Curcumin Ameliorates Benzo[a]pyrene-Induced DNA Damages in Stomach Tissues of Sprague-Dawley Rats
Abstract
:1. Introduction
2. Results
2.1. Changes in Body Weight, Organ Weights, and Blood Biochemistry
2.2. Effect of Curcumin on Formation of BaP and its Metabolites in Serum of Rats
2.3. Effect of Curcumin on Expression of Hepatic CYPs in Rats
2.4. Effect of Curcumin on BaP-Induced DNA Damage in Rats
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animal Experiments
4.3. Biochemical Parameters in Serum
4.4. Determination of the BaP and BaP Metabolites in Plasma
4.4.1. LC/MS/MS Analysis
4.4.2. Preparation of Stock Solution and Standard Solution
4.4.3. Sample Preparation
4.4.4. Calibration Curve
4.5. Protein Preparation and Western Blot Analysis
4.6. Quantitation of BPDE-DNA Adducts
4.7. Determination of 8-hydroxydeoxyguanosine
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Fan, R.; Lu, S.; Zhang, D.; Zhou, Y.; Lv, Y. Exposure to polycyclic aromatic hydrocarbons could cause their oxidative DNA damage: A case study for college students in Guangzhou, China. Environ. Sci. Pollut. Res. Int. 2015, 22, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Boström, C.E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar]
- Juhasz, A.L.; Naidu, R. Biodegradation, Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Bioderg. 2000, 45, 57–88. [Google Scholar] [CrossRef]
- Knuckles, M.E.; Inyang, F.; Ramesh, A. Acute and subchronic oral toxicities of benzo[a]pyrene in F-344 rats. Toxicol. Sci. 2001, 61, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F.; Brown, J.P.; Alexeeff, G.V.; Salmon, A.G. Pharmacology, potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol. 1998, 28, 45–54. [Google Scholar] [CrossRef]
- Alomirah, H.; Al-Zenki, S.; Al-Hooti, S.; Zaghloul, S.; Sawaya, W.; Ahmed, N.; Kannan, K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 2011, 22, 2028–2035. [Google Scholar] [CrossRef]
- Waldman, J.M.; Lioy, P.J.; Greenberg, A.; Butler, J.P. Analysis of human exposure to benzo (a) pyrene via inhalation and food ingestion in the Total Human Environmental Exposure Study (THEES). J. Expo. Anal. Environ. Epideminol. 1991, 1, 193–225. [Google Scholar]
- Chien, Y.C.; Yeh, C.T. Excretion kinetics of urinary 3-hydroxybenzo[a]pyrene following dietary exposure to benzo a pyrene in humans. Arch. Toxicol. 2012, 86, 45–53. [Google Scholar] [CrossRef]
- Culp, S.J.; Gaylor, D.W.; Sheldon, W.G.; Goldstein, L.S.; Beland, F.A. A comparison of the tumors induced by coal tar and benzo [a] pyrene in a 2-year bioassay. Carcinogenesis 1998, 19, 117–124. [Google Scholar] [CrossRef]
- Trédaniel, J.; Boffetta, P.; Buiatti, E.; Saracci, R.; Hirsch, A. Tobacco smoking and gastric cancer: Review and meta-analysis. Int. J. Cancer 1997, 72, 565–573. [Google Scholar] [CrossRef]
- Sjödahl, K.; Jansson, C.; Bergdahl, I.A.; Adami, J.; Boffetta, P.; Lagergren, J. Airborne exposures and risk of gastric cancer: A prospective cohort study. Int. J. Cancer 2007, 120, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Dungal, N.; Sigurjónsson, J. Gastric cancer and diet. A pilot study on dietary habits in two districts differing markedly in respect of mortality from gastric cancer. Br. J. Cancer 1967, 21, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Wogan, G.N.; Hecht, S.S.; Felton, J.S.; Conney, A.H.; Loeb, L.A. Environmental and chemical carcinogenesis, Semin. Cancer Biol. 2004, 14, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Khan, W.A.; Mukhtar, H. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res. 1989, 49, 5784–5788. [Google Scholar]
- Vauhkonen, M.; Kuusi, T.; Kinnunen, P.K. Serum and tissue distribution of benzo[a]pyrene from intravenously injected chylomicrons in rat in vivo. Cancer Lett. 1980, 11, 113–119. [Google Scholar] [CrossRef]
- Withey, J.R.; Shedden, J.; Law, F.C.; Abedini, S. Distribution of benzo a pyrene in pregnant rats following inhalation exposure and a comparison with similar data obtained with pyrene. J. Appl. Toxicol. 1993, 13, 193–202. [Google Scholar] [CrossRef]
- Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 2006, 24, 2137–2150. [Google Scholar] [CrossRef]
- Nagini, S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J. Gastroint. Oncol. 2012, 4, 156–169. [Google Scholar] [CrossRef]
- Resende, C.; Ristimäki, A.; Machado, J.C. Genetic and epigenetic alteration in gastric carcinogenesis. Helicobacter 2010, 15, 34–39. [Google Scholar] [CrossRef]
- Shi, J.; Qu, Y.P.; Hou, P. Pathogenetic mechanisms in gastric cancer. World J. Gastroenterol. 2014, 20, 13804–13819. [Google Scholar] [CrossRef]
- Wattenberg, L.W. Inhibitory effects of benzyl isothiocyanate administered shortly before diethyl- nitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 1987, 8, 1971–1973. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.; Pantazis, P.; McQueen, T.; Aggarwal, B.B. Antiproliferative effect of curcumin (diferuloyl- methane) against human breast tumor cell lines. Anticancer Drugs 1997, 8, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, H.; Ishiko, T.; Furuhashi, T.; Kamohara, H.; Suzuki, S.; Miyazaki, M.; Ikeda, O.; Mita, S.; Setoguchi, T.; Ogawa, M. Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface: Impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 2002, 95, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Xu, J.; Johnson, C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006, 25, 278–288. [Google Scholar] [CrossRef]
- Park, W.; Amin, A.R.; Chen, Z.G.; Shin, D.M. New perspectives of curcumin in cancer prevention. Cancer Prev. Res. 2013, 6, 387–400. [Google Scholar] [CrossRef]
- Sarkar, A.; De, R.; Mukhopadhyay, A.K. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J. Gastroenterol. 2016, 22, 2736–2748. [Google Scholar] [CrossRef]
- Singh, S.V.; Hu, X.; Srivastava, S.K.; Singh, M.; Xia, H.; Orchard, J.L.; Zaren, H.A. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 1998, 19, 1357–1360. [Google Scholar] [CrossRef]
- Azuine, M.A.; Kayal, J.J.; Bhide, S.V. Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [alpha] pyrene-induced genotoxicity and carcinogenicity. J. Cancer Res. Clin. Oncol. 1992, 118, 447–452. [Google Scholar] [CrossRef]
- Huang, M.T.; Ma, W.; Lu, Y.P.; Chang, R.L.; Fisher, C.; Manchand, P.S.; Newmark, H.L.; Conney, A.H. Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate induced tumor promotion. Carcinogenesis 1995, 16, 2493–2497. [Google Scholar] [CrossRef]
- Strimpakos, A.S.; Sharma, R.A. Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Signal. 2008, 10, 511–546. [Google Scholar] [CrossRef]
- Do, M.T.; Kim, H.G.; Tran, T.T.P.; Khanal, T.; Choi, J.H.; Chung, Y.C.; Jeong, T.C.; Jeong, H.G. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression. Toxicol. Appl. Pharmacol. 2014, 280, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Gelboin, H.V. Benzo[α]pyrene metabolism, activation and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes. Physiol. Rev. 1980, 60, 1107–1166. [Google Scholar] [CrossRef] [PubMed]
- Schoket, B.; Papp, G.; Lévay, K.; Mracková, G.; Kadlubar, F.F.; Vincze, I. Impact of metabolic genotypes on levels of biomarkers of genotoxic exposure. Mutat. Res. 2001, 482, 57–69. [Google Scholar] [CrossRef]
- Lee, B.M.; Shim, G.A. Dietary exposure estimation of benzo[a]pyrene and cancer risk assessment. J. Toxicol. Environ. Health A 2007, 70, 1391–1394. [Google Scholar] [CrossRef]
- Kwack, S.J.; Lee, B.M. Correlation between DNA or protein adducts and benzo[a]pyrene diol epoxide I–triglyceride adduct detected in vitro and in vivo. Carcinogenesis 2000, 21, 629–632. [Google Scholar] [CrossRef]
- Halappanavar, S.; Wu, D.; Williams, A.; Kuo, B.; Godschalk, R.W.; Van Schooten, F.J.; Yauk, C.L. Pulmonary gene and microRNA expression changes in mice exposed to benzo(a)pyrene by oral gavage. Toxicology 2011, 285, 133–141. [Google Scholar] [CrossRef]
- Penning, T.M.; Ohnishi, S.T.; Ohnishi, T.; Harvey, R.G. Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase. Chem. Res. Toxicol. 1996, 9, 84–92. [Google Scholar] [CrossRef]
- Buening, M.K.; Wislocki, P.G.; Levin, W.; Yagi, H.; Thakker, D.R.; Akagi, H.; Koreeda, M.; Jerina, D.M.; Conney, A.H. Tumorigenicity of the optical enantiomers of the diastereomeric benzo[a]pyrene 7, 8-diol-9, 10-epoxides in newborn mice: Exceptional activity of (+)-7β, 8α-dihydroxy-9α, 10α-epoxy-7, 8, 9, 10-tetrahydrobenzo[a]pyrene. Proc. Natl. Acad. Sci. USA 1978, 75, 5358–5361. [Google Scholar] [CrossRef]
- Slaga, T.J.; Bracken, W.J.; Gleason, G.; Levin, W.; Yagi, H.; Jerina, D.M.; Conney, A.H. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo(a)pyrene 7, 8-diol-9, 10-epoxides. Cancer Res. 1979, 39, 67–71. [Google Scholar]
- Kasai, H.; Nishimura, S.; Kurokawa, Y.; Hayashi, Y. Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis 1987, 8, 1959–1961. [Google Scholar] [CrossRef]
- Hakura, A.; Tsutsui, Y.; Sonoda, J.; Kai, J.; Imade, T.; Shimada, M.; Sugihara, Y.; Mikami, T. Comparison between in vivo mutagenicity and carcinogenicity in multiple organs by benzo[a]pyrene in the lacZ transgenic mouse (Muta Mouse). Mutat. Res. 1998, 398, 123–130. [Google Scholar] [CrossRef]
- Sehgal, A.; Kumar, M.; Jain, M.; Dhawan, D.K. Modulatory effects of curcumin in conjunction with piperine on benzo(a)pyrene-mediated DNA adducts and biotransformation enzymes. Nutr. Cancer 2013, 65, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Cromie, M.M.; Cai, Q.; Lv, T.; Singh, K.; Gao, W. Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS ONE 2014, 9, e92992. [Google Scholar] [CrossRef] [PubMed]
- Revel, A.; Raanani, H.; Younglai, E.; Xu, J.; Han, R.; Savouret, J.F.; Casper, R.F. Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects sperm from DNA damage and apoptosis caused by benzo(a) pyrene. Reprod. Toxicol. 2001, 15, 479–486. [Google Scholar] [CrossRef]
- Mohamed, E.-S.A.; Song, W.H.; Oh, S.A.; Park, Y.J.; You, Y.A.; Lee, S.; Choi, J.Y.; Kim, Y.J.; Jo, I.; Pang, M.G. The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum. Reprod. 2010, 25, 2427–2433. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Dragin, N.; Galvez-Peralta, M.; Jorge-Nebert, L.F.; Miller, M.L.; Wang, B.; Nebert, D.W. Organ-specific roles of CYP1A1 during detoxication of dietary benzo[a]pyrene. Mol. Pharmacol. 2010, 78, 46–57. [Google Scholar] [CrossRef]
- Cai, Y.; Lv, J.; Zhang, W.; Zhang, L. Dietary exposure estimates of 16 polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, counties in a high lung cancer incidence area in China. J. Environ. Monit. 2012, 14, 886–892. [Google Scholar] [CrossRef]
- Martorell, I.; Nieto, A.; Nadal, M.; Perelló, G.; Marcé, R.M.; Domingo, J.L. Human exposure to polycyclic aromatic hydrocarbons (PAHs) using data from a duplicate diet study in Catalonia, Spain. Food Chem. Toxicol. 2012, 50, 4103–4108. [Google Scholar] [CrossRef]
Groups | Organ Weights (g) | ||||
---|---|---|---|---|---|
Liver | Kidney | Stomach | Spleen | Testis | |
Control | 3.6 ± 0.11 | 0.35 ± 0.01 | 0.52 ± 0.02 | 0.19 ± 0.01 | 0.39 ± 0.01 |
BaP (20 mg/kg) | 3.8 ± 0.10 | 0.35 ± 0.01 | 0.53 ± 0.03 | 0.23 ± 0.01 | 0.43 ± 0.02 |
BaP + Cur. (50 mg/kg) | 3.2 ± 0.07 * | 0.34± 0.01 | 0.48 ± 0.03 | 0.20 ± 0.01 | 0.39 ± 0.01 |
BaP + Cur. (100 mg/kg) | 3.1 ± 0.09 * | 0.33 ± 0.02 | 0.54 ± 0.04 | 0.21 ± 0.01 | 0.42 ± 0.01 |
BaP + Cur. (200 mg/kg) | 2.9 ± 0.09 * | 0.36 ± 0.01 | 0.55 ± 0.02 | 0.21 ± 0.02 | 0.42 ± 0.02 |
Groups | Biochemical Parameters | |||
---|---|---|---|---|
ALT (U/L) | AST (U/L) | BUN (mg/dL) | Glucose (mg/dL) | |
Control | 53.0 ± 3.3 | 120.2 ± 8.0 | 11.9 ± 0.3 | 134.67 ± 7.4 |
BaP (20 mg/kg) | 61.4 ± 2.1 * | 144.4 ± 8.4 * | 20.7 ± 1.8 * | 184.65 ± 6.8 * |
BaP + Cur (50 mg/kg) | 54.3 ± 6.0 | 127.6 ± 8.5 | 15.4 ± 0.7 | 144.1 ± 10.1 |
BaP + Cur (100 mg/kg) | 45.9 ± 5.8 # | 121.2 ± 5.9 # | 12.9 ± 1.1 ## | 115.0 ± 14.9 ## |
BaP + Cur (200 mg/kg) | 36.7 ± 1.9 ## | 122.0 ± 6.2 # | 12.0 ± 0.3 ## | 104.8 ± 8.3 ## |
Groups | Control | BaP | BaP + Cur (50 mg/kg) | BaP + Cur (100 mg/kg) | BaP + Cur (200 mg/kg) |
---|---|---|---|---|---|
No. of animals examined | 6 | 6 | 6 | 6 | 6 |
Liver | |||||
No. of specific lesions | 5 | 0 | 2 | 2 | 2 |
Cell infiltration, mononuclear cells, multifocal cells | 1 | 6 | 4 | 4 | 4 |
Minimum | 1 | 6 | 4 | 3 | 4 |
Mild | 0 | 0 | 0 | 1 | 0 |
Kidney | |||||
No. of specific lesions | 4 | 1 | 4 | 4 | 6 |
Focal nephropathy | 2 | 5 | 2 | 1 | 0 |
Minimum | 0 | 5 | 2 | 1 | 0 |
Cell infiltration, lymphocytic | 0 | 0 | 0 | 0 | 0 |
Minimum | 0 | 0 | 0 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S.; Kim, N.Y.; Son, J.Y.; Park, J.H.; Lee, S.H.; Kim, H.R.; Kim, B.; Kim, Y.G.; Jeong, H.G.; Lee, B.M.; et al. Curcumin Ameliorates Benzo[a]pyrene-Induced DNA Damages in Stomach Tissues of Sprague-Dawley Rats. Int. J. Mol. Sci. 2019, 20, 5533. https://doi.org/10.3390/ijms20225533
Kim KS, Kim NY, Son JY, Park JH, Lee SH, Kim HR, Kim B, Kim YG, Jeong HG, Lee BM, et al. Curcumin Ameliorates Benzo[a]pyrene-Induced DNA Damages in Stomach Tissues of Sprague-Dawley Rats. International Journal of Molecular Sciences. 2019; 20(22):5533. https://doi.org/10.3390/ijms20225533
Chicago/Turabian StyleKim, Kyeong Seok, Na Yoon Kim, Ji Yeon Son, Jae Hyeon Park, Su Hyun Lee, Hae Ri Kim, Boomin Kim, Yoon Gyoon Kim, Hye Gwang Jeong, Byung Mu Lee, and et al. 2019. "Curcumin Ameliorates Benzo[a]pyrene-Induced DNA Damages in Stomach Tissues of Sprague-Dawley Rats" International Journal of Molecular Sciences 20, no. 22: 5533. https://doi.org/10.3390/ijms20225533
APA StyleKim, K. S., Kim, N. Y., Son, J. Y., Park, J. H., Lee, S. H., Kim, H. R., Kim, B., Kim, Y. G., Jeong, H. G., Lee, B. M., & Kim, H. S. (2019). Curcumin Ameliorates Benzo[a]pyrene-Induced DNA Damages in Stomach Tissues of Sprague-Dawley Rats. International Journal of Molecular Sciences, 20(22), 5533. https://doi.org/10.3390/ijms20225533