In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity
Abstract
:1. Introduction
2. Results
2.1. Overview of Material Synthesis
2.2. The Optimized Synthesis of MTB
2.3. Synthesis and Microstructure Characterization of AMTB
2.4. AMTB Formation Mechanism
2.5. Antifungal Activity of AMTB
2.5.1. Inhibition of T. viride Spores
2.5.2. Inhibition of P. citrinum Spores
2.6. Exploration of the Antifungal Mechanism
2.7. Stability Evaluation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Ag NP-Decorated MT Film-Coated Bamboo (AMTB) Samples
4.3. Characterization
4.4. Antifungal Test
4.5. Stability Evaluation
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, F.-C.; Chen, K.-S.; Yang, P.-Y.; Ko, C.-H. Environmental benefit of utilizing bamboo material based on life cycle assessment. J. Clean. Prod. 2018, 204, 60–69. [Google Scholar] [CrossRef]
- Prosper, N.K.; Zhang, S.; Wu, H.; Yang, S.; Li, S.; Sun, F.; Goodell, B. Enzymatic biocatalysis of bamboo chemical constituents to impart antimold properties. Wood Sci. Technol. 2018, 52, 619–635. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Huang, D.; Wei, W.; Wang, W.; Wang, X.; Wei, Q.; Niu, M.; Lin, M.; Rao, J.; Xie, Y. Mesoporous aluminosilicate improves mildew resistance of bamboo scrimber with CuBP anti-mildew agents. J. Clean. Prod. 2019, 209, 273–282. [Google Scholar] [CrossRef]
- Cheng, D.; Jiang, S.; Zhang, Q. Mould resistance of Moso bamboo treated by two step heat treatment with different aqueous solutions. Eur. J. Wood Wood Prod. 2013, 71, 143–145. [Google Scholar] [CrossRef]
- Kang, F.; Yu, C.; Huang, Q.; Wei, Y.; Zhang, R.; Fei, Y. Advances in application of microwave technology to pest quarantine. Plant Prot. 2009, 6, 36–39. [Google Scholar]
- Hastrup, A.C.S.; Iii, F.G.; Clausen, C.A.; Bo, J. Tolerance of Serpula lacrymans to copper-based wood preservatives. Int. Biodeter. Biodegr. 2005, 56, 173–177. [Google Scholar] [CrossRef]
- Guo, H.; Bachtiar, E.V.; Ribera, J.; Heeb, M.; Schwarze, F.W.M.R.; Burgert, I. Non-biocidal preservation of wood against brown-rot fungi with TiO2/Ce Xerogel. Green Chem. 2018, 20, 1375–1382. [Google Scholar] [CrossRef]
- Sun, F.; Ma, L.; Chen, A.; Duan, X. Mould-resistance of bamboo treated with the compound of chitosan-copper complex and organic fungicides. J. Wood Sci. 2012, 58, 51–56. [Google Scholar] [CrossRef]
- Xu, G.; Wang, L.; Liu, J.; Hu, S. Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract. Int. Biodeter. Biodegr. 2013, 78, 103–107. [Google Scholar] [CrossRef]
- Li, J.; Hui, Y.; Wu, Z.; Jin, W.; Sheng, H.; Jian, J.; Li, N.; Bao, Y.; Huang, C.; Chen, Z. Room temperature synthesis of crystalline anatase TiO2 on bamboo timber surface and their short-term antifungal capability under natural weather conditions. Colloid. Surface. Asp. 2016, 508, 117–123. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Bao, Y.; Chen, Y.; Huang, C.; Li, N.; Sheng, H.; Chen, Z. Wet chemical synthesis of ZnO nanocoating on the surface of bamboo timber with improved mould-resistance. J. Saudi Chem. Soc. 2017, 21, 920–928. [Google Scholar] [CrossRef]
- Li, J.; Ren, D.; Wu, Z.; Huang, C.; Yang, H.; Chen, Y.; Hui, Y. Visible-light-mediated antifungal bamboo based on Fe-doped TiO2 thin films. RSC Adv. 2017, 7, 55131–55140. [Google Scholar] [CrossRef]
- Ren, D.; Li, J.; Bao, Y.; Wu, Z.; He, S.; Wang, A.; Guo, F.; Chen, Y. Low-temperature synthesis of flower-like ZnO microstructures supported on TiO2 thin films as efficient antifungal coatings for bamboo protection under dark conditions. Colloid. Surface. Ase. 2018, 555, 381–388. [Google Scholar] [CrossRef]
- Ren, D.; Li, J.; Xu, J.; Wu, Z.; Chen, Y. Efficient Antifungal and Flame-Retardant Properties of ZnO-TiO2-Layered Double-Nanostructures Coated on Bamboo Substrate. Coatings 2018, 8, 341. [Google Scholar] [CrossRef]
- Ales, P.; Milan, K.; Renata, V.; Robert, P.; Jana, S.; Vladimír, K.; Petr, H.; Radek, Z.; Libor, K. Antifungal activity of silver nanoparticles against Candida spp. Biomater. 2009, 30, 6333–6340. [Google Scholar]
- Liong, M.; France, B.; Bradley, K.A.; Zink, J.I. Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Adv. Mater. 2010, 21, 1684–1689. [Google Scholar] [CrossRef]
- Svitlana, C.; Matthias, E. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Edit. 2013, 44, 1636–1653. [Google Scholar]
- Mohammad, K.A.; Yazdanshenas, M.E. Superhydrophobic antibacterial cotton textiles. J. Colloid Inter. Sci. 2010, 351, 293–298. [Google Scholar]
- Kim, M.; Byun, J.W.; Shin, D.S.; Lee, Y.S. Spontaneous formation of silver nanoparticles on polymeric supports. Mater. Res. Bull. 2009, 44, 334–338. [Google Scholar] [CrossRef]
- Shah, M.S.A.S.; Nag, M.; Kalagara, T.; Singh, S.; Manorama, S.V. Silver on PEG-PU-TiO2 Polymer Nanocomposite Films: An Excellent System for Antibacterial Applications. Chem. Mater. 2008, 20, 2455–2460. [Google Scholar] [CrossRef]
- Tian, Y.; Qi, J.; Zhang, W.; Cai, Q.; Jiang, X. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 12038–12045. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, Z.; Lu, Y.; Lv, L.; Ning, Y.; Yu, H.; Hou, Y.; Yin, Y. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano. Lett. 2013, 13, 5698–5702. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, L.; Luo, Y.-f.; Jia, D.-m. In-situ preparation of epoxy/silver nanocomposites by thermal decomposition of silver–imidazole complex. Mater. Lett. 2011, 65, 3529–3532. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, Y.; Li, P.; Tu, W.; Tang, L.; Ye, J.; Zou, Z. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 2016, 8, 11870–11874. [Google Scholar] [CrossRef]
- Xin, T.; Zhou, Z.K.; Gang, L.; Shen, B.; Kang, P.D.; Jian, L.; Qi, L.; Pei, F.X. High-Value Utilization of Lignin to Synthesize Ag Nanoparticles with Detection Capacity for Hg2+. ACS Appl. Mater. Interfaces 2014, 6, 16147–16155. [Google Scholar]
- El Mansouri, N.E.; Salvadó, J. Analytical methods for determining functional groups in various technical lignins. Ind. Crop. Prod. 2007, 26, 116–124. [Google Scholar] [CrossRef]
- Chen, F.; Gong, A.S.; Zhu, M.; Chen, G.; Lacey, S.D.; Feng, J.; Li, Y.; Wang, Y.; Dai, J.; Yao, Y. Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS Nano 2017, 11, 4275–4282. [Google Scholar] [CrossRef]
- Ji, T.; Long, C.; Schmitz, M.; Bao, F.S.; Zhu, J. Hierarchical Macrotube/Mesopore Carbon Decorated with Mono-dispersed Ag Nanoparticles as Highly Active Catalyst. Green Chem. 2015, 17, 2515–2523. [Google Scholar] [CrossRef]
- Jin, C.; Yao, Q.; Li, J.; Fan, B.; Sun, Q. Fabrication, superhydrophobicity, and microwave absorbing properties of the magnetic γ-Fe2O3/bamboo composites. Mater. Design 2015, 85, 205–210. [Google Scholar] [CrossRef]
- Strassberger, Z.; Prinsen, P.; van der Klis, F.; van Es, D.S.; Tanase, S.; Rothenberg, G. Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem. 2015, 17, 325–334. [Google Scholar] [CrossRef]
- Owen, N.L.; Pawlak, Z. An infrared study of the effect of liquid ammonia on wood surfaces. J. Mol. Struct. 1989, 198, 435–449. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 2011, 3, 3357–3363. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gong, Q.; Zhu, Y.; Liang, J. Preparation and photocatalytic properties of silver nanoparticles loaded on CNTs/TiO2 composite. Appl. Surf. Sci. 2009, 255, 8063–8066. [Google Scholar] [CrossRef]
- Cai, Q.; Fan, Z.; Chen, J.; Guo, W.; Ma, F.; Sun, S.; Hu, L.; Zhou, Q. Dissolving process of bamboo powder analyzed by FT-IR spectroscopy. J. Mol. Struct. 2018, 1171, 639–643. [Google Scholar] [CrossRef]
- Li, J.; Ren, D.; Wu, Z.; Xu, J.; Bao, Y.; He, S.; Chen, Y. Flame retardant and visible light-activated Fe-doped TiO2 thin films anchored to wood surfaces for the photocatalytic degradation of gaseous formaldehyde. J. Colloid Interf. Sci. 2018, 530, 78–87. [Google Scholar] [CrossRef]
- Liu, S.; Sun, X.; Li, J.G.; Li, X.; Xiu, Z.; Huo, D. Synthesis of Dispersed Anatase Microspheres with Hierarchical Structures via Homogeneous Precipitation. Eur. J. Inorg. Chem. 2009, 2009, 1214–1218. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Chen, J.; Li, J.-G.; Li, X.; Sun, X.; Dong, Y. Foamed single-crystalline anatase nanocrystals exhibiting enhanced photocatalytic activity. J. Mater. Chem. A 2015, 3, 17837–17848. [Google Scholar] [CrossRef]
- Li, Z.; Jia, Z.; Ni, T.; Li, S. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction. Appl. Surf. Sci. 2017, 426, 160–168. [Google Scholar] [CrossRef]
- Tolba, R.; Tian, M.; Wen, J.; Jiang, Z.-H.; Chen, A. Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J. Electroanal. Chem. 2010, 649, 9–15. [Google Scholar] [CrossRef]
- Li, M.; Noriega-Trevino, M.E.; Nino-Martinez, N.; Marambio-Jones, C.; Wang, J.; Damoiseaux, R.; Ruiz, F.; Hoek, E.M. Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ. Sci. Technol. 2011, 45, 8989–8995. [Google Scholar] [CrossRef]
- Jin, Y.; Dai, Z.; Liu, F.; Kim, H.; Tong, M.; Hou, Y. Bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions. Water Res. 2013, 47, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Geng, L.; Yu, Y.; Zhang, Y.; Zhao, B.; Zhang, S.; Zhao, Q. Reduction of bacterial adhesion on Ag-TiO2 coatings. Mater. Lett. 2018, 218, 334–336. [Google Scholar] [CrossRef]
- Perkas, N.; Lipovsky, A.; Amirian, G.; Nitzan, Y.; Gedanken, A. Biocidal properties of TiO2 powder modified with Ag nanoparticles. J. Mater. Chem. B 2013, 1, 5309–5316. [Google Scholar] [CrossRef]
- Esfandiari, N.; Simchi, A.; Bagheri, R. Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants. J. Biomed. Mater. Res. A 2014, 102, 2625–2635. [Google Scholar] [CrossRef]
Sample | SBET/m2 g−1 | dP/nm | VP/cm3 g−1 |
---|---|---|---|
MTB-2 | 55.8 | 3.1 | 0.04 |
MTB-4 | 65.4 | 2.5 | 0.04 |
MTB-6 | 65.0 | 2.5 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Su, M.; Wang, A.; Wu, Z.; Chen, Y.; Qin, D.; Jiang, Z. In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity. Int. J. Mol. Sci. 2019, 20, 5497. https://doi.org/10.3390/ijms20215497
Li J, Su M, Wang A, Wu Z, Chen Y, Qin D, Jiang Z. In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity. International Journal of Molecular Sciences. 2019; 20(21):5497. https://doi.org/10.3390/ijms20215497
Chicago/Turabian StyleLi, Jingpeng, Minglei Su, Anke Wang, Zaixing Wu, Yuhe Chen, Daochun Qin, and Zehui Jiang. 2019. "In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity" International Journal of Molecular Sciences 20, no. 21: 5497. https://doi.org/10.3390/ijms20215497
APA StyleLi, J., Su, M., Wang, A., Wu, Z., Chen, Y., Qin, D., & Jiang, Z. (2019). In Situ Formation of Ag Nanoparticles in Mesoporous TiO2 Films Decorated on Bamboo via Self-Sacrificing Reduction to Synthesize Nanocomposites with Efficient Antifungal Activity. International Journal of Molecular Sciences, 20(21), 5497. https://doi.org/10.3390/ijms20215497