Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases
Abstract
:1. Introduction
2. The Mechanism of Microparticle Formation
3. Methods of Microparticle Detection
4. Role of Microparticles in Inflammatory Joint Diseases
4.1. Rheumatoid Arthritis
4.2. Juvenile Idiopathic Arthritis
4.3. Ankylosing Spondylitis
4.4. Psoriatic Arthritis
5. Microparticles as an Indicator of Disease Activity
6. The Potential Role of Mesenchymal Stem Cells-Derived Microparticles in Inflammatory Joint Disease Therapy
7. Summary
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
aCCP | Anti-cyclic citrullinated peptide autoantibodies |
AS | Ankylosing spondylitis |
BAFF | B-cell-activating factor |
BTK | Bruton’s tyrosine kinase |
CRP | C reactive protein |
DAS 28 | Disease activity score 28 |
EMPs | Endothelial microparticles |
FLS | Fibroblast-like synoviocytes |
IC | Immune complexes |
ICAM-1 | Intercellular adhesion molecule 1 |
IFN-γ | Interferon γ |
IMIDs | Immune-mediated inflammatory diseases |
JIA | Juvenile idiopathic arthritis |
MPC-1 | Monocyte chemoattractant protein-1 |
mpIC | Microparticles in immune complexes |
mRNA | Messenger RNA |
miRNA | Micro-ribonucleic acid |
MMP | Matrix metalloproteinases |
MPs | Microparticles |
PMPs | Platelet-derived microparticles |
PsA | Psoriatic arthritis |
RA | Rheumatoid arthritis |
SLPI | Secretory leukocyte protease inhibitor |
SYK | Spleen tyrosine kinase |
TF | Tissue factor |
TLR | Toll-like receptor |
TSLP | Thymic stromal lymphopoetin |
VCAM-1 | Vascular cell adhesion molecule 1 |
VEGF | Vascular endothelial growth factor |
References
- Gelderman, M.P.; Simak, J. Flow cytmometric analysis of cell membrane microparticles. Methods Mol. Biol. 2008, 484, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Piccin, A.; Murphy, W.G.; Smith, O.P. Circulating microparticles: Pathophysiology and clinical implications. Blood Rev. 2007, 21, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Maślanka, K.; Michur, H.; Smoleńska-Sym, G. Mikrocząstki błon komórkowych. Acta Haemat. Pol. 2009, 40, 481–491. [Google Scholar]
- Simak, J.; Gelderman, M.P. Cell membrane microparticles in blood and blood products: Potentially pathogenic agents and diagnostic markers. Trans. Med. Rev. 2006, 20, 1–26. [Google Scholar] [CrossRef]
- Barry, O.P.; Pratico, D.; Lawson, J.A.; FitzGerald, G.A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Investig. 1997, 99, 2118–2127. [Google Scholar] [CrossRef]
- Semple, J.W.; Provan, D.; Garvey, M.B.; Freedman, J. Recent progress in understanding the pathogenesis of immune thrombocytopenia (ITP). Curr. Opin. Haematol. 2010, 17, 590–595. [Google Scholar] [CrossRef]
- Burbano, C.; Villar-Vesga, J.; Orejuela, J.; Muñoz, C.; Vanegas, A.; Vásquez, G.; Rojas, M.; Castaño, D. Potential Involvement of Platelet-Derived Microparticles and Microparticles Forming Immune Complexes during Monocyte Activation in Patients with Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 322. [Google Scholar] [CrossRef]
- Boilard, E.; Nigrovic, P.A.; Larabee, K.; Watts, G.F.; Coblyn, J.S.; Weinblatt, M.E.; Massarotti, E.M.; Remold-O’Donnell, E.; Farndale, R.W.; Ware, J.; et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010, 327, 580–583. [Google Scholar] [CrossRef]
- Takeshita, J.; Mohler, E.R.; Krishnamoorthy, P.; Moore, J.; Rogers, W.T.; Zhang, L.; Gelfand, J.M.; Mehta, N.N. Endothelial Cell-, Platelet-, and Monocyte/Macrophage-Derived Microparticles are Elevated in Psoriasis Beyond Cardiometabolic Risk Factors. J. Am. Heart Assoc. 2014, 3, e000507. [Google Scholar] [CrossRef]
- Martínez-Sales, V.; Vila, V.; Ricart, J.M.; Vayá, A.; Todolí, J.; Nńñez, C.; Contreras, T.; Ballester, C.; Reganon, E. Increased circulating endothelial cells and microparticles in patients with psoriasis. Clin. Hemorheol. Microcirc. 2015, 60, 283–290. [Google Scholar] [CrossRef]
- Hunter, M.P.; Ismail, N.; Zhang, X.; Aguda, B.D.; Lee, E.J.; Yu, L.; Xiao, T.; Schafer, J.; Lee, M.L.; Schmittgen, T.D.; et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 2008, 3, e3694. [Google Scholar] [CrossRef] [PubMed]
- Risitano, A.; Beaulieu, L.M.; Vitseva, O.; Freedman, J.E. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 2012, 119, 6288–6295. [Google Scholar] [CrossRef] [PubMed]
- Siljander, P.R. Platelet-derived microparticles—An updated perspective. Thromb. Res. 2011, 127, 30–33. [Google Scholar] [CrossRef]
- Baj-Krzyworzeka, M.; Majka, M.; Pratico, D.; Ratajczak, J.; Vilaire, G.; Kijowski, J.; Reca, R.; Janowska-Wieczorek, A.; Ratajczak, M.Z. Platelet-derived microparticles stimulate proliferation, survival, adhesion and chemotaxis of hematopoietic cells. Exp. Hematol. 2002, 30, 450–459. [Google Scholar] [CrossRef]
- Barry, O.P.; Kazanietz, M.G.; Pratico, D.; FitzGerald, G.A. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J. Biol. Chem. 1999, 274, 7545–7556. [Google Scholar] [CrossRef] [PubMed]
- Barry, O.P.; Pratico, D.; Savani, R.C.; FitzGerald, G.A. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J. Clin. Investig. 1998, 102, 136–144. [Google Scholar] [CrossRef]
- Merten, M.; Pakala, P.; Thiagarajan, P.; Benedict, C.R. Platelet microparticles promote platelet interactions with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999, 99, 2577–2582. [Google Scholar] [CrossRef]
- Tan, K.T.; Lip, G.Y. The potential role of platelet microparticles in atherosclerosis. Thromb. Haemost. 2005, 94, 488–492. [Google Scholar] [CrossRef]
- Koga, H.; Sugiyama, S.; Kugiyama, K.; Watanabe, K.; Fukushima, H.; Tanaka, T.; Sakamoto, T.; Yoshimura, M.; Jinnouchi, H.; Ogawa, H. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol. 2005, 45, 1622–1630. [Google Scholar] [CrossRef]
- Vidal, C.; Spaulding, C.; Picard, F.; Schaison, F.; Melle, J.; Weber, S.; Fontenay-Roupie, M. Flow cytometry detection of platelet procoagulation activity and microparticles in patients with unstable angina treated by percutaneous coronary angioplasty and stent implantation. Thromb. Haemost. 2001, 86, 784–790. [Google Scholar] [CrossRef]
- Joseph, J.E.; Harrison, P.; Mackie, I.J.; Isenberg, D.A.; Machin, S.J. Increased circulating platelet-leucocyte complexes and platelet activation in patients with antiphospholipid syndrome, systemic lupus erythematosus and rheumatoid arthritis. Br. J. Haematol. 2001, 115, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Hugel, B.; Socie, G.; Vu, T.; Toti, F.; Gluckman, E.; Freyssinet, J.M.; Scrobohaci, M.L. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood 1999, 93, 3451–3456. [Google Scholar] [CrossRef] [PubMed]
- Dye, J.R.; Ullal, A.J.; Pisetsky, D.S. The role of microparticles in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Scand. J. Immunol. 2013, 78, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, O.; Nielsen, C.T.; Iversen, L.V.; Tanassi, J.T.; Knudsen, S.; Jacobsen, S.; Heegaard, N.H. Unique protein signature of circulating microparticles in systemic lupus erythematosus. Arthritis Rheum. 2013, 65, 2680–2690. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S.; Lipsky, P.E. Microparticles as autoadjuvants in the pathogenesis of SLE. Nat. Rev. Rheumatol. 2010, 6, 368–372. [Google Scholar] [CrossRef]
- Morel, O.; Morel, N.; Freyssinet, J.M.; Toti, F. Platelet microparticles and vascular cells interactions: A checkpoint between the haemostatic and thrombotic responses. Platelets 2008, 19, 9–23. [Google Scholar] [CrossRef]
- McLaughlin, P.J.; Gooch, J.T.; Mannherz, H.G.; Weeds, A.G. Structure of gelsolin segment 1-actin complex and the mechanism of filament serving. Nature 1993, 364, 685–692. [Google Scholar] [CrossRef]
- Beleznay, Z.; Zachowski, A.; Devaux, P.F.; Navazo, M.P.; Ott, P. ATP-dependent aminophospholipid translocation in erythrocyte vesicles: Stoichiometry of transport. Biochemistry 1993, 32, 3146–3152. [Google Scholar] [CrossRef]
- Connor, J.; Pak, C.H.; Zwaal, R.F.; Schroit, A.J. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process. J. Biol. Chem. 1992, 267, 19412–19417. [Google Scholar]
- Kelton, J.G.; Warkentin, T.E.; Hayward, C.P.; Murphy, W.G.; Moore, J.C. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood 1992, 80, 2246–2251. [Google Scholar] [CrossRef] [Green Version]
- Zwaal, R.F.; Comfurius, P.; Bevers, E.M. Mechanism and function of change in membrane-phospholipid asymetry in platelets and erythrocytes. Biochim. Soc. Trans. 1993, 21, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Schroit, A.J.; Tanaka, Y.; Madsen, J.; Fidler, I.J. The recognition of red blood cells by macrofages: Role of phosphatidyl-serine and possible implication of membrane phospholipid asymetry. Biol. Cell 1984, 51, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, P.; Tait, J.F. Collagen-induced exposure of anionic phospholipid in platelet and platelet derived microparticles. J. Biol. Chem. 1991, 266, 24302–24307. [Google Scholar] [PubMed]
- Van der Pol, E.; van Gemert, M.J.; Sturk, A.; Nieuwland, R.; van Leeuwen, T.G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012, 10, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; Robert, S.; Poncelet, P.; Dignat-George, F. Overcoming limitations of microparticle measurement by flow cytometry. Semin. Thromb Hemost. 2010, 36, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Dachary-Prigent, J.; Freyssinet, J.M.; Pasquet, J.M.; Carron, J.C.; Nurden, A.T. Annexin-V as a probe of aminophospholipid exposure and platelet membrane vesiculation—A flow-cytometry study showing a role for free sulfhydryl-groups. Blood 1993, 81, 2554–2565. [Google Scholar] [CrossRef]
- Connor, D.E.; Exner, T.; Ma, D.D.; Joseph, J.E. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein lb. Thromb. Haemost. 2010, 103, 1044–1052. [Google Scholar] [CrossRef]
- Miyamoto, S.; Marcinkiewicz, C.; Edmunds, L.H.; Niewiarowski, S. Measurement of platelet microparticles during cardiopulmonary bypass by means of captured ELISA for GpIIb/IIIa. Thromb. Haemost. 1998, 80, 225–230. [Google Scholar] [CrossRef]
- Nomura, S. Measuring circulating cell derived microparticles. J. Thromb. Haemost. 2004, 2, 1847–1848. [Google Scholar] [CrossRef]
- Baka, Z.; Senolt, L.; Vencovsky, J.; Mann, H.; Simon, P.S.; Kittel, A.; Buzás, E.; Nagy, G. Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis. Immunol. Lett. 2010, 128, 124–130. [Google Scholar] [CrossRef]
- Brogan, P.A.; Shah, V.; Brachet, C.; Harnden, A.; Mant, D.; Klein, N.; Dillon, M.J. Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum. 2004, 50, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Dignat-George, F.; Camoin-Jau, L.; Sabatier, F.; Arnoux, D.; Anfosso, F.; Bardin, N.; Veit, V.; Combes, V.; Gentile, S.; Moal, V. Endothelial microparticles: A potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb. Haemost. 2004, 91, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Erdbruegger, U.; Grossheim, M.; Hertel, B.; Wyss, K.; Kirsch, T.; Woywodt, A.; Haller, H.; Haubitz, M. Diagnostic role of endothelial microparticles in vasculitis. Rheumatology 2008, 47, 18205. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, M.; Nomura, S.; Ozaki, Y.; Yoshimura, C.; Kagawa, H.; Fukuhara, S. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity 2001, 33, 85–94. [Google Scholar] [CrossRef]
- Oyabu, C.; Morinobu, A.; Sugiyama, D.; Saegusa, J.; Tanaka, S.; Morinobu, S.; Tsuji, G.; Kasagi, S.; Kawano, S.; Kumagai, S. Plasma platelet-derived microparticles in patients with connective tissue diseases. J. Rheumatol. 2011, 38, 680–684. [Google Scholar] [CrossRef]
- Sellam, J.; Proulle, V.; Jungel, A.; Ittah, M.; Miceli, R.C.; Gottenberg, J.E.; Toti, F.; Benessiano, J.; Gay, S.; Freyssinet, J.M. Increased levels of circulating microparticles in primary Sjögren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res. Ther. 2008, 11, R156. [Google Scholar] [CrossRef]
- Ho, J.C.; Lee, C.H.; Lin, S.H. No Significant Reduction of Circulating Endothelial-Derived and Platelet-Derived Microparticles in Patients with Psoriasis Successfully Treated with Anti-IL12/23. Biomed. Res. Int. 2016, 2016, 3242143. [Google Scholar] [CrossRef]
- Pelletier, F.; Garnache-Ottou, F.; Angelot, F.; Biichlé, S.; Vidal, C.; Humbert, P.; Saas, P.; Seillès, E.; Aubin, F. Increased levels of circulating endothelial-derived microparticles and small-size platelet-derived microparticles in psoriasis. J. Investig. Dermatol. 2011, 131, 1573–1576. [Google Scholar] [CrossRef]
- Knijff-Dutmer, E.A.; Koerts, J.; Nieuwland, R.; Kalsbeek-Batenburg, E.M.; van de Laar, M.A. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2002, 46, 1498–1503. [Google Scholar] [CrossRef]
- Beyer, C.; Pisetsky, D.S. The role of microparticles in the pathogenesis of rheumatic diseases. Nat. Rev. Rheumatol. 2010, 6, 21–29. [Google Scholar] [CrossRef]
- Van Eijk, I.C.; Tushuizen, M.E.; Sturk, A.; Dijkmans, B.A.; Boers, M.; Voskuyl, A.E.; Diamant, M.; Wolbink, G.J.; Nieuwland, R.; Nurmohamed, M.T. Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Viñuela-Berni, V.; Doníz-Padilla, L.; Figueroa-Vega, N.; Portillo-Salazar, H.; Abud-Mendoza, C.; Baranda, L.; González-Amaro, R. Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease. Clin. Exp. Immunol. 2015, 180, 442–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Headland, S.E.; Jones, H.R.; Norling, L.V.; Kim, A.; Souza, P.R.; Corsiero, E.; Gil, C.D.; Nerviani, A.; Dell’Accio, F.; Pitzalis, C.; et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Michael, B.N.R.; Kommoju, V.; Kavadichanda Ganapathy, C.; Negi, V.S. Characterization of cell-derived microparticles in synovial fluid and plasma of patients with rheumatoid arthritis. Rheumatol. Int. 2019, 39, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Punnen, K.A.; Nair, S.C.; Jayaseelan, V.; Kumar, T.S. Platelet microparticles level in juvenile idiopathic arthritis: A pediatric population-based cross-sectional study in a tertiary care center. Indian J. Rheumatol. 2019, 14, 182–186. [Google Scholar] [CrossRef]
- Sari, I.; Bozkaya, G.; Kirbiyik, H.; Alacacioglu, A.; Ates, H.; Sop, G.; Can, G.; Taylan, A.; Piskin, O.; Yildiz, Y.; et al. Evaluation of circulating endothelial and platelet microparticles in men with ankylosing spondylitis. J. Rheumatol. 2012, 39, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Bradley, N. Plasma Microparticle Levels are not Raised in Patients with Ankylosing Spondylitis. Rheumatology 2014, 53, i137. [Google Scholar] [CrossRef]
- Barbati, C.; Vomero, M.; Colasanti, T.; Diociaiuti, M.; Ceccarelli, F.; Ferrigno, S.; Finucci, A.; Miranda, F.; Novelli, L.; Perricone, C.; et al. TNFα expressed on the surface of microparticles modulates endothelial cell fate in rheumatoid arthritis. Arthritis Res. Ther. 2018, 20, 273. [Google Scholar] [CrossRef]
- Messer, L.; Alsaleh, G.; Freyssinet, J.M.; Zobairi, F.; Leray, I.; Gottenberg, J.E.; Sibilia, J.; Toti-Orfanoudakis, F.; Wachsmann, D. Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res. Ther. 2009, 11, R40. [Google Scholar] [CrossRef]
- Biro, E.; Nieuwland, R.; Tak, P.P.; Pronk, L.M.; Schaap, M.C.; Sturk, A.; Hack, C.E. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann. Rheum. Dis. 2007, 66, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, N.; Tan, S.; Boudreau, L.H.; Cramb, C.; Subbaiah, R.; Lahey, L.; Albert, A.; Shnayder, R.; Gobezie, R.; Nigrovic, P.A.; et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: The microparticle-associated immune complexes. EMBO Mol. Med. 2013, 5, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Distler, J.H.; Jungel, A.; Huber, L.C.; Seemayer, C.A.; Reich, C.F., 3rd; Gay, R.E.; Michel, B.A.; Fontana, A.; Gay, S.; Pisetsky, D.S.; et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc. Natl. Acad. Sci. USA 2005, 102, 2892–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berckmans, R.J.; Nieuwland, R.; Kraan, M.C.; Schaap, M.C.; Pots, D.; Smeets, T.J.; Sturk, A.; Tak, P.P. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res. Ther. 2005, 7, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Berckmans, R.J.; Nieuwland, R.; Tak, P.P.; Böing, A.N.; Romijn, F.P.; Kraan, M.C.; Breedveld, F.C.; Hack, C.E.; Sturk, A. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 2002, 46, 2857–2866. [Google Scholar] [CrossRef]
- Reich, N.; Beyer, C.; Gelse, K.; Akhmetshina, A.; Dees, C.; Zwerina, J.; Schett, G.; Distler, O.; Distler, J.H. Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J. Cell Mol. Med. 2011, 15, 756–762. [Google Scholar] [CrossRef]
- Endresen, G.K. Investigation of blood platelets in synovial fluid from patients with rheumatoid arthritis. Scand. J. Rheumatol. 1981, 10, 204–208. [Google Scholar] [CrossRef]
- Endresen, G.K.; Forre, O. Human platelets in synovial fluid. A focus on the effects of growth factors on the inflammatory responses in rheumatoid arthritis. Clin. Exp. Rheumatol. 1992, 10, 181–187. [Google Scholar]
- Farr, M.; Wainwright, A.; Salmon, M.; Hollywell, C.A.; Bacon, P.A. Platelets in the synovial fluid of patients with rheumatoid arthritis. Rheumatol. Int. 1984, 4, 13–17. [Google Scholar] [CrossRef]
- Moroi, M.; Jung, S.M. Platelet glycoprotein VI: Its structure and function. Thromb. Res. 2004, 114, 221–233. [Google Scholar] [CrossRef]
- Hsu, J.; Gu, Y.; Tan, S.L.; Narula, S.; Demartino, J.A.; Liao, C. Bruton’s Tyrosine Kinase mediates platelet receptor-induced generation of microparticles: A potential mechanism for amplification of inflammatory responses in rheumatoid arthritis synovial joints. Immunol. Lett. 2012, 150, 97–104. [Google Scholar] [CrossRef]
- Tan, S.L.; Liao, C.; Lucas, M.C.; Stevenson, C.; Demartino, J.A. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: Recent progress and therapeutic perspectives. Pharmacol. Ther. 2013, 138, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Uckun, F.M.; Qazi, S. Bruton’s tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin. Ther. Pat. 2010, 20, 1457–1470. [Google Scholar] [CrossRef] [PubMed]
- Ardoin, S.P.; Shanahan, J.C.; Pisetsky, D.S. The role of microparticles in inflammation and thrombosis. Scand. J. Immunol. 2007, 66, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Distler, J.H.; Distler, O. Inflammation: Microparticles and their roles in inflammatory arthritides. Nat. Rev. Rheumatol. 2010, 6, 385–386. [Google Scholar] [CrossRef]
- Gaipl, U.S.; Kuenkele, S.; Voll, R.E.; Beyer, T.D.; Kolowos, W.; Heyder, P.; Kalden, J.R.; Herrmann, M. Complement binding is an early feature of necrotic and a rather late event during apoptotic cell death. Cell Death Differ. 2001, 8, 327–334. [Google Scholar] [CrossRef]
- Ciurana, C.L.; Zwart, B.; van Mierlo, G.; Hack, C.E. Complement activation by necrotic cells in normal plasma environment compares to that by late apoptotic cells and involves predominantly IgM. Eur. J. Immunol. 2004, 34, 2609–2619. [Google Scholar] [CrossRef]
- Taylor, P.R.; Carugati, A.; Fadok, V.A.; Cook, H.T.; Andrews, M.; Carroll, M.C.; Savill, J.S.; Henson, P.M.; Botto, M.; Walport, M.J. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 2000, 192, 359–366. [Google Scholar] [CrossRef]
- Zwart, B.; Ciurana, C.; Rensink, I.; Manoe, R.; Hack, C.E.; Aarden, L.A. Complement activation by apoptotic cells occurs predominantly via IgM and is limited to late apoptotic (secondary necrotic) cells. Autoimmunity 2004, 37, 95–102. [Google Scholar] [CrossRef]
- Nauta, A.J.; Trouw, L.A.; Daha, M.R.; Tijsma, O.; Nieuwland, R.; Schwaeble, W.J.; Gingras, A.R.; Mantovani, A.; Hack, E.C.; Roos, A. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur. J. Immunol. 2002, 32, 1726–1736. [Google Scholar] [CrossRef]
- Gasser, O.; Hess, C.; Miot, S.; Deon, C.; Sanchez, J.C.; Schifferli, J.A. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 2003, 285, 243–257. [Google Scholar] [CrossRef]
- Gasser, O.; Schifferli, J.A. Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp. Cell Res. 2005, 307, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.T.; Ostergaard, O.; Stener, L.; Iversen, L.V.; Truedsson, L.; Gullstrand, B.; Jacobsen, S.; Heegaard, N.H. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 2012, 64, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Papadavid, E.; Diamanti, K.; Spathis, A.; Varoudi, M.; Andreadou, I.; Gravanis, K.; Theodoropoulos, K.; Karakitsos, P.; Lekakis, J.; Rigopoulos, D.; et al. Increased levels of circulating platelet-derived microparticles in psoriasis: Possible implications for the associated cardiovascular risk. World J. Cardiol. 2016, 8, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X. Rac1 regulates platelet microparticles formation and rheumatoid arthritis deterioration. Platelets 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krajewska-Włodarczyk, M.; Owczarczyk-Saczonek, A.; Placek, W.; Osowski, A.; Engelgardt, P.; Wojtkiewicz, J. Role of Stem Cells in Pathophysiology and Therapy of Spondyloarthropathies-New Therapeutic Possibilities? Int. J. Mol. Sci. 2017, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.H. Research of Pathogenesis and Novel Therapeutics in Arthritis. Int. J. Mol. Sci. 2019, 20, 1646. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, S.; Toupet, K.; Maumus, M.; Luz-Crawford, P.; Blanc-Brude, O.; Jorgensen, C.; Noël, D. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 2018, 8, 1399–1410. [Google Scholar] [CrossRef]
- Cosenza, S.; Ruiz, M.; Toupet, K.; Jorgensen, C.; Noël, D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep. 2017, 7, 16214. [Google Scholar] [CrossRef]
- Ragni, E.; Perucca Orfei, C.; De Luca, P.; Lugano, G.; Viganò, M.; Colombini, A.; Valli, F.; Zacchetti, D.; Bollati, V.; de Girolamo, L. Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Res. Ther. 2019, 10, 109. [Google Scholar] [CrossRef]
- Tofiño-Vian, M.; Guillén, M.I.; Pérez Del Caz, M.D.; Silvestre, A.; Alcaraz, M.J. Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cell Physiol. Biochem. 2018, 47, 11–25. [Google Scholar] [CrossRef]
Parent Cells | Surface Membrane Antigens of MPs Reflecting Their Cell of Origin |
---|---|
Platelets | CD41, CD41a, CD42a, CD42b, CD61, CD62p, PS, TF |
Endothelium cells | CD31, CD51, CD62e, CD105, CD144, CD146, PS, TF |
Erythrocytes | CD235a |
Leukocytes | CD45 |
Monocytes | CD14, PS, TF |
Neutrophils | CD66b |
Th-cells | CD4 |
Ts-cells | CD8 |
B-cells | CD20 |
Disease | Microparticles | References |
---|---|---|
RA | Increased number of PMPs in peripheral blood and synovial fluid in RA | [8,49,50,51] |
RA | Increased number of circulating MPs exposing complement components in early RA | [51] |
RA | Increased number of monocyte-, B-cell-, T-cell-, platelet-derived MPs in high disease activity in RA | [51,52] |
RA | Monocyte-derived MPs present in a much larger amount in synovial fluid than in plasma in RA | [53] |
RA | Significantly increased number of granulocyte-derived MPs in synovial fluid in the RA patients with aCCP antibodies | [54] |
RA | Increased number of MPs with CD3, CD14, and CD19 antigens in the urine of RA patients with high disease activity | [52] |
JIA | Increased number of PMPs in synovial fluid in JIA compared to osteoarthritis | [8] |
JIA | Much higher number of PMPs in synovial fluid in active JIA than in serum | [55] |
PsA | Increased number of circulating PMPs and EMPs in PsA | [47] |
PsA | Increased number of PMPs in synovial fluid in PsA | [8] |
AS | Decrease in the number of MPMs and EMPs during the anti-TNFα treatment in AS | [56] |
AS | No differences in the number of MPs between AS patients and healthy control, but significantly higher expression of CD4, CD62, CD14 and lower expression of CD41 in the MPs surface in AS | [57] |
MPs as a Potential Pathogenetic Factor of RA | References |
---|---|
Activation of Immunocompetent Cells | |
Activation of B-cells by macrophage/monocyte-derived MPs from synovial fluid | Messer et al. [59] |
Participation in Formation of Immune Complexes | |
Increased number of C1q, C4, C3-binding MPs in synovial fluid and in peripheral blood | Biro et al. [60] |
mpIC present in synovial fluid | Cloutier et al. [61] |
Increased Secretion of Matrix Metaloproteinases | |
Monocyte- and B-cell-derived MPs can induce the release of MMP3, MMP9, MMP13 in FLS | Distler et al. [62] |
Modulation of Chemokine and Cytokine Release | |
Monocyte- and granulocyte-derived MPs from synovial fluid modulate MCP-1, IL-6, IL-8, and CCL5 release by synoviocytes | Berckmans et al. [63] |
Increased secretion of TNFα and IL-1, IL-17 by monocytes stimulated by monocyte-, B-cell-, T-cell-, platelet-derived MPs from peripheral blood | Viñuela-Berni et al. [52] |
Pro-Coagulation Activity | |
Monocyte- and granulocyte-derived MPs from synovial fluid are strongly coagulant via the factor VII-dependent pathway | Berckmans et al. [64] |
Activation of Vascular Endothelium Cells | |
MPs from articular fluid stimulate FLS production and release of VEGF | Berckmans et al. [63] |
Stimulating effect of leukocyte-derived MPs on production and release by rheumatoid synoviocytes of proangiogenic CXC | Reich et al. [65] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska-Włodarczyk, M.; Owczarczyk-Saczonek, A.; Żuber, Z.; Wojtkiewicz, M.; Wojtkiewicz, J. Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases. Int. J. Mol. Sci. 2019, 20, 5453. https://doi.org/10.3390/ijms20215453
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Żuber Z, Wojtkiewicz M, Wojtkiewicz J. Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases. International Journal of Molecular Sciences. 2019; 20(21):5453. https://doi.org/10.3390/ijms20215453
Chicago/Turabian StyleKrajewska-Włodarczyk, Magdalena, Agnieszka Owczarczyk-Saczonek, Zbigniew Żuber, Maja Wojtkiewicz, and Joanna Wojtkiewicz. 2019. "Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases" International Journal of Molecular Sciences 20, no. 21: 5453. https://doi.org/10.3390/ijms20215453
APA StyleKrajewska-Włodarczyk, M., Owczarczyk-Saczonek, A., Żuber, Z., Wojtkiewicz, M., & Wojtkiewicz, J. (2019). Role of Microparticles in the Pathogenesis of Inflammatory Joint Diseases. International Journal of Molecular Sciences, 20(21), 5453. https://doi.org/10.3390/ijms20215453