Advances in Research on Diabetes by Human Nutriomics
Abstract
:1. Background
2. Human Nutrigenomics and DM
2.1. Advances in DM Research via Nutritional Genomics
2.2. Advances in DM Research via Transcriptomics
2.3. Advances in DM Research via Proteomics
3. Human Nutritional Metabolomics and DM
3.1. Advances in DM Research via Metabolomics
3.2. Advances in DM Research Using Lipidomics
3.3. Advances in DM Research Using Metallomics
4. Microbiomics and DM
5. Foodomics and DM
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Priyadarsini, S.; Sarker-Nag, A.; Allegood, J.; Chalfant, C.; Karamichos, D. Description of the sphingolipid content and subspecies in the diabetic cornea. Curr. Eye Res. 2015, 40, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Colvin, R. Protease inhibitors and diabetes: A growing problem. Common Factor 1997, 8, 8. [Google Scholar]
- Haw, J.S.; Galaviz, K.I.; Straus, A.N.; Kowalski, A.J.; Magee, M.J.; Weber, M.B.; Wei, J.; Narayan, K.M.V.; Ali, M.K. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Jama Intern. Med. 2017, 177, 1808–1817. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Rajab, A.; Jazayeri, H.E.; Tayebi, L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit. Rev. Clin. Lab. Sci. 2017, 54, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pr. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Moucheraud, C.; Lenz, C.; Latkovic, M.; Wirtz, V.J. The costs of diabetes treatment in low- and middle-income countries: A systematic review. BMJ Glob. Health 2019, 4, e001258. [Google Scholar] [CrossRef]
- VanBuren, C.; Imrhan, V.; Vijayagopal, P.; Solis-Pérez, E.; López-Cabanillas Lomelí, M.; Gonzalez-Garza, R.; Gutiérrez-López, M.; González-Martinez, B.E.; Boonme, K.; Juma, S.; et al. “Omics” Education in Dietetic Curricula: A Comparison between Two Institutions in the USA and Mexico. Lifestyle Genom. 2018, 11, 136–146. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, G.; Silva-Zolezzi, I.; Hidalgo, A.; March, S. Genomic medicine in Mexico: Initial steps and the road ahead. Genome Res. 2008, 18, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.A.; Mutch, D.M.; German, J.B. Genomics: Food and nutrition. Curr. Opin. Biotechnol. 2001, 12, 516–522. [Google Scholar] [CrossRef]
- Müller, M.; Kersten, S. Nutrigenomics: Goals and strategies. Nat. Rev. Genet. 2003, 4, 315–322. [Google Scholar] [CrossRef]
- Trujillo, E.; Davis, C.; Milner, J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J. Am. Diet. Assoc. 2006, 106, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Koren, S.; Dilthey, A.; Phillippy, A.M.; Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 2018, 34, i748–i756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, V.S.; Palika, R.; Ismail, A.; Pullakhandam, R.; Reddy, G.B. Nutrigenomics: Opportunities & challenges for public health nutrition. Indian J. Med. Res. 2018, 148, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A.; Manolio, T.A. How to interpret a genome-wide association study. Jama 2008, 299, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Barroso, I.; McCarthy, M.I. The Genetic Basis of Metabolic Disease. Cell 2019, 177, 146–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wen, F.; Zuo, C.; Li, M.; Chen, H.; Wu, K. Association of genetic variation on chromosome 9p21 with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2011, 52, 8063–8067. [Google Scholar] [CrossRef]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef] [Green Version]
- Defesche, J.C.; Gidding, S.S.; Harada-Shiba, M.; Hegele, R.A.; Santos, R.D.; Wierzbicki, A.S. Familial hypercholesterolaemia. Nat. Rev. Dis. Primers 2017, 3, 17093. [Google Scholar] [CrossRef]
- Richa, S.; Voight, B.F.; Valeriya, L.; Burtt, N.L.P.; de Bakker, P.I.W.; Hong, C.; Roix, J.J.; Sekar, K.; Hirschhorn, J.N.; Daly, M.J. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar]
- Jeong, K.H.; Kim, J.S.; Woo, J.T.; Rhee, S.Y.; Lee, Y.H.; Kim, Y.G.; Moon, J.Y.; Kim, S.K.; Kang, S.W.; Lee, S.H.; et al. Genome-Wide Association Study Identifies New Susceptibility Loci for Diabetic nephropathy in Korean patients with type 2 diabetes mellitus. Clin. Genet. 2019, 96, 35–42. [Google Scholar] [CrossRef]
- Gao, P.; Uzun, Y.; He, B.; Salamati, S.E.; Coffey, J.K.M.; Tsalikian, E.; Tan, K. Risk variants disrupting enhancers of TH1 and TREG cells in type 1 diabetes. Proc. Natl. Acad. Sci. USA 2019, 116, 7581–7590. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ping, J.; Chen, H.; Jiao, L.; Zheng, S.; Han, Z.G.; Hao, P.; Huang, J. A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat. Genomics 2010, 96, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, G.; Bigaud, M.; Pfister, S.; Ceci, M.; McMichael, K.; Afatsawo, C.; Hamburger, M.; Texier, C.; Henry, M.; Cojean, C.; et al. Blockade of CD40-CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren’s syndrome. Ann. Rheum. Dis. 2019, 78, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Tiwari, P.; Wahi, N.; Soni, A.; Bansiwal, R.C.; Kumar, A.; Sharma, B.; Punjabi, P.; Gupta, N.; Malik, B.; et al. Transcriptome profiling reveals association of peripheral adipose tissue pathology with type-2 diabetes in asian Indians. Adipocyte 2019, 8, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.L.; Anwar, M.; Heys, R.; Ahmed, E.M.; Caputo, M.; Game, L.; Reeves, B.C.; Punjabi, P.P.; Angelini, G.D.; Petretto, E.; et al. Optimisation of laboratory methods for whole transcriptomic RNA analyses in human left ventricular biopsies and blood samples of clinical relevance. PLoS ONE 2019, 14, e0213685. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Weng, C.; Li, H.; Tao, R.; Mai, W.; Liu, X.; Lu, L.; Lai, S.; Duan, Q.; Alvarez, C.; et al. Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key β-Cell-Specific Disease Genes. Cell Rep. 2019, 26, 3132–3144. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Zhang, L.; Fu, J.; Verghese, D.A.; Chauhan, K.; Nadkarni, G.N.; Li, Z.; Ju, W.; Kretzler, M.; Cai, G.Y.; et al. LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF-β-Induced Angiogenesis. J. Am. Soc. Nephrol. 2019, 30, 546–562. [Google Scholar] [CrossRef]
- Caberlotto, L.; Nguyen, T.P.; Lauria, M.; Priami, C.; Rimondini, R.; Maioli, S.; Cedazo-Minguez, A.; Sita, G.; Morroni, F.; Corsi, M.; et al. Cross-disease analysis of Alzheimer’s disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci. Rep. 2019, 9, 3965. [Google Scholar] [CrossRef]
- Dusaulcy, R.; Handgraaf, S.; Visentin, F.; Howald, C.; Dermitzakis, E.T.; Philippe, J.; Gosmain, Y. High-fat diet impacts more changes in beta-cell compared to alpha-cell transcriptome. PLoS ONE 2019, 14, e0213299. [Google Scholar] [CrossRef]
- Jorrin-Novo, J.V.; Komatsu, S.; Sanchez-Lucas, R.; Rodríguez de Francisco, L.E. Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J. Proteom. 2018, 198, 1–10. [Google Scholar] [CrossRef]
- Kussmann, M.; Affolter, M.; Fay, L.B. Proteomics in nutrition and health. Comb. Chem. High Throughput Screen. 2005, 8, 679–696. [Google Scholar] [CrossRef]
- Sramkova, V.; Berend, S.; Siklova, M.; Caspar-Bauguil, S.; Carayol, J.; Bonnel, S.; Marques, M.; Decaunes, P.; Kolditz, C.I.; Dahlman, I.; et al. Apolipoprotein M: A novel adipokine decreasing with obesity and upregulated by calorie restriction. Am. J. Clin. Nutr. 2019, 109, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Abdulwahab, R.A.; Alaiya, A.; Shinwari, Z.; Allaith, A.A.A.; Giha, H.A. LC-MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins. Int. J. Mol. Med. 2019, 43, 2118–2132. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, M.; Bhat, V.; Bindu, Y.S.; Mandal, A.K. Glycation profile of minor abundant erythrocyte proteome across varying glycemic index in diabetes mellitus. Anal. Biochem. 2019, 573, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.; Magalhães, P.; Krochmal, M.; Pejchinovski, M.; Daina, E.; Caruso, M.R.; Goea, L.; Belczacka, I.; Remuzzi, G.; Umbhauer, M.; et al. Urinary proteome signature of Renal Cysts and Diabetes syndrome in children. Sci. Rep. 2019, 9, 2225. [Google Scholar] [CrossRef]
- Malipatil, N.; Fachim, H.A.; Siddals, K.; Geary, B.; Wark, G.; Porter, N.; Anderson, S.; Donn, R.; Harvie, M.; Whetton, A.D.; et al. Data Independent Acquisition Mass Spectrometry Can Identify Circulating Proteins That Predict Future Weight Loss with a Diet and Exercise Programme. J. Clin. Med. 2019, 8, 141. [Google Scholar] [CrossRef]
- Rao, P.; Lu, X.M.; Pattee, P.; Neelima, G.; Girisesh, G.; Dakshinamurthy, K.; Roberts-Ct, J.; Nagalla, S. Proteomic identification of urinary biomarkers of diabetic nephropathy. Diabetes Care 2007, 30, 629–637. [Google Scholar] [CrossRef]
- Sims, E.K.; Evans-Molina, C. Urinary biomarkers for the early diagnosis of retinopathy and nephropathy in type 1 diabetes mellitus: A "steady stream" of information using proteomics. Transl. Res. 2014, 163, 183–187. [Google Scholar] [CrossRef]
- Chiang, S.Y.; Tsai, M.L.; Wang, C.Y.; Chen, A.; Chou, Y.C.; Hsia, C.W.; Wu, Y.F.; Chen, H.M.; Huang, T.H.; Chen, P.H. Proteomic analysis and identification of aqueous humor proteins with a pathophysiological role in diabetic retinopathy. J. Proteom. 2012, 75, 2950–2959. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F. Nonproteinuric progressive diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 227–232. [Google Scholar] [CrossRef]
- Mirza, Z.; Ali, A.; Ashraf, G.M.; Kamal, M.A.; Abuzenadah, A.M.; Choudhary, A.G.; Damanhouri, G.A.; Sheikh, I.A. Proteomics approaches to understand linkage between Alzheimer’s disease and type 2 diabetes mellitus. Cns. Neurol. Disord. Drug Targets 2014, 13, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Wagner, A.E. Drosophila melanogaster as an alternative model organism in nutrigenomics. Genes Nutr. 2019, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes; Springer: Dordrecht, The Netherlands, 2002; pp. 155–171. [Google Scholar]
- Ross, B.M.; Babgi, R. Volatile compounds in blood headspace and nasal breath. J. Breath Res. 2017, 11, 046001. [Google Scholar] [CrossRef] [PubMed]
- Vangipurapu, J.; Stancáková, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine Amino Acids are Associated with Decreased Insulin Secretion and Elevated Glucose Levels in a 4.6-Year Follow-Up Study of 5181 Finnish Men. Diabetes 2019, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Bernardo-Bermejo, S.; Sánchez-López, E.; Castro-Puyana, M.; Benito, S.; Lucio-Cazaña, F.J.; Marina, M.L. An untargeted metabolomic strategy based on liquid chromatography-mass spectrometry to study high glucose-induced changes in HK-2 cells. J. Chromatogr. A 2019, 1596, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Osataphan, S.; Macchi, C.; Singhal, G.; Chimene-Weiss, J.; Sales, V.; Kozuka, C.; Dreyfuss, J.M.; Pan, H.; Tangcharoenpaisan, Y.; Morningstar, J.; et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. Jci. Insight 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.C. Challenges in Mass Spectrometry-based Lipidomics of Neutral Lipids. Trends Anal. Chem. 2018, 107, 91–98. [Google Scholar] [CrossRef]
- Gross, R.W.; Han, X. Lipidomics in Diabetes and the Metabolic Syndrome. Methods Enzymol. 2007, 433, 73. [Google Scholar]
- He, Q.; Zhu, S.; Lin, M.; Yang, Q.; Wei, L.; Zhang, J.; Jiang, X.; Zhu, D.; Lu, X.; Chen, Y.Q. Increased GPR120 level is associated with gestational diabetes mellitus. Biochem. Biophys. Res. Commun. 2019, 512, 196–201. [Google Scholar] [CrossRef]
- Lamichhane, S.; Ahonen, L.; Dyrlund, T.S.; Dickens, A.M.; Siljander, H.; Hyöty, H.; Ilonen, J.; Toppari, J.; Veijola, R.; Hyötyläinen, T.; et al. Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes. Biomolecules 2019, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Xiao, R.; Li, Y.; Liao, S.; Zhang, Z.; Yang, W.; Liang, B. Plasma lipidomic signatures of spontaneous obese rhesus monkeys. Lipids Health Dis. 2019, 18, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhang, D.; Chen, Q.; Wu, J.; Ouyang, Z.; Xia, Y. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 2019, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Pape, J.A.; Newey, C.R.; Burrell, H.R.; Workman, A.; Perry, K.; Bikman, B.T.; Bridgewater, L.C.; Grose, J.H. Per-Arnt-Sim Kinase (PASK) Deficiency Increases Cellular Respiration on a Standard Diet and Decreases Liver Triglyceride Accumulation on a Western High-Fat High-Sugar Diet. Nutrients 2018, 10, 1990. [Google Scholar] [CrossRef]
- Lamichhane, S.; Ahonen, L.; Dyrlund, T.S.; Siljander, H.; Hyöty, H.; Ilonen, J.; Toppari, J.; Veijola, R.; Hyötyläinen, T.; Knip, M.; et al. A longitudinal plasma lipidomics dataset from children who developed islet autoimmunity and type 1 diabetes. Sci. Data 2018, 5, 180250. [Google Scholar] [CrossRef]
- Razquin, C.; Toledo, E.; Clish, C.B.; Ruiz-Canela, M.; Dennis, C.; Corella, D.; Papandreou, C.; Ros, E.; Estruch, R.; Guasch-Ferré, M.; et al. Plasma Lipidomic Profiling and Risk of Type 2 Diabetes in the PREDIMED Trial. Diabetes Care 2018, 41, 2617–2624. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Ning, Z.W.; Huang, T.; Wen, B.; Liao, C.H.; Lin, C.Y.; Zhao, L.; Xiao, H.T.; Bian, Z.X. Cyclocarya paliurus Leaves Tea Improves Dyslipidemia in Diabetic Mice: A Lipidomics-Based Network Pharmacology Study. Front Pharm. 2018, 9, 973. [Google Scholar] [CrossRef]
- Yang, Q.; Vijayakumar, A.; Kahn, B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 2018, 19, 654–672. [Google Scholar] [CrossRef]
- Zhang, Y.; Ying, H.; Xu, Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019, 11, 1026–1043. [Google Scholar] [CrossRef]
- Biagioni, C.; D’Orazio, M.; Lepore, G.O.; d’Acapito, F.; Vezzoni, S. Thallium-rich rust scales in drinkable water distribution systems: A case study from northern Tuscany, Italy. Sci. Total Env. 2017, 587, 491–501. [Google Scholar] [CrossRef]
- Lindeque, J.Z.; Jansen van Rensburg, P.J.; Louw, R.; van der Westhuizen, F.H.; Florit, S.; Ramirez, L.; Giralt, M.; Hidalgo, J. Obesity and metabolomics: Metallothioneins protect against high-fat diet-induced consequences in metallothionein knockout mice. Omics 2015, 19, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, H.; Speckmann, B.; Pinto, A.; Sies, H. High selenium intake and increased diabetes risk: Experimental evidence for interplay between selenium and carbohydrate metabolism. J. Clin. Biochem. Nutr. 2011, 48, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Roverso, M.; Di Marco, V.; Badocco, D.; Pastore, P.; Calanducci, M.; Cosmi, E.; Visentin, S. Maternal, placental and cordonal metallomic profiles in gestational diabetes mellitus. Metallomics 2019, 11, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Roverso, M.; Berté, C.; Di Marco, V.; Lapolla, A.; Badocco, D.; Pastore, P.; Visentin, S.; Cosmi, E. The metallome of the human placenta in gestational diabetes mellitus. Metallomics 2015, 7, 1146–1154. [Google Scholar] [CrossRef]
- Liu, F.; Gan, P.P.; Wu, H.; Woo, W.S.; Ong, E.S.; Li, S.F. A combination of metabolomics and metallomics studies of urine and serum from hypercholesterolaemic rats after berberine injection. Anal. Bioanal. Chem. 2012, 403, 847–856. [Google Scholar] [CrossRef]
- Lopes, T.I.; Geloneze, B.; Pareja, J.C.; Calixto, A.R.; Ferreira, M.M.; Marsaioli, A.J. “Omics” Prospective Monitoring of Bariatric Surgery: Roux-En-Y Gastric Bypass Outcomes Using Mixed-Meal Tolerance Test and Time-Resolved (1)H NMR-Based Metabolomics. Omics 2016, 20, 415–423. [Google Scholar] [CrossRef]
- Cox, A.J.; Lehtinen, A.B.; Xu, J.; Langefeld, C.D.; Freedman, B.I.; Carr, J.J.; Bowden, D.W. Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol. 2013, 50, 391–399. [Google Scholar] [CrossRef]
- Sonnenburg, E.D.; Sonnenburg, J.L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 2019, 17, 383–390. [Google Scholar] [CrossRef]
- A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 2019, 7, 31. [CrossRef]
- Díaz-Rizzolo, D.A.; Kostov, B.; López-Siles, M.; Serra, A.; Colungo, C.; González-de-Paz, L.; Martinez-Medina, M.; Sisó-Almirall, A.; Gomis, R. Healthy dietary pattern and their corresponding gut microbiota profile are linked to a lower risk of type 2 diabetes, independent of the presence of obesity. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sorensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
- Aydin, Ö.; Nieuwdorp, M.; Gerdes, V. The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Curr. Diab. Rep. 2018, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Han, J.; Feng, H.; Zheng, H.; Wu, J.; Gao, C.; Yang, M.; You, C.; Liu, Z.; Wu, Z. Fermentation Products of Paenibacillus bovis sp. nov. BD3526 Alleviates the Symptoms of Type 2 Diabetes Mellitus in GK Rats. Front Microbiol. 2018, 9, 3292. [Google Scholar] [CrossRef] [PubMed]
- Pasini, E.; Corsetti, G.; Assanelli, D.; Testa, C.; Romano, C.; Dioguardi, F.S.; Aquilani, R. Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes. Minerva Med. 2019, 110, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, A.; Takeuchi, Y.; Katagiri, S.; Suda, W.; Maekawa, S.; Shiba, T.; Komazaki, R.; Udagawa, S.; Sasaki, N.; Hattori, M.; et al. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis. 2019, 25, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, A.B.; Sun, S.; Ajami, N.J.; Ross, M.C.; Wang, H.; Zhang, L.; Reuhl, K.; Kobayashi, K.; Onishi, J.C.; et al. Green Tea Polyphenols Modify the Gut Microbiome in db/db Mice as Co-abundance Groups Correlating with the Blood Glucose Lowering Effect. Mol. Nutr. Food Res. 2019, 63, e1801064. [Google Scholar] [CrossRef] [PubMed]
- Whang, A.; Nagpal, R.; Yadav, H. Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine 2018, 39, 591. [Google Scholar] [CrossRef]
- Herrero, M.; García-Cañas, V.; Simo, C.; Cifuentes, A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2010, 31, 205–228. [Google Scholar] [CrossRef]
- Cifuentes, A. Food analysis and Foodomics. J. Chromatogr. A 2009, 1216, 7109. [Google Scholar] [CrossRef] [Green Version]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef]
- Santangelo, C.; Zicari, A.; Mandosi, E.; Scazzocchio, B.; Mari, E.; Morano, S.; Masella, R. Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives. Br. J. Nutr. 2016, 115, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; de la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [PubMed]
- Janšáková, K.; Lengyelová, E.; Pribulová, N.; Somoza, V.; Celec, P.; Šebeková, K.; Tóthová, Ľ. Metabolic and renal effects of dietary advanced glycation end products in pregnant rats - a pilot study. Physiol. Res. 2019, 68, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Saito, K.; Jia, H.; Kato, H. An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption. PLoS ONE 2014, 9, e91134. [Google Scholar] [CrossRef]
- Tsurumaki, M.; Kotake, M.; Iwasaki, M.; Saito, M.; Tanaka, K.; Aw, W.; Fukuda, S.; Tomita, M. The application of omics technologies in the functional evaluation of inulin and inulin-containing prebiotics dietary supplementation. Nutr. Diabetes 2015, 5, e185. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C.; Wai, S.T.C.; Zhang, Y.; Portillo, P.M.; Paoli, P.; Wu, Y.; San Cheang, W.; Liu, B.; Carpene, C.; et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2019, 59, 830–847. [Google Scholar] [CrossRef]
- Sébédio, J.L. Metabolomics, Nutrition, and Potential Biomarkers of Food Quality, Intake, and Health Status. Adv. Food Nutr. Res. 2017, 82, 83–116. [Google Scholar] [CrossRef]
- Mohan, V.; Radha, V. Precision Diabetes is Slowly Becoming a Reality. Med. Princ. Pr. 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef]
Title | Branch | Application Example | References |
---|---|---|---|
Human nutrigenomics | Nutrition genomics | Three loci associated with T2D were identified in the non-coding regions near CDKN2A and CDKN2B, introns of IGF2BP2 and CDKAL1 introns, and replication associations near HHEX and SLC30A8; | Defesche et al., 2017 [18] |
Rs3765156 in PIK3C2B was significantly associated diabetic nephropathy (DN); | Jeong et al., 2019 [20] | ||
Four SNPs (rs1077211,rs1077212,rs3176792, rs883868) could alter enhancer, H3K4me1 and H3K27ac, activity in T1D; | Gao et al., 2019 [21] | ||
Transcriptomics | Block CD40-CD154 pathway interaction can inhibit ectopic lymphoid structures and Sjögren syndrome; | Wieczorek et al., 2019 [23] | |
The cohesion loading complex and the NuA4/Tip60 histone acetyltransferase complex play a key role in regulating insulin transcription and release; | Fang et al., 2019 [26] | ||
Transcriptome analysis of glomerular endothelial cells in DM mice revealed up-regulated leucine-rich α-2-glycoprotein 1 (LRG1); | Hong et al., 2019 [27] | ||
The transcriptomic data of post-mortem Alzheimer’s disease (AD) and T2D brains revealed the main role of autophagy in the molecular basis of AD and T2D; | Caberlotto et al., 2019 [28] | ||
Islet cell transcriptome data from control and DM mice revealed three new target genes (Upk3a, Adcy1, and Dpp6) differentially expressed genes in the transcriptome of pancreatic alpha cells; | Dusaulcy et al., 2019 [29] | ||
Proteomics | Apolipoprotein M (apoM) may be associated with insulin sensitivity; | Sramkova et al., 2019 [32] | |
Many immunologically related proteins, including heparin cofactor 2, Ig α-1 chain C region, zinc-α-2-glycoprotein, are differentially expressed in T2D; | Abdulwahab et al., 2019 [33] | ||
The site-specific glycation of red blood cell proteome was identified with different glycemic index in diabetic patients by using the nanoLC/ESI-MS proteomics platform; | Muralidharan et al., 2019 [34] | ||
Used sequential window acquisition of all theoretical fragment ion spectroscopy (SWATH) mass spectrometry (MS) to find that hemoglobin A1c (HbA1C) levels decrease with weight loss and insulin sensitivity improve; | Malipatil et al., 2019 [36] | ||
Human nutritional-metabolomics | Metabolomics | Five amino acids (tyrosine, alanine, isoleucine, aspartic acid, and glutamic acid) were found to be significantly associated with an increased risk of developing T2D; | Vangipurapu et al., 2019 [46] |
CANA regulates key nutrient sensing pathways, activates 5’AMP-activated protein kinase (AMPK), and inhibits rapamycin (mTOR) independent on insulin or glucagon sensitivity or signaling; | Osataphan et al., 2019 [48] | ||
GPR120 levels were associated with GDM; | He et al., 2019 [51] | ||
Lipidomics | Sphingomyelin was lower in T1D progression; | Lamichhane et al., 2018 [52] | |
FFA C16:0 and 16:0-LPA lipids may be potential candidates for the diagnosis and study of obesity-related diseases; | Wang et al., 2019 [53] | ||
It has been discovered that the ratios of C=C isomers were much less affected by interpersonal variations than their individual abundances, suggesting that isomer ratios may be used for the discovery of lipid biomarkers, which can also be used for subsequent predictive screening for DM; | Zhang et al., 2019 [54] | ||
Lipidomics analysis found that Cyclocarya paliurus (CP) may be the cause of diabetic dyslipidemia; | Zhai et al., 2018 [58] | ||
Supranutritional selenium intake and high plasma selenium levels are potential risk factors for T2D; | Steinbrenner et al., 2011 [63] | ||
Metallomics | The concentrations of Ca, Cu, Na, and Zn in the umbilical cord blood of GDM were higher than those of the control samples, while Fe, K, Mn, P, Rb, S, and Si showed opposite trends; | Roverso et al., 2019 [64] | |
Selenium concentrations in GDM were higher than others; | Roverso et al., 2015 [65] | ||
V, Mn, Na, and K may be biomarkers for hypercholesterolemia diseases; | Liu et al., 2012 [66] | ||
Microbiomics | Human T2D is associated with changes in the composition of the gut microbiota, for example, the proportions of phylum Firmicutes and class Clostridia were significantly reduced in the DM group compared to the control group; | Qiao et al., 2018 [74] | |
T2D intestinal microbiota was significantly different from the intestinal microbiota of healthy subjects. It has been confirmed that using the fermentation products of Paenibacillus bovis sp. nov. BD3526 to treat the Goto-Kakisaki (GK) rats can improved its related symptoms; | Ohtsu et al., 2019 [76] | ||
Oral administration of Porphyromonas gingivalis altered the gut microbiota and aggravated glycemic control in streptozotocin-induced DM mice; | Olivas-Aguirre et al., 2016 [83] | ||
Foodomics | Metabolites of cyanidin-3-O-glucoside (Cy3G) and found it to protect against Helicobacter pylori infection, age-related diseases, T2D, cardiovascular disease, and metabolic syndrome. | Alkhatib et al., 2017 [81] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Li, X. Advances in Research on Diabetes by Human Nutriomics. Int. J. Mol. Sci. 2019, 20, 5375. https://doi.org/10.3390/ijms20215375
Ren X, Li X. Advances in Research on Diabetes by Human Nutriomics. International Journal of Molecular Sciences. 2019; 20(21):5375. https://doi.org/10.3390/ijms20215375
Chicago/Turabian StyleRen, Xinmin, and Xiangdong Li. 2019. "Advances in Research on Diabetes by Human Nutriomics" International Journal of Molecular Sciences 20, no. 21: 5375. https://doi.org/10.3390/ijms20215375
APA StyleRen, X., & Li, X. (2019). Advances in Research on Diabetes by Human Nutriomics. International Journal of Molecular Sciences, 20(21), 5375. https://doi.org/10.3390/ijms20215375