundant amyloid angiopathy. Neurosci. Lett. 1997, 232, 29–32. [Google Scholar] [PubMed]
- Takao, M.; Ghetti, B.; Hayakawa, I.; Ikeda, E.; Fukuuchi, Y.; Miravalle, L.; Piccardo, P.; Murrell, J.R.; Glazier, B.S.; Koto, A. A novel mutation (G217D) in the Presenilin 1 gene (PSEN1) in a Japanese family: Presenile dementia and parkinsonism are associated with cotton wool plaques in the cortex and striatum. Acta Neuropathol. 2002, 104, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Jia, L.; Wang, Q.; Zhao, L.; Jin, H.; Li, T.; Quan, M.; Xu, L.; Li, B.; Li, Y.; et al. Identification of a novel PSEN1 Gly111Val missense mutation in a Chinese pedigree with early-onset Alzheimer’s disease. Neurobiol. Aging 2019, in press. [Google Scholar]
- Ataka, S.; Tomiyama, T.; Takuma, H.; Yamashita, T.; Shimada, H.; Tsutada, T.; Kawabata, K.; Mori, H.; Miki, T. A novel presenilin-1 mutation (Leu85Pro) in early-onset Alzheimer disease with spastic paraparesis. Arch. Neurol. 2004, 61, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Yoshino, A.; Matsui, T.; Matsushita, S.; Satoh, A.; Limura, T.; Ishikawa, M.; Arai, H.; Shirakura, K. A novel PS1 mutation (W165G) in a Japanese family with early-onset Alzheimer’s disease. Alzheimer’s Rep. 2000, 3, 227–231. [Google Scholar]
- Dong, J.; Qin, W.; Wei, C.; Tang, Y.; Wang, Q.; Jia, J. A Novel PSEN1 K311R Mutation Discovered in Chinese Families with Late-Onset Alzheimer’s Disease Affects Amyloid-beta Production and Tau Phosphorylation. J. Alzheimer’s Dis. JAD 2017, 57, 613–623. [Google Scholar]
- Sodeyama, N.; Iwata, T.; Ishikawa, K.; Mizusawa, H.; Yamada, M.; Itoh, Y.; Otomo, E.; Matsushita, M.; Komatsuzaki, Y. Very early onset Alzheimer’s disease with spastic paraparesis associated with a novel presenilin 1 mutation (Phe237Ile). J. Neurol. Neurosurg. Psychiatry 2001, 71, 556–557. [Google Scholar] [CrossRef]
- Furuya, H.; Yasuda, M.; Terasawa, K.J.; Tanaka, K.; Murai, H.; Kira, J.; Ohyagi, Y. A novel mutation (L250V) in the presenilin 1 gene in a Japanese familial Alzheimer’s disease with myoclonus and generalized convulsion. J. Neurol. Sci. 2003, 209, 75–77. [Google Scholar] [CrossRef]
- Ikeda, M.; Sharma, V.; Sumi, S.M.; Rogaeva, E.A.; Poorkaj, P.; Sherrington, R.; Nee, L.; Tsuda, T.; Oda, N.; Watanabe, M.; et al. The clinical phenotype of two missense mutations in the presenilin I gene in Japanese patients. Ann. Neurol. 1996, 40, 912–917. [Google Scholar]
- Matsubara-Tsutsui, M.; Yasuda, M.; Yamagata, H.; Nomura, T.; Taguchi, K.; Kohara, K.; Miyoshi, K.; Miki, T. Molecular evidence of presenilin 1 mutation in familial early onset dementia. Am. J. Med. Genet. 2002, 114, 292–298. [Google Scholar]
- Kamimura, K.; Tanahashi, H.; Yamanaka, H.; Takahashi, K.; Asada, T.; Tabira, T. Familial Alzheimer’s disease genes in Japanese. J. Neurol. Sci. 1998, 160, 76–81. [Google Scholar] [CrossRef]
- Tanahashi, H.; Mitsunaga, Y.; Takahashi, K.; Tasaki, H.; Watanabe, S.; Tabira, T. Missense mutation of S182 gene in Japanese familial Alzheimer’s disease. Lancet 1995, 346, 440. [Google Scholar] [PubMed]
- Hamaguchi, T.; Morinaga, A.; Tsukie, T.; Kuwano, R.; Yamada, M. A novel presenilin 1 mutation (L282F) in familial Alzheimer’s disease. J. Neurol. 2009, 256, 1575–1577. [Google Scholar] [PubMed]
- Tabira, T.; Chui, D.H.; Nakayama, H.; Kuroda, S.; Shibuya, M. Alzheimer’s disease with spastic paresis and cotton wool type plaques. J. Neurosci. Res. 2002, 70, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, T.; Kaneko, H.; Miyashita, A.; Nozaki, H.; Kasuga, K.; Tsukie, T.; Tsuchiya, M.; Imamura, T.; Ishizu, H.; Aoki, K.; et al. Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406W mutations. Dement. Geriatr. Cogn. Disord. 2008, 26, 43–49. [Google Scholar] [PubMed]
- Jiang, H.Y.; Li, G.D.; Dai, S.X.; Bi, R.; Zhang, D.F.; Li, Z.F.; Xu, X.F.; Zhou, T.C.; Yu, L.; Yao, Y.G. Identification of PSEN1 mutations p.M233L and p.R352C in Han Chinese families with early-onset familial Alzheimer’s disease. Neurobiol. Aging 2015, 36, 1602.e3–1602.e6. [Google Scholar] [CrossRef] [PubMed]
- Bagyinszky, E.; Kang, M.J.; van Giau, V.; Shim, K.; Pyun, J.-M.; Suh, J.; An, S.S.A.; Kim, S. Novel Amyloid Precursor Protein mutation, Val669Leu (“Seoul APP”), in a Korean Early onset Alzheimer’s disease patient. Neurobiol. Aging 2019, in press. [Google Scholar]
- Johnston, J.A.; Cowburn, R.F.; Norgren, S.; Wiehager, B.; Venizelos, N.; Winblad, B.; Vigo-Pelfrey, C.; Schenk, D.; Lannfelt, L.; O’Neill, C. Increased beta-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer’s disease APP670/671 mutation. Febs Lett. 1994, 354, 274–278. [Google Scholar] [CrossRef]
- Park, J.; An, S.S.A.; Giau, V.V.; Shim, K.; Youn, Y.C.; Bagyinszky, E.; Kim, S. Identification of a novel PSEN1 mutation (Leu232Pro) in a Korean patient with early-onset Alzheimer’s disease and a family history of dementia. Neurobiol. Aging 2017, 56, 212.e11–212.e17. [Google Scholar]
- Ch’ng, G.-S.; An, S.S.A.; Bae, S.O.; Bagyinszky, E.; Kim, S. Identification of two novel mutations, PSEN1 E280K and PRNP G127S, in a Malaysian family. Neuropsychiatr. Dis. Treat. 2015, 11, 2315–2322. [Google Scholar] [Green Version]
- Guerreiro, R.J.; Baquero, M.; Blesa, R.; Boada, M.; Bras, J.M.; Bullido, M.J.; Calado, A.; Crook, R.; Ferreira, C.; Frank, A.; et al. Genetic screening of Alzheimer’s disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiol. Aging 2010, 31, 725–731. [Google Scholar] [PubMed]
- Hardy, J.; Guerreiro, R. A new way APP mismetabolism can lead to Alzheimer’s disease. EMBO Mol. Med. 2011, 3, 247–248. [Google Scholar] [PubMed]
- van Giau, V.; Pyun, J.-M.; Suh, J.; Bagyinszky, E.; An, S.S.A.; Kim, S.Y. A pathogenic PSEN1 Trp165Cys mutation associated with early-onset Alzheimer’s disease. BMC Neurol. 2019, 19, 1–10. [Google Scholar] [PubMed]
- Wallon, D.; Rousseau, S.; Rovelet-Lecrux, A.; Quillard-Muraine, M.; Guyant-Marechal, L.; Martinaud, O.; Pariente, J.; Puel, M.; Rollin-Sillaire, A.; Pasquier, F.; et al. The French series of autosomal dominant early onset Alzheimer’s disease cases: Mutation spectrum and cerebrospinal fluid biomarkers. J. Alzheimer’s Dis. JAD 2012, 30, 847–856. [Google Scholar]
- Tanahashi, H.; Kawakatsu, S.; Kaneko, M.; Yamanaka, H.; Takahashi, K.; Tabira, T. Sequence analysis of presenilin-1 gene mutation in Japanese Alzheimer’s disease patients. Neurosci. Lett. 1996, 218, 139–141. [Google Scholar] [PubMed]
- Yang, Y.; Giau, V.V.; An, S.S.A.; Kim, S. Plasma Oligomeric Beta Amyloid in Alzheimer’s Disease with History of Agent Orange Exposure. Dement. Neurocogn. Disord. 2018, 17, 41–49. [Google Scholar] [PubMed]
- Zatti, G.; Ghidoni, R.; Barbiero, L.; Binetti, G.; Pozzan, T.; Fasolato, C.; Pizzo, P. The presenilin 2 M239I mutation associated with familial Alzheimer’s disease reduces Ca2+ release from intracellular stores. Neurobiol. Dis. 2004, 15, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.D.; Levy-Lahad, E.; Poorkaj, P.; Sharma, V.; Nemens, E.; Lahad, A.; Lampe, T.H.; Schellenberg, G.D. Wide range in age of onset for chromosome 1-related familial Alzheimer’s disease. Ann. Neurol. 1996, 40, 932–936. [Google Scholar] [PubMed]
- Sherrington, R.; Froelich, S.; Sorbi, S.; Campion, D.; Chi, H.; Rogaeva, E.A.; Levesque, G.; Rogaev, E.I.; Lin, C.; Liang, Y.; et al. Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum. Mol. Genet. 1996, 5, 985–988. [Google Scholar] [CrossRef]
- Hsu, S.; Gordon, B.A.; Hornbeck, R.; Norton, J.B.; Levitch, D.; Louden, A.; Ziegemeier, E.; Laforce, R.; Chhatwal, J.; Day, G.S.; et al. Discovery and validation of autosomal dominant Alzheimer’s disease mutations. Alzheimer’s Res. Ther. 2018, 10, 67. [Google Scholar] [CrossRef]
- Chávez-Gutiérrez, L.; Bammens, L.; Benilova, I.; Vandersteen, A.; Benurwar, M.; Borgers, M.; Lismont, S.; Zhou, L.; Van Cleynenbreugel, S.; Esselmann, H.; et al. The mechanism of gamma-Secretase dysfunction in familial Alzheimer disease. EMBO J. 2012, 31, 2261–2274. [Google Scholar] [PubMed]
- Brouwers, N.; Sleegers, K.; van Broeckhoven, C. Molecular genetics of Alzheimer’s disease: An update. Ann. Med. 2008, 40, 562–583. [Google Scholar] [PubMed]
- Wingo, T.S.; Lah, J.J.; Levey, A.I.; Cutler, D.J. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch. Neurol. 2012, 69, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Cacace, R.; Sleegers, K.; van Broeckhoven, C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s Dement. 2016, 12, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Finckh, U.; Kuschel, C.; Anagnostouli, M.; Patsouris, E.; Pantes, G.V.; Gatzonis, S.; Kapaki, E.; Davaki, P.; Lamszus, K.; Stavrou, D.; et al. Novel mutations and repeated findings of mutations in familial Alzheimer disease. Neurogenetics 2005, 6, 85–89. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Giau, V.V.; Vo, T.K. Current advances in transdermal delivery of drugs for Alzheimer’s disease. Indian J. Pharmacol. 2017, 49, 145–154. [Google Scholar] [PubMed]
- Van Giau, V.; An, S.S.A. Optimization of specific multiplex DNA primers to detect variable CLU genomic lesions in patients with Alzheimer’s disease. BioChip J. 2015, 9, 278–284. [Google Scholar]
- Youn, Y.C.; Lim, Y.K.; Han, S.H.; Giau, V.V.; Lee, M.K.; Park, K.Y.; Kim, S.; Bagyinszky, E.; An, S.S.A.; Kim, H.R. Apolipoprotein epsilon7 allele in memory complaints: Insights through protein structure prediction. Clin. Interv. Aging 2017, 12, 1095–1102. [Google Scholar] [PubMed]
- Bagyinszky, E.; Giau, V.V.; Youn, Y.C.; An, S.S.A.; Kim, S. Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr. Dis. Treat. 2018, 14, 2067–2085. [Google Scholar] [CrossRef] [PubMed]
- Giau, V.V.; Bagyinszky, E.; Youn, Y.C.; An, S.S.A.; Kim, S.Y. Genetic Factors of Cerebral Small Vessel Disease and Their Potential Clinical Outcome. Int. J. Mol. Sci. 2019, 20, 4298. [Google Scholar] [Green Version]
- Bagyinszky, E.; Yang, Y.; Giau, V.V.; Youn, Y.C.; An, S.S.A.; Kim, S. Novel prion mutation (p.Tyr225Cys) in a Korean patient with atypical Creutzfeldt-Jakob disease. Clin. Interv. Aging 2019, 14, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011, 7, 263–269. [Google Scholar]
Gene | Protein Change | Nucleotide Change | Exon | APOE | AOO (Years) | Gender | Family History | Pathogenicity Prediction | Clinical Significance | Population | |
---|---|---|---|---|---|---|---|---|---|---|---|
PolyPhen | SIFT | ||||||||||
APP | p.Glu145Lys | c.433G > A | 4 | ε3/ε3 | 55 | F | Y | D: 0.932 | T:0.496 | Located outside of the amyloid progressing region | Korean |
p.Val225Ala | c.674T > C | 7 | ε3/ε3 | 65 | F | Y | D: 932 | T: 0.496 | |||
p.Thr297Met | c.890C > T | 7 | ε3/ε3 | 60 | F | Y | D: 0.98 | D: 0.0 | |||
p.Pro484Ser | c.1450C > T | 11 | ε4/ε4 | 61 | F | Y | P: 0.765 | T: 0.063 | |||
p.Val604Met | c.1810C > T | 14 | ε3/ε3 | 55 | M | Y | B: 0.450 | T: 0.095 | Thai | ||
p.Val669Leu | c.2005G > C | 17 | ε3/ε3 | 55 | F | Y | B: 0.017 | T: 0.16 | Novel mutation, may cause EOAD | Korean | |
PSEN1 | p.Val96Phe | c.286G > T | 4 | ε3/ε4 | 40 | M | Y | D: 1.0 | T: 0.002 | Known pathogenic mutation (EOAD) | Malaysian |
ε3/ε4 | 40 | F | N | ||||||||
p.Thr116Ile | c.335C > T | 5 | ε3/ε3 | 38 | F | Y | D: 1.00 | D: 0 | Known pathogenic mutation (EOAD) | Korean | |
ε3/ε3 | 41 | F | Y | ||||||||
p.Thr119Ile | c.356C > T | ε3/ε3 | 64 | F | Y | D: 1.00 | D: 0 | Novel mutation, may be involved in EOAD | |||
p.His163Pro | c.488A > C | 4 | ε3/ε3 | 37 | F | Y | D: 1.00 | D: 0 | Novel mutation, may be involved in EOAD | ||
p.Trp165Cys | c.695G > T | 6 | ε3/ε3 | 53 | M | Y | D: 1.00 | D: 0.001 | Known pathogenic mutation (EOAD) | ||
p.Glu184Gly | c.551A > G | 7 | ε3/ε3 | 37 | F | Y | D: 0.878 | D: 0.005 | Known pathogenic mutation (EOAD) | ||
p.Gly209Ala | c.626G > C | 7 | ε3/ε3 | 54 | F | Y | D: 1.00 | D: 0 | Novel mutation, may be involved in EOAD | ||
p.Leu226Phe | CTC > TTC | 7 | ε3/ε3 | 37 | F | Y | D: 1.00 | D: 0 | Known pathogenic mutation (EOAD) | ||
p.Leu232Pro | c.695T > C | 7 | ε3/ε3 | 37 | M | Y | D: 1.00 | D: 0 | Novel mutation, may be involved in EOAD | ||
p.Glu280Lys | c.826G > A | 8 | ε3/ε3 | 48 | M | Y | D: 1.00 | D: 0 | Novel mutation, may be involved in EOAD | Malaysian | |
ε3/ε3 | 55 | F | Y | ||||||||
ε3/ε3 | 57 | M | Y | ||||||||
p.Ala285Val | c.854C > T | 8 | ε3/ε3 | 46 | F | N | D: 1.0 | D: 0.015 | Known pathogenic mutation (EOAD) | Korean | |
p.Gly417Ala | c.1250G > C | 12 | ε3/ε3 | 37 | M | N | D: 1.00 | D: 0 | Novel mutation, may be involved in EOAD | ||
PSEN2 | p.Arg62Cys | c.184C > T | 5 | ε3/ε3 | 49 | M | N | D: 0.877 | D: 0.05 | Known mutation, may be involved AD | Korean |
p.His169Asn | c.505C > A | 6 | ε3/ε3 | 56 | F | Y | D: 1.00 | D: 0 | Known mutation, May be involved AD | ||
p.Val214Leu | c.640G > A | 7 | ε3/ε3 | 56 | M | Y | D: 0.836 | D: 0.09 | May be involved AD | ||
ε3/ε4 | 70 | F | Y | D: 0.836 | D: 0.09 | May be involved AD |
Gene | Exon | Codon, Mutation | Location in the Protein | Age of Onset, Clinical Characteristics | Pathogenic Nature | Country | References |
---|---|---|---|---|---|---|---|
APP | 3 | p.Glu145Lys | N-terminal | 50s/Familial, EOAD | Located outside of the amyloid progressing region | Korea | This study |
4 | p.Val225Ala | N-terminal | 65/Familial, EOAD | This study | |||
7 | pThr297Met | N-terminal | 60s/Familial, EOAD | This study | |||
8 | p. Pro484Ser | N-terminal | 60s/Familial, EOAD | This study | |||
14 | p.Val604Met | N-terminal | 55/Familial, EOAD | Pathogenic | Thailand | This study | |
16 | p.Val669Leu | N-terminal | 56 years; AD with a positive family history | Located nearby the β-secretase cleavage site of APP, right next to the Swedish APP (Lys, Met670/671Asn, Leu) mutation | Korea | This study | |
p.Asp678Asn | N-terminal | 59–65 years/familial, EOAD | Probably pathogenic, may enhance the toxic amyloid oligomer formation | Japan | Wakutani et al., 2004 [25] | ||
17 | p.Glu693del | N-terminal | 44 years/familial, EOAD/MCI | Enhances the toxic amyloid oligomer formation | Japan | Tomiyama et al., 2008 [26] | |
p. Val710Gly | TM-I | 65–82 years/Familial, AD, Parkinsonism | Probably pathogenic | China, Taiwan | Thajeb et al. 2009 [27] | ||
p. Thr714Ala | TM-I | 47–55 years/Familial, EOAD, epilepsy | Probably pathogenic | Iran | Pasalar et al. 2002 [28] | ||
p.Val715Met | TM-I | 41 years/ Familial EOAD | Expressed in HEK293 cells, revealed 2* decrease in Abeta 40 levels. Might destroy the cleavage of gamma secretase at site at Abeta40 | Korea | Park et al., 2008 [29] | ||
p.Val717Ile | TM-I | 53 years/Familial, EOAD | Increased Abeta42/Abeta40 ratio in CHO and HEK293 cells | Japan | Yoshioka et al., 1991 [30] | ||
54 years/unknown, EOAD | Thailand | Jiao et al., 2014 [31] | |||||
p. Ile718Leu | TM-I | 65–82 years/Familial, AD, Parkinsonism | Probably pathogenic | China, Taiwan | Thajeb et al., 2009 [27] | ||
p.Leu720Ser | TM-I | 65–82 years/Familial, AD, Parkinsonism | Probably pathogenic | China, Taiwan | Thajeb et al. 2009 [27] | ||
4 | p.Leu85Pro | TM-I | 26 years, Juvenile EOAD | Abeta42/Abeta40 ratio increased in HEK293 | Japan | Ataka et al. 2004 [54] | |
p. Val96Phe | TM-I | EOAD, 49–60 years | 2.1 * increased Abeta 42/40 ratio in COS-1 cells | Japan | Kamino et al. 1996 [32] | ||
p.Val97Leu | TM-I | EOAD | Higher beta secretase activity in human neuroblastoma cells | China | Fang et al. 2006 [33] | ||
p. Phe105Cys | HL-I | 59 years/Familial, EOAD | Survival of mutant neuroblastoma cells dropped | China | Jiao et al., 2014 [31] | ||
5 | p. Gly111Val | HL-I | EOAD; 59 years/Familial | Increased ratios of secreted Aβ42/Aβ40 in vitro study | China | Qiu et al., 2019 [53] | |
p. Thr116Ile | HL-I | Late 30s–early-40s years; EOAD with a probable familial | Possible pathogenic mechanisms of mutation | Korea | This study | ||
p. Thr119Ile | HL-I | 49–64 years; EOAD with a probable familial | |||||
p.Glu120Lys | HL-I | 40–65 years/Familial, EOAD | Probably pathogenic | Iran | Akbari et al., 2013 [34] | ||
p.Glu123Lys | HL-I | 26–45 years, EOAD, myoclonus, epilepsy | Abeta42/total Abeta increased in COS-1 cells (2.7 *) and in HEK293 (4 *) cells | Japan | Yasuda et al. 1999 [35] | ||
p.Ala136Gly | TM-II | Unknown, EOAD | Survival of mutant neuroblastoma cells dropped, deleterious effects | China | Fang et al., 2007 [36] | ||
p.Met139Ile | TM-II | 38 years/Familial, EOAD | Ratio of Abeta42/total Abeta increased in COS-1 cell lines. | Korea | Kim et al., 2010 [37] | ||
p. Ile143Thr | TM-II | 26–45 years, EOAD, myoclonus, epilepsy | Abeta42/total Abeta increased in COS-1 cells (2.7 *) and in HEK293 (4 *) cells | Japan | Arai et al., 2008 [38] | ||
p.Tyr154Asn | TM-II | 40–60 years, EOAD, spastic paraparesis | Pathogenic nature might be associated with the missing aromatic ring. | Japan | Hattori et al., 2004 [47] | ||
6 | p.His163Arg | HL-II | 43–50 years/5 Japanese families, both familial and de novo cases | Abeta42/Abeta40 ratio increased 2 * in COS1 cell lines | Japan | Kamino et al., 1996 [32] | |
p.His163Arg | HL-II | 43–50 years/5 Japanese families, both familial and de novo cases | Abeta42/Abeta40 ratio increased 2 * in COS1 cell lines | Korea | Hong et al., 1997 [48] | ||
p.His163Pro | HL-II | 35 years/de novo EOAD, parkinsonism | The rigid proline might result abnormalities in the border of HL-II and TM-III | Korea | This study | ||
p.Trp165Gly | TM-III | 34–38 years; EOAD with strong familiar | The small glycine is a rare amino acid in the helix | Japan | Higuchi et al., 2000 [55] | ||
p.Trp165Cys | TM-III | 55 years; memory decline, followed by difficulty in finding ways and had a strong family history of dementia | Increased Aβ42 and decreased Aβ40 production in vitro; elevated Aβ42/Aβ40 ratio | Korea | This study | ||
45 years; EOAD, a severe form of the illness, with cerebral and cerebellar atrophies and rapid deterioration | India | Syama et al., 2018 [49] | |||||
p.Ile167del | TM-III | 38 years/familial; EOAD, spastic paraparesis | Deletion might result abnormal conformation in TM-III | China | Jiao et al., 2014 [31] | ||
p.Ser169del | TM-III | EOAD, 42–50 years/familial | Missing –OH group might result a missing H-bound in the TM-III | China | Guo et al., 2010 [43] | ||
p.Leu173Phe | TM-III | 47–50/familial; EOAD with parkinsonism | Elevated Abeta42 levels and Abeta42/Abeta40 ration in neuroblastoma cells | Japan | Kasuga et al. 2009 [50] | ||
7 | p.Glu184Asp | HL-III | 40s years; EOAD, DLB-like phenotype | The smaller asparatic acid might change the loop conformation | Japan | Yasuda et al. 1997 [35] | |
p.Glu184Gly | HL-III | 40s years; probable autosomal dominant EOAD, frontal variant form | Resulting potential functional alterations; may also disturb the splicing near exon 7 | Thailand | This study | ||
p.Gly206Ser | TM-IV | 30–35 years/familial, EOAD | Probably pathogenic | Korea | Park et al., 2008 [29] | ||
p.Gly209Arg | TM-IV | 46–53 years, EOAD | Arginine might result extra stress inside the helix and form abnormal hydrogen bonds | Japan | Sugiyama et al., 1999 [44] | ||
p.Gly209Ala | TM-IV | 54 years; MCI with depression, followed by progressive deterioration in verbal and visual memory | The extra –CH3 group in alanine might result extra stress inside the TM-IV region | Korea | This study | ||
p.Ile213Thr | TM-IV | 42–47 years, EOAD | Increased (1.7 * Abeta) | Japan | Kamino et al., 1996 [32] | ||
p.Gly217Asp | HL-IV | 42–47 years/familial, EOAD | Increased (1.7 * Abeta) | Japan | Takao et al., 2002 [52] | ||
p.Leu226Phe | TM-V | 37 years; de novo, Aβ plaques observed | Results elevated Abeta42/Abeta40 ratio in HEK293 cells | Korea | This study | ||
p.Leu226Arg | TM-V | 60 years/familial, EOAD | Probably pathogenic | China | Ma et al., 2019 [41] | ||
p.Glu311Arg | TM-V | > 65 years, familial, LOAD | Overproducing toxic Aβ species and enhancing tau phosphorylation | China | Dong et al., 2017 [56] | ||
p.Leu232Pro | TM-V | 37 years/familial; EOAD | The rigid proline might result serious torsion in the TM-V since proline is helix breaker | Korea | This study | ||
p.Met233Thr | TM-V | 34 years/de novo, EOAD, rapid progressive memory impairment | Elevated (3.2 *) Abeta42/Abeta40 levels in CHO cells | Korea | Park HK et al., 2008 [29] | ||
p.Phe237Ile | TM-V | 35 years/de novo, EOAD, spastic paraparesis | Probably pathogenic | Japan | Sodeyama et al. 2001 [57] | ||
p.Leu248Pro | TM-VI | 42 years/familial, EOAD | Proline is a helix breaker, resulting in torsion in TM-IV | China | Jiao et al., 2014 [31] | ||
p.Leu250Val | TM-VI | 40–51 years/Familial, EOAD, myoclonus, seizures | Probably pathogenic | Japan | Furuya t al., 2003 [58] | ||
8 | p.Ala260Val | TM-VI | 27–46 years/Familial, EOAD, Pick inclusions | 1.5 * Increased Abeta42/total Abeta in COS1 cells | Japan | Ikeda et al., 1996 [59] | |
p.Gly266Ser | HL-VI(a) | 35–44 years, EOAD, spastic paraparesis, aphasia | Probably pathogenic | Japan | Matsubara-Tsutsui et al., 2002 [60] | ||
p.Arg 269His | HL-VI(a) | 46–67 years/Familial, EOAD, myoclonus | Unknown | Japan | Kamimura el al., 1998 [61] | ||
p.Glu273Ala | HL-VI(a) | 46–67 years/Familial, EOAD, myoclonus | Unknown | Japan | Kamimura el al., 1998 [61] | ||
p.Glu280Ala | HL-VI (MA) | 48–57 years/Familial, EOAD, parkinsonism | Probably pathogenic | Japan | Tanahashi et al., 1996 [62] | ||
p.Glu280Lys | HL-VI (MA) | 48–57; EOAD | Probably pathogenic | Malaysia | This study | ||
p.Leu282Phe | HL-VI (MA) | 51 years, familial, EOAD | Probably pathogenic | Japan | Hamaguchi et al., 2009 [63] | ||
p.Pro284Leu | HL-VI (MA) | 32 years, cotton-wool plaques and neurofibrillary tangles or amyloid angiopathy in brain | Probably pathogenic | Japan | Tabira et al., 2002 [64] | ||
p.Ala285Val | HL-VI (MA) | 46 year/de novo, EOAD | The Abeta42/total Abeta ratio increased; Abeta40/total Abeta and Abeta38/total Abeta ratios decreased | Korea | This study | ||
50.5 years, two families | Japan | Ikeuchi et al., 2008 [65] | |||||
p.Leu286Val | HL-VI (MA) | 47 years | Increases in the Abeta42/total Abeta ratio (1.5 *) and Abeta42/Abeta40 ratio (2.1 *) | Japan | Ikeuchi et al., 2008 [65] | ||
Intron 8 | Exon9 del | - | 47.5 years, in EOAD with spastic paraparesis | elevated Abeta42 levels and Abeta42/40 ratio were observed | Japan | Tabira et al., 2002 [64] | |
10 | p.Arg352Cys | HL-VI (b) | 56–62 years, EOAD, psychiatric, behavioral symptoms | Cysteine could result intramolecular disulfide bound | China | Jiang et al., 2015 [66] | |
11 | p.Gly378Glu | TM-VII | 37 years, EOAD, familiar positive | Abeta42/Abeta40 ratio increased (3.2 *) | Japan | Ikeda et al., 1996 [59] | |
p.Leu381Val | TM-VII | 30s years, AD and spastic paraparesis | Abeta42/Abeta40 ratio increased (1.9 *) | Japan | Ikeuchi et al., 2008 [65] | ||
p.Gly384Ala | TM-VII | 31–37 years, EOAD, senile plaques and tangles inside proband’s brain | Beta40 and the Abeta42/Abeta40 ratio decreased and increased significantly. Abeta42/total Abeta ratio increased (3.8 *) | Japan | Kamimura et al. 1998 [61] | ||
p.Leu392Val | TM-VII | 42 years, EOAD | Abeta42/Abeta40 ratio (2.4*). An increase in the Abeta42/Abeta40 ratio (2.9 *) | Japan | Ikeuchi et al. 2008 [65] | ||
p.Asn405Ser | HL-VII | EOAD, the patient has several senile plaques and tangles in the brain | It caused disturbances in the motor neuronal systems, leading to spastic paraparesis | Japan | Yasuda et al., 2000 [46] | ||
p.Gly417Ala | HL-VIII | 37 years; EOAD, parkinsonism, positive familiar | Pathogenic mechanism | Korea | This study | ||
12 | p.Ala431Val | HL-VIII | 16 months, t-tau and phospho-Tau levels increased in the CSF, and metabolic deficits were detected in several parts of the brain | Possibly pathogenic | Japan | Matsushita et al., 2002 [45] | |
p.Ala434Thr | HL-VIII | 38 years, EOAD, Hallucinations, delusions | Threonine might result extramolecular or intramolecular hydrogen bound | China | Jiao et al., 2014 [31] | ||
p.Thr440del | HL-VIII | 52 years, strong familiar history, EOAD and parkinsonism | Probably pathogenic, may alter the normal amyloid production | Japan | Ishikawa et al., 2005 [42] | ||
PSEN2 | 4 | p.Arg62Cys | N-term | 49 years, EOAD | Possibly pathogenic, may alter the normal amyloid production. | Korea | This study |
40–65 years, EOAD | Iran | Akbari et al., 2013 [34] | |||||
5 | p.Asn141Tyr | TM-II | 43–49 years, EOAD | No functional data | China | Niu et al., 2014 [39] | |
6 | p.His169Asn | TM-III | 50 years; de novo | It may result in major helix torsion due to histidine to asparagine substitution | Korea | This study | |
62 years; AD, de novo | China | Shi Z et al., 2015 [40] | |||||
68 years; FTD, progressive nonfluent aphasia, Familial | |||||||
63 years/Familial, LOAD | China | Ma et al., 2018 [41] | |||||
7 | p.Val214Leu | TM-IV | 56–70 years; AD | The extra CH3 group in leucine could result extra stress in the TM-IV region | Korea | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giau, V.V.; Bagyinszky, E.; Youn, Y.C.; An, S.S.A.; Kim, S. APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease. Int. J. Mol. Sci. 2019, 20, 4757. https://doi.org/10.3390/ijms20194757
Giau VV, Bagyinszky E, Youn YC, An SSA, Kim S. APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease. International Journal of Molecular Sciences. 2019; 20(19):4757. https://doi.org/10.3390/ijms20194757
Chicago/Turabian StyleGiau, Vo Van, Eva Bagyinszky, Young Chul Youn, Seong Soo A. An, and SangYun Kim. 2019. "APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease" International Journal of Molecular Sciences 20, no. 19: 4757. https://doi.org/10.3390/ijms20194757
APA StyleGiau, V. V., Bagyinszky, E., Youn, Y. C., An, S. S. A., & Kim, S. (2019). APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease. International Journal of Molecular Sciences, 20(19), 4757. https://doi.org/10.3390/ijms20194757