Key Factors for a One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid
Abstract
:1. Introduction and Motivation
2. Results and Discussion
2.1. Enzyme Production
2.2. Characterization of AtGlcAK, AtUSP, and PmPpA in the EM UDP–GlcA
2.3. Characterization of the EM UDP–GlcA
2.4. One-Pot Synthesis: Combination of the EM UDP–GlcA with the EM HA
2.5. One-Pot Synthesis: Combination of EM UDP–GlcA and EM UDP–GlcNAc with EM HA
2.6. Influence of pH on the One-Pot Synthesis of HA
2.7. Influence of Magnesium on the One-Pot Synthesis of HA
2.8. Comparison with Industrial Production Processes
3. Materials and Methods
3.1. Enzyme Production
3.1.1. Cloning of Recombinant Genes
3.1.2. Transformation and Cultivation
3.1.3. Enzyme Purification
3.2. Enzyme Assays
3.2.1. Activity Assays
3.2.2. Kinetic Assays
3.2.3. One-Pot Syntheses with the EM UDP–GlcA and Whole Cascade
3.3. Analysis of Enzymatic Syntheses
3.3.1. Multiplexed Capillary Electrophoresis (MP-CE) Analysis
3.3.2. Phosphate Assay Kit
3.4. Analysis of Hyaluronic Acid
3.4.1. Agarose Gel Electrophoresis
3.4.2. CTAB Turbidimetric Method (CTM)
3.4.3. Size-Exclusion Chromatography with Right-Angle/Low-Angle Light Scattering (SEC-RALS/LALS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
AMP | Adenosine monophosphate |
AtGlcAK | Glucuronic acid kinase from Arabidopsis thaliana |
ATP | Adenosine triphosphate |
AtUSP | UDP–sugar pyrophosphorylase from Arabidopsis thaliana |
BlNahK | GlcNAc-1-phosphate kinase from Bifidobacterium longum |
CAPSO | 3-(Cyclohexylamino)-1-propanesulfonic acid |
CjGlmU | UDP–GlcNAc pyrophosphorylase from Campylobacter jejuni |
CTAB | Cetyltrimethylammonium bromide |
CTM | CTAB turbidimetric method |
EM | Enzyme module |
GlcA | Glucuronic acid |
GlcNAc | N-acetylglucosamine |
HA | Hyaluronic acid |
HCl | Hydrogen chloride |
HEPES | 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid |
IMAC | Immobilized metal affinity chromatography |
IPTG | Isopropyl β-d-1-thiogalactopyranoside |
K+ | Potassium cation |
MES | 2-Morpholin-4-ylethanesulfonic acid |
Mg2+ | Magnesium cation |
Mn2+ | Manganese cation |
MOPS | 3-Morpholinopropane-1-sulfonic acid |
MP-CE | Multiplexed capillary electrophoresis |
MW | Molecular weight |
NaOH | Sodium hydroxide |
PABA | para-Aminobenzoic acid |
PAPA | para-Aminophthalic acid |
PBS | Phosphate-buffered saline |
Pi | Inorganic phosphate |
PmHAS | Hyaluronan synthase from Pasteurella multocida |
PmPpA | Pyrophosphatase from Pasteurella multocida |
PPi | Inorganic Pyrophosphate |
SDS-PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
SEC-RALS/LALS | Size-Exclusion Chromatography with Right-Angle/Low-Angle Light Scattering |
SzGlmU | UDP–GlcNAc pyrophosphorylase from Streptococcus zooepidemicus |
TRIS | 2-Amino-2-(hydroxymethyl)propane-1,3-diol |
UDP | Uridine diphosphate |
UMP | Uridine monophosphate |
UTP | Uridine triphosphate |
UV | Ultraviolet |
References
- Laurent, T.C.; Laurent, U.B.G.; Fraser, J.R.E. Functions of hyaluronan. Ann. Rheum. Dis. 1995, 54, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.R.E.; Laurent, T.C.; Laurent, U.B.G. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic acid in the third millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, P.L. Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell. Mol. Life Sci. 1999, 56, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Parashar, P.; Rathor, M.; Dwivedi, M.; Saraf, S.A. Hyaluronic acid decorated naringenin nanoparticles: Appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics 2018, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Rannou, F.; Richette, P.; Bruyère, O.; Al-Daghri, N.; Altman, R.D.; Brandi, M.L.; Collaud Basset, S.; Herrero-Beaumont, G.; Migliore, A.; et al. Use of intraarticular hyaluronic acid in the management of knee osteoarthritis in clinical practice. Arthritis Care Res. 2017, 69, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Maytin, E.V. Hyaluronan: more than just a wrinkle filler. Glycobiology 2016, 26, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.H. Use of hyaluronic acid fillers for the treatment of the aging face. Clin. Interv. Aging 2007, 2, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Hemshekhar, M.; Thushara, R.M.; Chandranayaka, S.; Sherman, L.S.; Kemparaju, K.; Girish, K.S. Emerging Roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2016, 86, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Research, G.V. Hyaluronic acid market size worth USD 15. Available online: https://www.grandviewresearch.com/press-release/global-hyaluronic-acid-market (accessed on 26 November 2018).
- Sze, J.H.; Brownlie, J.C.; Love, C.A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 2016, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; DeAngelis, P.L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J. Biol. Chem. 2004, 279, 42345–42349. [Google Scholar] [CrossRef] [PubMed]
- Cyphert, J.M.; Trempus, C.S.; Garantziotis, S. Size matters: Molecular weight specificity of hyaluronan effects in cell biology. Int. J. Cell Biol. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, P.L. Monodisperse hyaluronan polymers: Synthesis and potential applications. Curr. Pharm. Biotechnol. 2008, 9, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb. Cell Fact. 2011, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; DeAngelis, P.L. Dissection of the two transferase activities of the pasteurella multocida hyaluronan synthase: Two active sites exist in one polypeptide. Glycobiology 2000, 10, 883–889. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, P.L.; Jing, W.; Drake, R.R.; Achyuthan, A.M. Identification and molecular cloning of a unique hyaluronan synthase from pasteurella multocida. J. Biol. Chem. 1998, 273, 8454–8458. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, P.L. Molecular directionality of polysaccharide polymerization by the pasteurella multocida hyaluronan synthase. J. Biol. Chem. 1999, 274, 26557–26562. [Google Scholar] [CrossRef] [PubMed]
- Jing, W. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 2003, 13, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Kooy, F.K.; Beeftink, H.H.; Eppink, M.H.M.; Tramper, J.; Eggink, G.; Boeriu, C.G. Kinetic and structural analysis of two transferase domains in Pasteurella multocida hyaluronan synthase. J. Mol. Catal. B Enzym. 2014, 102, 138–145. [Google Scholar] [CrossRef]
- Kooy, F.K.; Beeftink, H.H.; Eppink, M.H.M.; Tramper, J.; Eggink, G.; Boeriu, C.G. Structural and functional evidence for two separate oligosaccharide binding sites of Pasteurella multocida hyaluronan synthase. Adv. Enzym. Res. 2013, 01, 97–111. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Fu, X.; Liu, X.W.; Wang, P.G.; Fang, J. Sequential one-pot multienzyme synthesis of hyaluronan and its derivative. Carbohydr. Polym. 2017, 178, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Fang, J.; Li, T.; Li, X.; Ma, C.; Wang, X.; Wang, P.G.; Li, L. Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA. Carbohydr. Res. 2015, 411, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kotake, T.; Hojo, S.; Yamaguchi, D.; Aohara, T.; Konishi, T.; Tsumuraya, Y. Properties and physiological functions of UDP-sugar pyrophosphorylase in Arabidopsis. Biosci. Biotechnol. Biochem. 2007, 71, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M.M.; Wong, D.; Huang, R.; Chen, X. Highly efficient chemoenzymatic synthesis of Β1–4-Linked galactosides with promiscuous bacterial Β1–4-galactosyltransferases. Chem. Commun. 2010, 46, 6066. [Google Scholar] [CrossRef] [PubMed]
- Litterer, L.A.; Schnurr, J.A.; Plaisance, K.L.; Storey, K.K.; Gronwald, J.W.; Somers, D.A. Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol. Biochem. 2006, 44, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J.; et al. Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP). Bioorg. Med. Chem. Lett. 2013, 23, 3764–3768. [Google Scholar] [CrossRef] [PubMed]
- Muthana, M.M.; Qu, J.; Xue, M.; Klyuchnik, T.; Siu, A.; Li, Y.; Zhang, L.; Yu, H.; Li, L.; Wang, P.G.; et al. Improved one-pot multienzyme (OPME) systems for synthesizing UDP-Uronic acids and glucuronides. Chem. Commun. 2015, 51, 4595–4598. [Google Scholar] [CrossRef] [PubMed]
- Pieslinger, A.M.; Hoepflinger, M.C.; Tenhaken, R. Cloning of glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the Myo-Inositol oxygenase pathway to nucleotide sugars. J. Biol. Chem. 2010, 285, 2902–2910. [Google Scholar] [CrossRef] [PubMed]
- Eisele, A.; Zaun, H.; Kuballa, J.; Elling, L. In vitro one-pot enzymatic synthesis of hyaluronic acid from sucrose and N-Acetylglucosamine: Optimization of the Enzyme Module System and Nucleotide Sugar Regeneration. ChemCatChem 2018, 10, 2969–2981. [Google Scholar] [CrossRef]
- Nishimoto, M.; Kitaoka, M. Identification of N-Acetylhexosamine 1-Kinase in the complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444–6449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Thon, V.; Li, Y.; Yu, H.; Ding, L.; Lau, K.; Qu, J.; Hie, L.; Chen, X. One-pot three-enzyme synthesis of UDP-GlcNAc Derivatives. Chem. Commun. 2011, 47, 10815. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Yu, H.; Sugiarto, G.; Thon, V.; Hwang, J.; Ding, L.; Hie, L.; Chen, X. Tailored design and synthesis of heparan sulfate oligosaccharide analogues using sequential one-pot multienzyme systems. Angew. Chem. Int. Ed. 2013, 52, 11852–11856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahl, C.; Hirtz, D.; Elling, L. Multiplexed capillary electrophoresis as analytical tool for fast optimization of multi-enzyme cascade reactions—Synthesis of nucleotide sugars. Biotechnol. J. 2016, 11, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Kotake, T.; Yamaguchi, D.; Ohzono, H.; Hojo, S.; Kaneko, S.; Ishida, H.; Tsumuraya, Y. UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-Phosphates from pea sprouts. J. Biol. Chem. 2004, 279, 45728–45736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigma-Aldrich. Uridine 5′-triphosphate trisodium salt dihydrate ≥80% | Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/catalog/product/sigma/94370?lang=de®ion=DE&gclid=EAIaIQobChMIzIvUxKPG5AIVx6sYCh1WdAdfEAAYASAAEgKLtvD_BwE (accessed on 10 September 2019).
- DeAngelis, P.L. Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry 1996, 35, 9768–9771. [Google Scholar] [CrossRef] [PubMed]
- Nunez, H.A.; Barker, R. The metal ion catalyzed decomposition of nucleoside diphosphate sugars. Biochemistry 1976, 15, 3843–3847. [Google Scholar] [CrossRef] [PubMed]
- Jeske, L.; Placzek, S.; Schomburg, I.; Chang, A.; Schomburg, D. BRENDA in 2019: A european ELIXIR core data resource. Nucleic Acids Res. 2019, 47, D542–D549. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, D. BRENDA—Information on EC 2.7.1.43—Glucuronokinase. Available online: https://www.brenda-enzymes.org/enzyme.php?ecno=2.7.1.43#REF (accessed on 11 September 2019).
- Oria-Hernández, J.; Cabrera, N.; Pérez-Montfort, R.; Ramírez-Silva, L. Pyruvate Kinase Revisited. J. Biol. Chem. 2005, 280, 37924–37929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; Di Cera, E. Role of Na+ and K+ in enzyme function. Physiol. Rev. 2006, 86, 1049–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.H.; Kwok, F.; Chang, W.R.; Lau, C.K.; Zhang, J.P.; Lo, S.C.L.; Jiang, T.; Liang, D.C. Crystal structure of brain pyridoxal kinase, a novel member of the ribokinase superfamily. J. Biol. Chem. 2002, 277, 46385–46390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lainé-Cessac, P.; Allain, P. Kinetic Studies of the Effects of K+, Na+ and Li+ on the Catalytic Activity of Human Erythrocyte Pyridoxal Kinase. Enzym. Protein 1996, 49, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, S.; Ramachandran, K.B. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochem. Eng. J. 2010, 48, 148–158. [Google Scholar] [CrossRef]
- Chen, W.Y.; Marcellin, E.; Hung, J.; Nielsen, L.K. Hyaluronan molecular weight is controlled by UDP-N-Acetylglucosamine concentration in Streptococcus zooepidemicus. J. Biol. Chem. 2009, 284, 18007–18014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, J.Z.; Ling, P.X.; Zhu, X.Q.; Guo, X.P.; Zhang, T.M.; He, Y.L.; Wang, F.S. Use of induction promoters to regulate hyaluronan synthase and UDP-Glucose-6-Dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: A case study of the regulation mechanism of hyaluronic acid polymer. J. Appl. Microbiol. 2009, 107, 136–144. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, P.L.; Papaconstantinou, J.; Weigel, P.H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J. Biol. Chem. 1993, 268, 14568–14571. [Google Scholar] [PubMed]
- Weigel, P.H.; DeAngelis, P.L. Hyaluronan synthases: A decade-plus of novel glycosyltransferases. J. Biol. Chem. 2007, 282, 36777–36781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, L.M.; Hugenholtz, P.; Nielsen, L.K. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic Streptococci. J. Mol. Evol. 2008, 67, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.J.; Halkes, K.M.; Kamerling, J.P.; DeAngelis, P.L. Critical elements of oligosaccharide acceptor substrates for the Pasteurella multocida hyaluronan synthase. J. Biol. Chem. 2006, 281, 5391–5397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeriu, C.G.; Springer, J.; Kooy, F.K.; van den Broek, L.A.M.; Eggink, G. Production methods for hyaluronan. Int. J. Carbohydr. Chem. 2013, 2013, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chong, B.F.; Blank, L.M.; Mclaughlin, R.; Nielsen, L.K. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 2016, 15, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, P.V.; Ananthanarayan, L. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 2008, 43, 1019–1032. [Google Scholar] [CrossRef]
- Mandawe, J.; Infanzon, B.; Eisele, A.; Zaun, H.; Kuballa, J.; Davari, M.D.; Jakob, F.; Elling, L.; Schwaneberg, U. Directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high-molecular-weight hyaluronic acid. ChemBioChem 2018, 19, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Cowman, M.K. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal. Biochem. 1994, 219, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Di Ferrante, N. Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. J. Biol. Chem. 1956, 220, 303–306. [Google Scholar] [PubMed]
- Chen, Y.-H.; Wang, Q. Establishment of CTAB turbidimetric method to determine hyaluronic acid content in fermentation broth. Carbohydr. Polym. 2009, 78, 178–181. [Google Scholar] [CrossRef]
- Oueslati, N.; Leblanc, P.; Harscoat-Schiavo, C.; Rondags, E.; Meunier, S.; Kapel, R.; Marc, I. CTAB Turbidimetric method for assaying hyaluronic acid in complex environments and under cross-linked form. Carbohydr. Polym. 2014, 112, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Andexer, J.N.; Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem 2015, 16, 380–386. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Lansing, M.; Martini, I.; Crescenzi, F.; Shen, G.J.; O’Regan, M.; Wong, C.H. Enzymic synthesis of hyaluronic acid with regeneration of sugar nucleotides. J. Am. Chem. Soc. 1995, 117, 5869–5870. [Google Scholar] [CrossRef]
Kinetic Constants 1 | AtGlcAK | AtUSP | PmPpA |
---|---|---|---|
Vmax (U/mg) | GlcA: 7.70; ATPapp 2: 35.83 | Glc-1-P: 129.66 UTP: 156.33 | PPi, app 2: 668000 |
Km (mM) | GlcA: 0.62 ATPapp 2: 8.56 | Glc-1-P: 0.58 UTP: 0.44 | PPi, app 2: 3552.58 |
KiS (mM) | GlcA: - ATP: 2.87 | - | PPi, app 2: 0.0086 |
Gene | N-Terminal | C-Terminal |
---|---|---|
glcak | NdeI GGAATTCCATATGGAATTCC | XhoI CCGCTCGAGCGG |
usp | XhoI CCGCTCGAGCGG | BamHI CGGGATCCCG |
ppa | NdeI GGAATTCCATATGGAATTCC | XhoI CCGCTCGAGCGG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottschalk, J.; Zaun, H.; Eisele, A.; Kuballa, J.; Elling, L. Key Factors for a One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid. Int. J. Mol. Sci. 2019, 20, 5664. https://doi.org/10.3390/ijms20225664
Gottschalk J, Zaun H, Eisele A, Kuballa J, Elling L. Key Factors for a One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid. International Journal of Molecular Sciences. 2019; 20(22):5664. https://doi.org/10.3390/ijms20225664
Chicago/Turabian StyleGottschalk, Johannes, Henning Zaun, Anna Eisele, Jürgen Kuballa, and Lothar Elling. 2019. "Key Factors for a One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid" International Journal of Molecular Sciences 20, no. 22: 5664. https://doi.org/10.3390/ijms20225664
APA StyleGottschalk, J., Zaun, H., Eisele, A., Kuballa, J., & Elling, L. (2019). Key Factors for a One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid. International Journal of Molecular Sciences, 20(22), 5664. https://doi.org/10.3390/ijms20225664