Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design
Abstract
:1. Introduction
1.1. The Proteasome: a “Millennial” Target
1.2. Proteasome Inhibitors
2. Material and Methods
2.1. Data Pre-Processing
2.2. Computation of Molecular Descriptors
2.3. Chemical Space, Similarity and Scaffolds Analysis
2.4. Statistical Analysis and Machine Learning
3. Results and Discussion
3.1. Building a Decision Tree to Derive Chemical Rules That Determine Proteasome Inhibition
3.2. Analysis of Key Molecular Descriptors and How They Relate to Proteasome Inhibition
3.3. Size Descriptors (MW, Number of Atoms)
3.4. Hydrogen-bonding Descriptors (HBA, HBD)
3.5. Shape and Surface Descriptors (MR, TPSA)
3.6. Compound Flexibility (Double Bonds, Rotatable Bonds)
3.7. Physicochemical Properties (LogS, LogP)
3.8. Analysis of Drug-likeness of Two Decades of Proteasome Inhibitors
3.9. Relationship between Functional Groups and Activity Classes
3.10. Final Remarks on General Guidelines for Drug Design of Proteasome Inhibitors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Agency for Research on Cancer—World Health Organization. Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 Million Cancer Deaths in 2018; World Health Organization: Geneva, Switzerland, Press Release Nº 263; 12 September 2018. [Google Scholar]
- Ciechanover, A. Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting. Ann. N. Y. Acad. Sci. 2007, 1116, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A. The ubiquitin–proteasome pathway: On protein death and cell life. EMBO J. 1998, 17, 7151–7160. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, P.C.; He, J.; Morris, E.P. Molecular model of the human 26S proteasome. Mol. Cell 2012, 46, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Borissenko, L.; Groll, M. 20S proteasome and its inhibitors: Crystallographic knowledge for drug development. Chem. Rev. 2007, 107, 687–717. [Google Scholar] [CrossRef]
- Berkers, C.R.; Leestemaker, Y.; Schuurman, K.G.; Ruggeri, B.; Jones-Bolin, S.; Williams, M.; Ovaa, H. Probing the specificity and activity profiles of the proteasome inhibitors bortezomib and delanzomib. Mol. Pharm. 2012, 9, 1126–1135. [Google Scholar] [CrossRef]
- Petrucci, M.T.; Giraldo, P.; Corradini, P.; Teixeira, A.; Dimopoulos, M.A.; Blau, I.W.; Drach, J.; Angermund, R.; Allietta, N.; Broer, E.; et al. A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma. Br. J. Haematol. 2013, 160, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, S.M.; Deshmukh, R.R.; Dou, Q.P. Proteasome inhibitors and lessons learned from their mechanisms of action and resistance in human cancer. In Resistance to Proteasome Inhibitors in Cancer; Springer: Cham, Switzerland, 2014; pp. 1–46. [Google Scholar]
- Kale, A.J.; Moore, B.S. Molecular mechanisms of acquired proteasome inhibitor resistance. J. Med. Chem. 2012, 55, 10317–10327. [Google Scholar] [CrossRef]
- Ao, L.; Wu, Y.; Kim, D.; Jang, E.R.; Kim, K.; Lee, D.M.; Kim, K.B.; Lee, W. Development of peptide-based reversing agents for P-glycoprotein-mediated resistance to carfilzomib. Mol. Pharm. 2012, 9, 2197–2205. [Google Scholar] [CrossRef]
- Chiba, T.; Matsuda, A.; Ichikawa, S. Structure-activity relationship study of syringolin A as a potential anticancer agent. Bioorg. Med. Chem. Lett. 2015, 25, 4872–4877. [Google Scholar] [CrossRef]
- Hovhannisyan, A.; Pham, T.H.; Bouvier, D.; Qin, L.; Melikyan, G.; Reboud-Ravaux, M.; Bouvier-Durand, M. C1 and N5 derivatives of cerpegin: Synthesis of a new series based on structure-activity relationships to optimize their inhibitory effect on 20S proteasome. Bioorg. Med. Chem. Lett. 2013, 23, 2696–2703. [Google Scholar] [CrossRef]
- Macherla, V.R.; Mitchell, S.S.; Manam, R.R.; Reed, K.A.; Chao, T.H.; Nicholson, B.; Deyanat-Yazdi, G.; Mai, B.; Jensen, P.R.; Fenical, W.F.; et al. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem. 2005, 48, 3684–3687. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, X.; Wu, G.; Ma, Y.; Li, Y.; Zhao, X.; Yuan, Y.; Yang, J.; Yu, S.; Shao, F.; et al. Synthesis, in vitro and in vivo biological evaluation, docking studies, and structure-activity relationship (SAR) discussion of dipeptidyl boronic acid proteasome inhibitors composed of B-amino acids. J. Med. Chem. 2010, 53, 1990–1999. [Google Scholar] [CrossRef] [PubMed]
- Wenlock, M.C.; Barton, P. In Silico physicochemical parameter predictions. Mol. Pharm. 2013, 10, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, P.C.; Morris, E.P. Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 2008, 283, 23305–23314. [Google Scholar] [CrossRef] [PubMed]
- Kisselev, A.F.; Garcia-Calvo, M.; Overkleeft, H.S.; Peterson, E.; Pennington, M.W.; Ploegh, H.L.; Thornberry, N.A.; Goldberg, A.L. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem. 2003, 278, 35869–35877. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Grune, T. Structure of the Proteasome, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 109, ISBN 9780123978639. [Google Scholar]
- de Bettignies, G.; Coux, O. Proteasome inhibitors: Dozens of molecules and still counting. Biochimie 2010, 92, 1530–1545. [Google Scholar] [CrossRef]
- Jung, T.; Catalgol, B.; Grune, T. The proteasomal system. Mol. Asp. Med. 2009, 30, 191–296. [Google Scholar] [CrossRef]
- Bedford, L.; Paine, S.; Sheppard, P.W.; Mayer, R.J.; Roelofs, J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 2010, 20, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Lander, G.C.; Estrin, E.; Matyskiela, M.E.; Bashore, C.; Nogales, E.; Martin, A. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A. Development of proteasome inhibitors as research tools and cancer drugs. J. Cell Biol. 2012, 199, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Verbrugge, S.E.; Scheper, R.J.; Lems, W.F.; de Gruijl, T.D.; Jansen, G. Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res. Ther. 2015, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, C.; Gigstad, K.M.; Hales, P.; Garcia, K.; Jones, M.; Bruzzese, F.J.; Barrett, C.; Liu, J.X.; Soucy, T.A.; Sappal, D.S.; et al. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem. J. 2010, 430, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78, 477–513. [Google Scholar] [CrossRef] [PubMed]
- Diez-Rivero, C.M.; Lafuente, E.M.; Reche, P.A. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome. BMC Bioinformatics 2010, 11, 479. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, X.; Zhu, X.; Wu, G.; Li, Y.; Ma, Y.; Yuan, Y.; Yang, J.; Hu, Y.; Ai, L.; et al. Design, synthesis, biological evaluation, and structure-activity relationship (SAR) discussion of dipeptidyl boronate proteasome inhibitors, part I: Comprehensive understanding of the SAR of alpha-amino acid boronates. J. Med. Chem. 2009, 52, 4192–4199. [Google Scholar] [CrossRef]
- Beck, P.; Dubiella, C.; Groll, M. Covalent and non-covalent reversible proteasome inhibition. Biol. Chem. 2012, 393, 1101–1120. [Google Scholar] [CrossRef]
- Dou, Q.P.; Li, B. Proteasome inhibitors as potential novel anticancer agents. Drug Resist. Updat. 1999, 2, 215–223. [Google Scholar] [CrossRef]
- European Medicines Agency. EPAR Summary for the Public: Velcade® (Bortezomib); European Medicines Agency: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Raedler, L. Velcade (Bortezomib) Receives 2 New FDA Indications: For Retreatment of Patients with Multiple Myeloma and for First-Line Treatment of Patients with Mantle-Cell Lymphoma. Am. Heal. drug benefits 2015, 8, 135–140. [Google Scholar]
- Demo, S.D.; Kirk, C.J.; Aujay, M.A.; Buchholz, T.J.; Dajee, M.; Ho, M.N.; Jiang, J.; Laidig, G.J.; Lewis, E.R.; Parlati, F.; et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007, 67, 6383–6391. [Google Scholar] [CrossRef]
- Kupperman, E.; Lee, E.C.; Cao, Y.; Bannerman, B.; Fitzgerald, M.; Berger, A.; Yu, J.; Yang, Y.; Hales, P.; Bruzzese, F.; et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010, 70, 1970–1980. [Google Scholar] [CrossRef]
- Piva, R.; Ruggeri, B.; Williams, M.; Costa, G.; Tamagno, I.; Ferrero, D.; Giai, V.; Coscia, M.; Peola, S.; Massaia, M.; et al. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 2008, 111, 2765–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, D.; Catley, L.; Li, G.; Podar, K.; Hideshima, T.; Velankar, M.; Mitsiades, C.; Mitsiades, N.; Yasui, H.; Letai, A.; et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 2005, 8, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.J.; Aujay, M.A.; Bennett, M.K.; Dajee, M.; Demo, S.D.; Fang, Y.; Ho, M.N.; Jiang, J.; Kirk, C.J.; Laidig, G.J.; et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J. Med. Chem. 2009, 52, 3028–3038. [Google Scholar] [CrossRef] [PubMed]
- Tietsche, V.; Hungria, D.M.; De Queiroz, E.; Isabel, R.; Maiolino, A.; José, R.; Magalhães, P.; Sobrinho, N.; Vaz, J.; Coutinho, R.; et al. New proteasome inhibitors in the treatment of multiple myeloma. Hematol. Transfus. Cell Ther. 2019, 41, 76–83. [Google Scholar]
- EMA-EU/3/14/1295. European Medicines Agency: Utrecht, Netherlands, 2014. Available online: https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3141295 (accessed on 25 October 2019).
- U.S. Food and Drug Administration. Orphan Drug Designations and Approvals. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/ (accessed on 25 October 2019).
- EMBL-EBI. ChEMBL24.1 database. Available online: 10.6019/CHEMBL.database.24.1 (accessed on 9 October 2019).
- Chemical Computing Group MOE. Molecular Operating Environment; Chemical Computing Group MOE: Montreal, QC, Canada, 2019; Available online: https://www.chemcomp.com/Products.htm (accessed on 25 October 2019).
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; Wiley: Hoboken, NJ, USA, 2009; Volume 2, ISBN 9783527628766. [Google Scholar]
- Ioakimidis, L.; Thoukydidis, L.; Mirza, A.; Naeem, S.; Reynisson, J. Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR Comb. Sci. 2008, 27, 445–456. [Google Scholar] [CrossRef]
- Matuszek, A.M.; Reynisson, J. Defining known drug space using DFT. Mol. Inform. 2016, 35, 46–53. [Google Scholar] [CrossRef]
- Muchmore, S.W.; Edmunds, J.J.; Stewart, K.D.; Hajduk, P.J. Cheminformatic tools for medicinal chemists. J. Med. Chem. 2010, 53, 4830–4841. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Pedregosa, F.; Gael, V.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Duborg, V.; Vanderplas, J.; et al. Scikit-Learn: Machine Learning in Python; Packt Publishing Ltd.: Birmingham, UK, 2011; Volume 12. [Google Scholar]
- Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887–2893. [Google Scholar] [CrossRef]
- Landrum, G. RDKit: Open-source Cheminformatics. Available online: https://www.rdkit.org/ (accessed on 25 October 2019).
- Rogers, D.J.; Tanimoto, T.T. A computer program for classifying plants. Science 1960, 132, 1115–1118. [Google Scholar] [CrossRef]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. SPSS Statistics, version 25.0; IBM Corp: New York, NY, USA, 2017. [Google Scholar]
- Jones, E.; Oliphant, E.; Peterson, P. SciPy: Open source scientific tools for python. Comput. Sci. Eng. 2007. [Google Scholar] [CrossRef]
- Waskom, M. Seaborn: Statistical data visualizationn. Available online: https://seaborn.pydata.org/ (accessed on 25 October 2019).
- John, D. Hunter Matplotlib: A 2D graphics environmen. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter notebooks—A publishing format for reproducible computational workflowsIOS Press Ebooks—J. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; Fernando Loizides, B.S., Ed.; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90, ISBN 978-1-61499-648-4 (print) | 978-1-61499-649-1 (online). [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Oprea, T.I.; Gottfries, J.; Sherbukhin, V.; Svensson, P.; Kühler, T.C. Chemical information management in drug discovery: Optimizing the computational and combinatorial chemistry interfaces. J. Mol. Graph. Model. 2000, 18, 512–524. [Google Scholar] [CrossRef]
- Oprea, T.I.; Davis, A.M.; Teague, S.J.; Leeson, P.D.; Astrazeneca, R.; Mo, D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 2001, 41, 1308–1315. [Google Scholar] [CrossRef]
- Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model. 2018, 81, 211–228. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016; ISBN 9780128042915. [Google Scholar]
- Hann, M.M. Molecular obesity, potency and other addictions in drug discovery. In Multifaceted Roles of Crystallography in Modern Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9789401797191. [Google Scholar]
- Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships, I. Partition coefficients as a measure of hydrophobicity. J. Comput. Chem. 1986, 7, 565–577. [Google Scholar] [CrossRef]
- Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Model. 1987, 27, 21–35. [Google Scholar] [CrossRef]
- Shultz, M.D. Two decades under the Influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 2019, 62, 1701–1714. [Google Scholar] [CrossRef]
- Varma, A.K.; Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS ONE 2010, 5, e12029. [Google Scholar]
- Hayler, J. The Handbook of Medicinal Chemistry: Principles and Practice; Davis, A., Ward, S.E., Eds.; Royal Society of Chemistry: London, UK, 2015; ISBN 978-1-84973-625-1. Available online: https://pubs.rsc.org/en/content/ebook/978-1-84973-625-1 (accessed on 2 February 2016).
- Harshbarger, W.; Miller, C.; Diedrich, C.; Sacchettini, J. Crystal structure of the human 20S proteasome in complex with Carfilzomib. Structure 2015, 23, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Bogyo, M.; McMaster, J.S.; Gaczynska, M.; Tortorella, D.; Goldberg, A.L.; Ploegh, H. Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA. 1997, 94, 6629–6634. [Google Scholar] [CrossRef] [PubMed]
- Baldisserotto, A.; Marastoni, M.; Lazzari, I.; Trapella, C.; Gavioli, R.; Tomatis, R. C-terminal constrained phenylalanine as a pharmacophoric unit in peptide-based proteasome inhibitors. Eur. J. Med. Chem. 2008, 43, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Faghih, M.; Daeihamed, M.; Abdolmajid, S. Design, synthesis and evaluation of substituted Aryl-2-Nitrovinyl derivatives as small molecules proteasome inhibitors. Iran. J. Pharm. Res. 2018, 17, 906–916. [Google Scholar]
- Lorentz, H.A. Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der körperdichte. Ann. der Phys. und Chem. 1880, 245, 641–665. [Google Scholar] [CrossRef]
- Lorenz, L. Ueber die refractionsconstante. Ann. der Phys. und Chem. 1880, 247, 70–103. [Google Scholar] [CrossRef]
- Bahmani, A.; Saaidpour, S.; Rostami, A. A simple, robust and efficient computational method for n-Octanol/Water partition coefficients of substituted aromatic drugs. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘Rule of Three’ for fragment-based lead discovery? Drug Discov. Today 2003, 8, 876–877. [Google Scholar] [CrossRef]
- Pilkington, L. Lignans: A chemometric analysis. Molecules 2018, 23, 1666. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Crimin, K.; Goodwin, J.T.; Crivori, P.; Orrenius, C.; Xing, L.; Tandler, P.J.; Vidmar, T.J.; Amore, B.M.; Wilson, A.G.E.; et al. Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J. Med. Chem. 2004, 47, 6104–6107. [Google Scholar] [CrossRef] [PubMed]
- Overkleeft, H.S.; Bos, P.R.; Hekking, B.G.; Gordon, E.J.; Ploegh, H.L.; Kessler, B.M. Solid phase synthesis of peptide vinyl sulfone and peptide epoxyketone proteasome inhibitors. Tetrahedron Lett. 2000. [Google Scholar] [CrossRef]
- Kisselev, A.F.; Van Der Linden, W.A.; Overkleeft, H.S. Proteasome inhibitors: An expanding army attacking a unique target. Chem. Biol. 2012, 19, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.-H.; Manam, R.; Hagenbuch, B.; Weiss, J.; McArthur, K.; Wahlgren, B.; Macherla, V.; Neuteboom, S.; Enna, S.; Lloyd, G.; et al. Halogen and non-halogen leaving groups enhance the potency of β-lactone proteasome inhibitors: Further investigation into the role of the halogen of NPI-0052 (salinosporamide A). Cancer Res. 2008, 68, 3256. [Google Scholar]
- Martin, E.J.; Critchlow, R.E. Beyond mere diversity: Tailoring combinatorial libraries for drug discovery. J. Comb. Chem. 1999, 1, 32–45. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Arnott, J.A.; Kumar, R.; Planey, S.L. Planey lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet. 2013, 1, 31–36. [Google Scholar]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Keserü, G.M.; Makara, G.M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 2009, 8, 203–212. [Google Scholar] [CrossRef]
- Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev. 2003, 23, 302–321. [Google Scholar] [CrossRef] [PubMed]
- Bade, R.; Chan, H.F.; Reynisson, J. Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. Eur. J. Med. Chem. 2010, 45, 5646–5652. [Google Scholar] [CrossRef] [PubMed]
- DeGoey, D.A.; Chen, H.-J.; Cox, P.B.; Wendt, M.D. Beyond the rule of 5: Lessons learned from AbbVie’s drugs and compound collection. J. Med. Chem. 2018, 61, 2636–2651. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, X.; Genin, E.; Qin, L.; Sperandio, O.; Montes, M.; Basse, N.; Richy, N.; Miteva, M.A.; Vidal, J.; Villoutreix, B.O. 1, 2, 4-Oxadiazoles identified by virtual screening and their non-covalent inhibition of the human 20S proteasome. Curr. Med. Chem. 2013, 20, 2351–2362. [Google Scholar] [CrossRef] [PubMed]
- Lavecchia, A.; Giovanni, C. Di virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem. 2013, 20, 2839–2860. [Google Scholar] [CrossRef]
- Fisher, R.A. On the interpretation of χ2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 1922, 85, 87. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kazius, J.; Mcguire, R.; Bursi, R. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem. 2005, 48, 312–320. [Google Scholar] [CrossRef]
- Lawrence, H.R.; Sebti, M. Oxadiazole-isopropylamides as potent and noncovalent proteasome inhibitors. J Med. Chem. 2013, 56, 3783–3805. [Google Scholar]
- Yu, J.; Xu, L.; Hong, D.; Zhang, X.; Liu, J.; Li, D.; Li, J.; Zhou, Y.; Liu, T. Design, synthesis, and biological evaluation of novel phenol ether derivatives as non-covalent proteasome inhibitors. Eur. J. Med. Chem. 2019, 161, 543–558. [Google Scholar] [CrossRef]
- Imbach, P.; Lang, M.; García-Echeverría, C.; Guagnano, V.; Noorani, M.; Roesel, J.; Bitsch, F.; Rihs, G.; Furet, P. Novel β-lactam derivatives: Potent and selective inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorg. Med. Chem. Lett. 2007, 17, 358–362. [Google Scholar] [CrossRef] [PubMed]
Proteasome Inhibitor | Structural Class | Administration Route | Market Authorization | Phase of Ongoing Clinical Trials and Respective Disease(s) |
---|---|---|---|---|
Bortezomib | Boronate | IV, SC | MM, MCL | I, II, III, IV MM, leukemia, myasthenia gravis, systemic lupus erythematosus, rheumatoid arthritis, solid tumors |
Carfilzomib | Epoxyketone | IV | MM | I, II, III, IV M, lymphoma, neuroendocrine cancers, solid tumors |
Delanzomib | Boronate | IV, PO | – | I (Tested in MM, lymphoma, solid tumors) |
Ixazomib | Boronate | IV, PO | MM | I, II, III, IV MM, leukemia, lymphoma |
Marizomib | β-Lactone | IV, PO | – | I, II, III MM, glioma, solid tumors, lymphoma, leukemia, lung cancer |
Oprozomib | Epoxyketone | IV, PO | – | I, II MM |
Drug-likeness Rules | Lead-likeness | Marketed Drug Space | ||||
---|---|---|---|---|---|---|
Molecular Descriptor | Lipinski [58] | Ghose [64,65] | Veber [76] | Oprea [59,60] | Oprea’s Lead-likeness [60] | Known Drug Space, KDS [89] |
MW | ≤500 | [160; 480] | – | [200; 450] | ≤450 | ≤800 |
LogP | ≤5 | [−0.4; 5.6] | – | [−2; 4.5] | [−3.5; 4.5] | ≤6.5 |
HBA | ≤10 | – | – | [1; 8] | ≤8 | ≤15 |
HBD | ≤5 | – | – | ≤5 | ≤5 | ≤7 |
Number of atoms | – | [20; 70] | – | – | – | – |
MR | – | [40; 130] | – | – | – | – |
RotN | – | – | ≤10 | [1; 9] | ≤10 | ≤17 |
Rings | – | – | – | ≤5 | ≤4 | – |
PSA (Å2) | – | – | ≤140 | – | – | ≤180 |
LogD7.4 | – | – | – | [−4;4] | – | – |
Compounds with marketing authorization | Compounds in clinical trials | |||||
---|---|---|---|---|---|---|
Molecular Descriptors | Bortezomib | Carfilzomib | Ixazomib | Delanzomib | Marizomib | Oprozomib |
MW | 384.2 | 719.9 | 361.0 | 413.3 | 313.8 | 532.6 |
LogP (o/w) | 0.95 | 4.08 | 2.48 | 1.801 | 0.774 | 0.007 |
HBA | 6 | 8 | 4 | 6 | 3 | 8 |
HBD | 4 | 4 | 4 | 5 | 2 | 3 |
hydrophobic atoms | 17 | 35 | 14 | 19 | 14 | 22 |
MR | 11.02 | 20.18 | 9.36 | 11.78 | 7.85 | 14.03 |
Rotatable bonds | 11 | 24 | 9 | 11 | 4 | 17 |
Rings | 2 | 4 | 1 | 2 | 3 | 3 |
TPSA | 124.4 | 158.5 | 98.7 | 131.8 | 75.6 | 148.3 |
Lipinski’s drug-likeness | Yes | No | Yes | Yes | Yes | No |
Ro5 violations | 0 | 2* | 0 | 0 | 0 | 2* |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes, R.A.; Aniceto, N.; Andrade, M.A.P.; Salvador, J.A.R.; Guedes, R.C. Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. Int. J. Mol. Sci. 2019, 20, 5326. https://doi.org/10.3390/ijms20215326
Guedes RA, Aniceto N, Andrade MAP, Salvador JAR, Guedes RC. Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. International Journal of Molecular Sciences. 2019; 20(21):5326. https://doi.org/10.3390/ijms20215326
Chicago/Turabian StyleGuedes, Romina A., Natália Aniceto, Marina A. P. Andrade, Jorge A. R. Salvador, and Rita C. Guedes. 2019. "Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design" International Journal of Molecular Sciences 20, no. 21: 5326. https://doi.org/10.3390/ijms20215326
APA StyleGuedes, R. A., Aniceto, N., Andrade, M. A. P., Salvador, J. A. R., & Guedes, R. C. (2019). Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. International Journal of Molecular Sciences, 20(21), 5326. https://doi.org/10.3390/ijms20215326