Experimental Measurement and Modeling of Hg(II) Removal from Aqueous Solutions Using Eucalyptus globulus Bark: Effect of pH, Salinity and Biosorbent Dosage
Abstract
:1. Introduction
2. Results
2.1. Sorbent Characterization
2.2. Optimization of the Hg(II) Removal Conditions
2.3. Kinetic Modelling
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Biomass Characterization
4.3. Chemical Quantification
4.4. Biosorption Experiments
4.5. Response Surface Methodology
4.6. Kinetics Modelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Substance Priority List|ATSDR. Available online: https://www.atsdr.cdc.gov/spl/ (accessed on 2 February 2019).
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17.
- Baeyens, W.; Ebinghaus, R.; Vasiliev, O. Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances; Springer: Dordrecht, The Netherlands, 1996; ISBN 9789401072953. [Google Scholar]
- Romera, E.; González, F.; Ballester, A.; Blázquez, M.L.; Muñoz, J.A. Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol. 2007, 98, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.B.; Lito, P.F.; Cardoso, S.P.; Pereira, E.; Duarte, A.C.; Silva, C.M. Metal recovery, separation and/or pre-concentration. In Ion Exchange Technology II—Applications; Inamuddin, Luqman, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 237–322. [Google Scholar]
- Lopes, C.B.; Otero, M.; Coimbra, J.; Pereira, E.; Rocha, J.; Lin, Z.; Duarte, A. Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Microporous Mesoporous Mater. 2007, 103, 325–332. [Google Scholar] [CrossRef]
- Panayotova, M.I. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag. 2001, 21, 671–676. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S.; Yue, Q.Y.; Li, Q.; Nguyen, T.V. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 2013, 148, 574–585. [Google Scholar] [CrossRef]
- Jiménez-Cedillo, M.J.; Olguín, M.T.; Fall, C.; Colin-Cruz, A. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). J. Environ. Manag. 2013, 117, 242–252. [Google Scholar]
- Zafar, M.N.; Nadeem, R.; Hanif, M.A. Biosorption of nickel from protonated rice bran. J. Hazard. Mater. 2007, 143, 478–485. [Google Scholar] [CrossRef]
- Balderas-Hernández, P.; Roa-Morales, G.; Ramírez-Silva, M.T.; Romero-Romo, M.; Rodríguez-Sevilla, E.; Esparza-Schulz, J.M.; Juárez-Gómez, J. Effective mercury(II) bioremoval from aqueous solution, and its electrochemical determination. Chemosphere 2017, 167, 314–321. [Google Scholar] [CrossRef]
- Aman, A.; Ahmed, D.; Asad, N.; Masih, R.; Muhammad Abd ur Rahman, H. Rose biomass as a potential biosorbent to remove chromium, mercury and zinc from contaminated waters Rose biomass as a potential biosorbent to remove chromium, mercury and zinc from contaminated waters. Int. J. Environ. Stud. 2018, 75, 774–787. [Google Scholar] [CrossRef]
- Soto-Ríos, P.C.; León-Romero, M.A.; Sukhbaatar, O.; Nishimura, O. Biosorption of Mercury by Reed (Phragmites australis) as a Potential Clean Water Technology. Water Air Soil Pollut. 2018, 229, 328. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Schnoor, J.L., Zehnder, A., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Dwivedi, A.D.; Dubey, S.P.; Gopal, K.; Sillanpää, M. Strengthening adsorptive amelioration: Isotherm modeling in liquid phase surface complexation of Pb (II) and Cd (II) ions. Desalination 2011, 267, 25–33. [Google Scholar] [CrossRef]
- Patnukao, P.; Kongsuwan, A.; Pavasant, P. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. bark. J. Environ. Sci. 2008, 20, 1028–1034. [Google Scholar] [CrossRef]
- Choudhary, B.; Paul, D.; Singh, A.; Gupta, T. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: Mechanistic insights and application. Environ. Sci. Pollut. Res. 2017, 24, 16786–16797. [Google Scholar] [CrossRef] [PubMed]
- Neris, J.B.; Luzardo, F.H.M.; da Silva, E.G.P.; Velasco, F.G. Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review. Chem. Eng. J. 2019, 357, 404–420. [Google Scholar] [CrossRef]
- Carro, L.; Anagnostopoulos, V.; Lodeiro, P.; Barriada, J.L.; Herrero, R.; Sastre de Vicente, M.E. A dynamic proof of mercury elimination from solution through a combined sorption–reduction process. Bioresour. Technol. 2010, 101, 8969–8974. [Google Scholar] [CrossRef]
- Boutsika, L.G.; Karapanagioti, H.K.; Manariotis, I.D. Aqueous mercury sorption by biochar from malt spent rootlets. Water. Air Soil Pollut. 2014, 225, 2007–2013. [Google Scholar] [CrossRef]
- Krishnani, K.K.; Meng, X.; Christodoulatos, C.; Boddu, V.M. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater. 2008, 153, 1222–1234. [Google Scholar] [CrossRef]
- Devani, M.A.; Munshi, B.; Oubagaranadin, J.U.K. Characterization and use of chemically activated Butea monosperma leaf dust for mercury(II) removal from solutions. J. Environ. Chem. Eng. 2015, 3, 2212–2218. [Google Scholar] [CrossRef]
- Eom, Y.; Won, J.H.; Ryu, J.-Y.; Lee, T.G. Biosorption of mercury(II) ions from aqueous solution by garlic (Allium sativum L.) powder. Korean J. Chem. Eng. 2011, 28, 1439–1443. [Google Scholar] [CrossRef]
- Vinod, V.T.P.; Sashidhar, R.B.; Sivaprasad, N.; Sarma, V.U.M.; Satyanarayana, N.; Kumaresan, R.; Rao, T.N.; Raviprasad, P. Bioremediation of mercury (II) from aqueous solution by gum karaya (Sterculia urens): A natural hydrocolloid. Desalination 2011, 272, 270–277. [Google Scholar] [CrossRef]
- Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltrán, M.I.; Navarro, R. Application of TG/FTIR to the study of the regeneration process of husy and HZSM5 zeolites. J. Therm. Anal. Calorim. 2007, 87, 325–330. [Google Scholar] [CrossRef]
- Rocha, L.S.; Almeida, Â.; Nunes, C.; Henriques, B.; Coimbra, M.A.; Lopes, C.B.; Silva, C.M.; Duarte, A.C.; Pereira, E. Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chem. Eng. J. 2016, 300, 217–229. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef] [PubMed]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 2009, 170, 969–977. [Google Scholar] [CrossRef]
- Herrero, R.; Lodeiro, P.; Rey-Castro, C.; Vilariño, T.; Sastre De Vicente, M.E. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res. 2005, 39, 3199–3210. [Google Scholar] [CrossRef]
- Atkins, P.; Jones, L. Chemical Principles, 4th ed.; W. H. Freeman and Company: New York, NY, USA, 2007; ISBN 13:978-0-7167-7355-9. [Google Scholar]
- Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC. Off. J. Eur. Commun. 2008, L348, 84–97.
- Lagergren, S. Zur theorie der sogenannten adsorption gel Zur theorie der sogenannten adsorption gelster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Roginsky, S.; Zeldovich, Y.B. The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Phys. Chem. USSR 1934, 1, 554. [Google Scholar]
Experiment | pH | Salinity | Biosorbent Dosage (g dm−3)/(-) | Removal (%) |
---|---|---|---|---|
1 | 4.0 (−1) | 15 (0) | 0.2 (−1) | 23 |
2 | 9.0 (+1) | 15 (0) | 0.2 (−1) | 53 |
3 | 4.0 (−1) | 15 (0) | 0.8 (+1) | 51 |
4 | 9.0 (+1) | 15 (0) | 0.8 (+1) | 70 |
5 | 6.5 (0) | 0 (−1) | 0.2 (−1) | 74 |
6 | 6.5 (0) | 30 (+1) | 0.2 (−1) | 29 |
7 | 6.5 (0) | 0 (−1) | 0.8 (+1) | 77 |
8 | 6.5 (0) | 30 (+1) | 0.8 (+1) | 62 |
9 | 4.0 (−1) | 0 (−1) | 0.5 (0) | 76 |
10 | 4.0 (−1) | 30 (+1) | 0.5 (0) | 32 |
11 | 9.0 (+1) | 0 (−1) | 0.5 (0) | 65 |
12 | 9.0 (+1) | 30 (+1) | 0.5 (0) | 71 |
13 | 6.5 (0) | 15 (0) | 0.5 (0) | 68 |
14 | 6.5 (0) | 15 (0) | 0.5 (0) | 65 |
15 | 6.5 (0) | 15 (0) | 0.5 (0) | 65 |
Coefficients of Equation (5) | Reduced Model | p-Value |
---|---|---|
67.9 | 2.63 × 10−8 | |
9.6 | 1.33 × 10−3 | |
−12.2 | 3.20 × 10−4 | |
10.1 | 1.00 × 10−3 | |
−8.2 | 2.05 × 10−2 | |
−8.9 | 1.41 × 10−2 | |
12.5 | 2.09 × 10−3 | |
7.3 | 2.76 × 10−2 |
Response with the Uncoded Reduced Model | Equation | ||
---|---|---|---|
0.954 | 0.793 | (1) |
Pseudo-First-Order (PSO) | Pseudo-Second-Order (PSO) | Elovich | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 4.0 | (h−1) | (mg g−1) | (%) | (g mg−1 h−1) | (mg g−1) | (%) | α (mg g−1 h−1) | (g mg−1) | (%) | |||
0.2 g dm−3 | 3.81 | 0.0652 | 0.939 | 12.1 | 80.0 | 0.0613 | 0.973 | 7.73 | 0.667 | 126.0 | 0.918 | 8.10 |
0.8 g dm−3 | 2.52 | 0.0317 | 0.908 | 15.8 | 81.3 | 0.0333 | 0.975 | 9.69 | 0.200 | 211 | 0.957 | 8.01 |
pH 9.0 | (h−1) | (mg g−1) | (%) | (g mg−1 h−1) | (mg g−1) | (%) | α (mg g−1 h−1) | (g mg−1) | (%) | |||
0.2 g dm−3 | 2.57 | 0.1260 | 0.945 | 13.7 | 18.5 | 0.1390 | 0.983 | 8.69 | 0.927 | 48.5 | 0.959 | 11.20 |
0.8 g dm−3 | 3.78 | 0.0444 | 0.979 | 5.9 | 90.5 | 0.0452 | 0.996 | 3.42 | 0.355 | 163.0 | 0.955 | 10.70 |
Experiment | pH | Salinity | Biosorbent Mass (g) or Dosage (g dm−3) |
---|---|---|---|
1 | 4.0 | 15 | 0.2 |
2 | 9.0 | 15 | 0.2 |
3 | 4.0 | 15 | 0.8 |
4 | 9.0 | 15 | 0.8 |
5 | 6.5 | 0 | 0.2 |
6 | 6.5 | 30 | 0.2 |
7 | 6.5 | 0 | 0.8 |
8 | 6.5 | 30 | 0.8 |
9 | 4.0 | 0 | 0.5 |
10 | 4.0 | 30 | 0.5 |
11 | 9.0 | 0 | 0.5 |
12 | 9.0 | 30 | 0.5 |
13 | 6.5 | 15 | 0.5 |
14 | 6.5 | 15 | 0.5 |
15 | 6.5 | 15 | 0.5 |
Variable | Level | ||
---|---|---|---|
−1 | 0 | +1 | |
pH | 4.0 | 6.5 | 9.0 |
Salinity | 0 | 15 | 30 |
Biosorbent dosage (g dm−3) | 0.2 | 0.5 | 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabre, E.; Vale, C.; Pereira, E.; Silva, C.M. Experimental Measurement and Modeling of Hg(II) Removal from Aqueous Solutions Using Eucalyptus globulus Bark: Effect of pH, Salinity and Biosorbent Dosage. Int. J. Mol. Sci. 2019, 20, 5973. https://doi.org/10.3390/ijms20235973
Fabre E, Vale C, Pereira E, Silva CM. Experimental Measurement and Modeling of Hg(II) Removal from Aqueous Solutions Using Eucalyptus globulus Bark: Effect of pH, Salinity and Biosorbent Dosage. International Journal of Molecular Sciences. 2019; 20(23):5973. https://doi.org/10.3390/ijms20235973
Chicago/Turabian StyleFabre, Elaine, Carlos Vale, Eduarda Pereira, and Carlos M. Silva. 2019. "Experimental Measurement and Modeling of Hg(II) Removal from Aqueous Solutions Using Eucalyptus globulus Bark: Effect of pH, Salinity and Biosorbent Dosage" International Journal of Molecular Sciences 20, no. 23: 5973. https://doi.org/10.3390/ijms20235973
APA StyleFabre, E., Vale, C., Pereira, E., & Silva, C. M. (2019). Experimental Measurement and Modeling of Hg(II) Removal from Aqueous Solutions Using Eucalyptus globulus Bark: Effect of pH, Salinity and Biosorbent Dosage. International Journal of Molecular Sciences, 20(23), 5973. https://doi.org/10.3390/ijms20235973