Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD
Abstract
:1. Introduction
2. Results
2.1. SA-PEG100-GalNAc 6 Synthesis
2.2. Formulation of Nanostructured Lipid Carriers
2.3. Development of the Analytical Method for the Quantification of GalNAc Units Grafted on NLC Surface
2.3.1. Optimization of the Analytical Conditions
2.3.2. Calibration Curves for MyrjTM S40 and SA-PEG100-GalNAc 6
2.3.3. Sample Preparation
2.3.4. Quantification Results
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Synthesis
4.2.1. SA-PEG100-NHBoc 2
4.2.2. SA-PEG100-NH3+TFA− 3
4.2.3. SA-PEG100-Maleimide 4
4.2.4. SA-PEG100-GalNAc 6
4.3. Formulation of Nanostructured Lipid Carriers
4.4. Dynamic Light Scattering
4.5. UPLC-ELSD Analysis
4.5.1. Sample Preparation
4.5.2. Chromatographic Conditions
4.5.3. Calibration Curves
4.5.4. Validation of Analytical Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.E.; Yoffe, S.; Meerasa, A.; Verma, M.; Gu, F.X. Nanotechnology and Diagnostic Imaging: New Advances in Contrast Agent Technology. J. Nanomed. Nanotechnol. 2011, 2, 1000115. [Google Scholar] [CrossRef]
- Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal. 2014, 3, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002, 242, 121–128. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Doktorovová, S.; Kovačević, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN&NLC): Present state of development & industrial applications. Curr. Drug Discover. Technol. 2011, 8, 207–227. [Google Scholar]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. 1), S131–S155. [Google Scholar] [CrossRef]
- Sawant, K.K.; Dodiya, S.S. Recent advances and patents on solid lipid nanoparticles. Recent Pat. Drug Deliv. Formul. 2008, 2, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Delmas, T.; Couffin, A.C.; Bayle, P.A.; Crécy, F.D.; Neumann, E.; Vinet, F.; Bardet, M.; Bibette, J.; Texier, I. Preparation and characterisation of highly stable lipid nanoparticles with amorphous core of tuneable viscosity. J. Colloid Interface Sci. 2011, 360, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Cabon, Q.; Sayag, D.; Texier, I.; Navarro, F.; Boisgard, R.; Virieux-Watrelot, D.; Ponce, F.; Carozzo, C. Evaluation of intraoperative fluorescence imaging–guided surgery in cancer-bearing dogs: A prospective proof-of-concept phase II study in 9 cases. Transl. Res. 2016, 170, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.P.; Creusat, G.; Frochot, C.; Moussaron, A.; Verhille, M.; Vanderesse, R.; Thomann, J.S.; Boisseau, P.; Texier, I.; Couffin, A.C.; et al. Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2014, 130, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Jokerst, J.V.; Lobovkina, T.; Zare, R.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.S.; Castanheira, E.M.S.; Queiroz, M.J.R.P.; Ferreira, P.M.T.; Vale-Silva, L.A.; Pinto, E. Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Res. Lett. 2011, 6, 482. [Google Scholar] [CrossRef] [PubMed]
- Fundaro, A.; Cavalli, R.; Bargoni, A.; Vighetto, D.; Zara, G.P.; Gasco, M.R. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after i.v. administration to rats. Pharm. Res. 2000, 42, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.L.; Huang, C.J.; Tseng, Y.L.; Pang, V.F.; Chen, S.T.; Liu, J.J.; Chang, F.H. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 1999, 5, 3645–3652. [Google Scholar] [PubMed]
- Gaspar, D.P.; Faria, V.; Quintas, J.P.; Almeida, A.J. Targeted delivery of lipid nanoparticles by means of surface chemical modification. Curr. Org. Chem. 2017, 21, 2360–2375. [Google Scholar] [CrossRef]
- Ahmed, M.; Narain, R. Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine 2015, 10, 2263–2288. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, G.; Harford, J. Carbohydrate-Specific Receptors of the Liver. Ann. Rev. Biochem. 1982, 51, 531–554. [Google Scholar] [CrossRef] [PubMed]
- Spiess, M. The Asialoglycoprotein Receptor—A Model for Endocytic Transport Receptors. Biochemistry 1990, 29, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, J.U.; Maynard, Y. Human Hepatic Lectin—Physiochemical Properties and Specificity. J. Biol. Chem. 1980, 255, 4607–4613. [Google Scholar] [PubMed]
- Connolly, D.T.; Townsend, R.R.; Kawaguchi, K.; Bell, W.R.; Lee, Y.C. Binding and Endocytosis of Cluster Glycosides by Rabbit Hepatocytes—Evidence for a Short-Circuit Pathway That Does Not Lead to Degradation. J. Biol. Chem. 1982, 257, 939–945. [Google Scholar] [PubMed]
- Hardy, M.R.; Townsend, R.R.; Parkhurst, S.M.; Lee, Y.C. Different Modes of Ligand-Binding to the Hepatic Galactose/N-Acetylgalactosamine Lectin on the Surface of Rabbit Hepatocytes. Biochemistry 1985, 24, 22–28. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.A.; Devarajan, P.V. Asialoglycoprotein receptor mediated hepatocyte targeting—Strategies and applications. J. Control. Release 2015, 203, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015, 115, 525–561. [Google Scholar] [CrossRef] [PubMed]
- Gateau, C.; Delangle, P. Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson’s disease. Ann. N.Y. Acad. Sci. 2014, 1315, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.G.; Leroux, J.C.; Castagner, B. Well-Defined Multivalent Ligands for Hepatocytes Targeting via Asialoglycoprotein Receptor. Bioconjug. Chem. 2017, 28, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Jain, A.; Parajuli, P.; Mishra, V.; Ghoshal, G.; Singh, B.; Shivhare, U.S.; Katare, O.P.; Kesharwani, P. Recent advances in galactose-engineered nanocarriers for the site-specific delivery of siRNA and anticancer drugs. Drug Discov. Today 2018, 23, 960–973. [Google Scholar] [CrossRef] [PubMed]
- Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem. 2008, 16, 5216–5231. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Townsend, R.R.; Hardy, M.R.; Lonngren, J.; Arnarp, J.; Haraldsson, M.; Lonn, H. Binding of Synthetic Oligosaccharides to the Hepatic Gal Galnac Lectin—Dependence on Fine-Structural Features. J. Biol. Chem. 1983, 258, 199–202. [Google Scholar] [PubMed]
- Monestier, M.; Charbonnier, P.; Gateau, C.; Cuillel, M.; Robert, F.; Lebrun, C.; Mintz, E.; Renaudet, O.; Delangle, P. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes. ChemBioChem 2016, 17, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Pujol, A.M.; Cuillel, M.; Jullien, A.S.; Lebrun, C.; Cassio, D.; Mintz, E.; Gateau, C.; Delangle, P. A Sulfur Tripod Glycoconjugate that Releases a High-Affinity Copper Chelator in Hepatocytes. Angew. Chem. Int. Ed. 2012, 51, 7445–7448. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Kesharwani, P.; Garg, N.K.; Jain, A.; Jain, S.A.; Jain, A.K.; Nirbhavane, P.; Ghanghoria, R.; Tyagi, R.K.; Katare, O.P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces 2015, 134, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Morille, M.; Passirani, C.; Letrou-Bonneval, E.; Benoit, J.P.; Pitard, B. Galactosylated DNA lipid nanocapsules for efficient hepatocyte targeting. Int. J. Pharm. 2009, 379, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 2009, 30, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Deng, X.; Lu, C.; Chen, Y.; Jie, L.; Zhang, Q.; Li, W.; Wang, Z.; Du, Y.; Yu, R. SPIO-loaded nanostructured lipid carriers as liver-targeted molecular T2-weighted MRI contrast agent. Quant. Imag. Med. Surg. 2018, 8, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Munakata, C.; Fumoto, S.; Yamashita, F.; Hashida, M. Novel galactosylated liposomes for hepatocyte-selective targeting of lipophilic drugs. J. Pharm. Sci. 2001, 90, 105–113. [Google Scholar] [CrossRef]
- Varache, M.; Ciancone, M.; Couffin, A. Quantification of lipid components as excipients of nanomedecine formulation: Analysis using ultra-high performance liquid chromatography coupled to evaporative light-scattering detection. Int. J. Pharm. 2019, 566, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Delmas, T.; Fraichard, A.; Bayle, P.-A.; Texier, I.; Bardet, M.; Baudry, J.; Bibette, J.; Couffin, A.-C. Encapsulation and Release Behavior from Lipid Nanoparticles: Model Study with Nile Red Fluorophore. J. Colloid Sci. Biotechnol. 2012, 1, 16–25. [Google Scholar] [CrossRef]
- Jenning, V.; Lippacher, A.; Gohla, S.H. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J. Microencapsul. 2002, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Russ Algar, W.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 2011, 22, 825–858. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lu, J.; Shoichet, M.S. Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. J. Mater. Chem. 2009, 19, 5485–5498. [Google Scholar] [CrossRef]
- Chen, S.; Tam, Y.Y.C.; Lin, P.J.C.; Leung, A.K.K.; Tam, Y.K.; Cullis, P.R. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. J. Control. Release 2014, 196, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Matsui, H.; Yamamoto, N.; Sato, R.; Munakata, T.; Kohara, M.; Harashima, H. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J. Control. Release 2017, 266, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Muripiti, V.; Lohchania, B.; Marepally, S.K.; Patri, S.V. Hepatocellular targeted α-tocopherol based pH sensitive galactosylated lipids: Design, synthesis and transfection studies. MedChemComm 2018, 9, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, H.; Zhang, Z.; Yan, M.; Lei, M.; Zeng, K.; Zhao, C. Synthesis of novel tetravalent galactosylated DTPA-DSPE and study on hepatocyte-targeting efficiency in vitro and in vivo. Int. J. Nanomed. 2013, 8, 3033–3050. [Google Scholar]
Ingredients | A | B | C | D | E | |
---|---|---|---|---|---|---|
Soybean oil | 85 | 85 | 85 | 85 | 85 | |
Lipid phase | Suppocire™NB | 245 | 245 | 245 | 245 | 245 |
Lipoid™ s75 | 65 | 65 | 65 | 65 | 65 | |
Aqueous phase | Myrj™S40 | 345 | 327 | 298.3 | 241.1 | 241.1 |
SA-PEG100-GalNAc | 0 | 18.7 | 46.7 | 105.4 | - | |
SA-PEG100-GalNAc (% mol) | 0 | 2.1 | 5.3 | 13.6 | - | |
Myrj™S100 | - | - | - | - | 105.4 | |
PBS | qsp 2 mL | qsp 2 mL | qsp 2 mL | qsp 2 mL | qsp 2 mL |
A | B | C | D | E | |
---|---|---|---|---|---|
Hydrodynamic diameter (nm) | 41.8 ± 1.3 | 37.2 ± 1.3 | 52.4 ± 1.4 | 59.8 ± 0.6 | 63.9 ± 1.5 |
PDI | 0.11 ± 0.02 | 0.11 ± 0.03 | 0.11 ± 0.02 | 0.14 ± 0.02 | 0.18 ± 0.02 |
Zeta potential (mV) | −3.9 ± 1.3 | −5.9 ± 2.1 | −6.2 ± 2.5 | −6.3 ± 2.4 | −4.4 ± 2.5 |
Colloidal stability during storage at 4 °C | 1 year | 5 months | 3 months | 3 weeks | 1 month |
Time (min) | Flow (mL/min) | A | B | C |
---|---|---|---|---|
0 | 0.25 | 30 | 70 | 0 |
3 | 0.3 | 10 | 90 | 0 |
15 | 0.3 | 0 | 100 | 0 |
22 | 0.3 | 0 | 35 | 65 |
25 | 0.3 | 0 | 35 | 65 |
25.1 | 0.25 | 30 | 70 | 0 |
30 | 0.25 | 30 | 70 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gauthier, L.; Varache, M.; Couffin, A.-C.; Lebrun, C.; Delangle, P.; Gateau, C.; Texier, I. Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD. Int. J. Mol. Sci. 2019, 20, 5669. https://doi.org/10.3390/ijms20225669
Gauthier L, Varache M, Couffin A-C, Lebrun C, Delangle P, Gateau C, Texier I. Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD. International Journal of Molecular Sciences. 2019; 20(22):5669. https://doi.org/10.3390/ijms20225669
Chicago/Turabian StyleGauthier, Laura, Mathieu Varache, Anne-Claude Couffin, Colette Lebrun, Pascale Delangle, Christelle Gateau, and Isabelle Texier. 2019. "Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD" International Journal of Molecular Sciences 20, no. 22: 5669. https://doi.org/10.3390/ijms20225669
APA StyleGauthier, L., Varache, M., Couffin, A. -C., Lebrun, C., Delangle, P., Gateau, C., & Texier, I. (2019). Quantification of Surface GalNAc Ligands Decorating Nanostructured Lipid Carriers by UPLC-ELSD. International Journal of Molecular Sciences, 20(22), 5669. https://doi.org/10.3390/ijms20225669