GPR68: An Emerging Drug Target in Cancer
Abstract
:1. Introduction
2. G Protein-Coupled Receptor 68 (GPR68/OGR1)
2.1. Discovery of GPR68/OGR1
2.2. GPR68 Structure
2.3. GPR68 Expression in Normal Human Tissues
2.4. Regulation of GPR68 Expression
2.5. GPR68 Signaling
2.6. Physiological Roles of GPR68
3. GPR68 in Cancer
3.1. GPR68 Expression in Cancer
3.2. Biological Functions of GPR68 in Cancer
3.2.1. GPR68 in Prostate Cancer
3.2.2. GPR68 in Melanoma
3.2.3. GPR68 in Pancreatic Cancer
3.2.4. GPR68 in Colon Cancer
3.2.5. GPR68 in Medulloblastoma
3.2.6. GPR68 in Myelodysplastic Syndrome (MDS)
4. Targeting GPR68 with Small Molecules
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C.; et al. The G Protein-Coupled Receptor Repertoires of Human and Mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 4903–4908. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.; Lu, B.; Evans, R.; Gutkind, J.S. Signals and Receptors. Cold Spring Harb. Perspect. Biol. 2016, 8, a005900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.R.; Wang, J.Y. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int. J. Mol. Sci. 2016, 17, 707. [Google Scholar] [CrossRef] [PubMed]
- O’Hayre, M.; Degese, M.; Gutkind, J. Novel Insights into G Protein and G Protein-Coupled Receptor Signaling in Cancer. Curr. Opin. Cell Biol. 2014, 27, 126–135. [Google Scholar] [CrossRef]
- Neves, S.R.; Ram, P.T.; Iyengar, R. G Protein Pathways. Science 2002, 296, 1636–1640. [Google Scholar] [CrossRef]
- Peterson, Y.K.; Luttrell, L.M. The Diverse Roles of Arrestin Scaffolds in G Protein—Coupled Receptor Signaling. Parmacological Rev. 2017, 69, 256–297. [Google Scholar] [CrossRef]
- Insel, P.A.; Sriram, K.; Wiley, S.Z.; Wilderman, A.; Katakia, T.; Mccann, T.; Yokouchi, H.; Zhang, L.; Corriden, R.; Liu, D.; et al. GPCRomics : GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front. Pharmacol. 2018, 9, 431. [Google Scholar] [CrossRef]
- Dorsam, R.T.; Gutkind, J.S. G-Protein-Coupled Receptors and Cancer. Nat. Rev. Cancer 2007, 7, 79–94. [Google Scholar] [CrossRef]
- Nieto Gutierrez, A.; McDonald, P.H. GPCRs: Emerging Anti-Cancer Drug Targets. Cell. Signal. 2018, 41, 65–74. [Google Scholar] [CrossRef]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A Comprehensive Map of Molecular Drug Targets. Nat. Rev. Drug Discov. 2016, 16, 19–34. [Google Scholar] [CrossRef]
- Sriram, K.; Insel, P.A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharmacol. 2018, 93, 251–258. [Google Scholar] [CrossRef]
- Vaupel, P.; Rallinoâ, F.; Okunieff, P. Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment Human Tumors : A Review. Cancer Res. 1989, 49, 6449–6465. [Google Scholar]
- Gatenby, R.A.; Gillies, R.J. WHY DO CANCERS HAVE HIGH AEROBIC GLYCOLYSIS? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Cairns, R.; Papandreou, I.; Denko, N. Overcoming Physiologic Barriers to Cancer Treatment by Molecularly Targeting the Tumor Microenvironment. Mol. cancer Res. 2006, 4, 61–71. [Google Scholar] [CrossRef]
- Justus, C.R.; Dong, L.; Yang, L.V. Acidic Tumor Microenvironment and PH-Sensing G Protein-Coupled Receptors. Front. Physiol. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Damaghi, M.; Wojtkowiak, J.W.; Gillies, R.J. PH Sensing and Regulation in Cancer. Front. Physiol. 2013, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pilon-thomas, S.; Kodumudi, K.N.; El-kenawi, A.E.; Russell, S.; Weber, A.M.; Luddy, K.; Damaghi, M.; Wojtkowiak, J.W.; Ibrahim-hashim, A.; Gillies, R.J.; et al. Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Res. 2016, 76, 1381–1390. [Google Scholar] [CrossRef]
- Robey, I.F.; Baggett, B.K.; Kirkpatrick, N.D.; Roe, D.J.; Dosescu, J.; Sloane, B.F.; Hashim, A.I.; Morse, D.L.; Raghunand, N.; Gatenby, R.A.; et al. Bicarbonate Increases Tumor PH and Inhibits Spontaneous Metastases. Cancer Res. 2009, 69, 2260–2269. [Google Scholar] [CrossRef]
- Ibrahim-hashim, A.; Cornnell, H.H.; Abrahams, D.; Lloyd, M.; Gillies, R.J.; Gatenby, R.A. Systemic Buffers Inhibit Carcinogenesis in TRAMP Mice. J. Urol. 2013, 188, 624–631. [Google Scholar] [CrossRef]
- Xu, Y.; Casey, G. Identification of Human OGR1, a Novel G Protein-Coupled Receptor That Maps to Chromosome 14. Genomics 1996, 35, 397–402. [Google Scholar] [CrossRef]
- Mochimaru, Y.; Negishi, J.; Murakami, S.; Musha, S.; Sato, K.; Mochimaru, Y.; Negishi, J.; Murakami, S.; Musha, S.; Sato, K. Metals Differentially Activate Ovarian Cancer G Protein-Coupled Receptor 1 in Various Species. Zool. Sci. 2018, 35, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.-G.; Vanek, M.; Guerini, D.; Gasser, J.A.; Jones, C.E.; Junker, U.; Hofstetter, H.; Wolf, R.M.; Seuwen, K. Proton-Sensing G-Protein-Coupled Receptors. Nature 2003, 425, 93. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.A.; Smith, C.E.L.; El-sayed, W.; Poulter, J.A.; Shore, R.C.; Logan, C.V.; Mogi, C.; Sato, K.; Okajima, F.; Harada, A.; et al. Mutations in the PH-Sensing G-Protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta. Am. J. Hum. Genet. 2016, 99, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Wiley, S.Z.; Sriram, K.; Liang, W.; Chang, S.E.; French, R.; Mccann, T.; Sicklick, J.; Nishihara, H.; Lowy, A.M.; Insel, P.A. GPR68, a Proton-Sensing GPCR, Mediates Interaction of Cancer-Associated Fibroblasts and Cancer Cells. FASEB J. 2018, 32, 1170–1183. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, A.; Shanjukumar, L.; Tan, H.; Ding, H.; Liang, Z.; Xu, Y. Homo- and Hetero-Dimerization of LPA/S1P Receptors, OGR1 and GPR4. Biochim. Biophys. Acta 2006, 1761, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, E.; Blom, T.; Ekokoski, E.; Tuominen, R.K.; Törnquist, K. Sphingosylphosphorylcholine Enhances Calcium Entry in Thyroid FRO Cells by a Mechanism Dependent on Protein Kinase C. Cell. Signal. 2006, 18, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Komachi, M.; Tomura, H.; Mogi, C.; Damirin, A.; Tobo, M.; Takano, M.; Nochi, H.; Tamoto, K.; Sato, K.; et al. Ovarian Cancer G Protein-Coupled Receptor 1-Dependent and -Independent Vascular Actions to Acidic PH in Human Aortic Smooth Muscle Cells. Am. J. Physiol. Circ. Physiol. 2010, 299, H731–H742. [Google Scholar] [CrossRef] [PubMed]
- Tomura, H.; Wang, J.-Q.; Komachi, M.; Damirin, A.; Mogi, C.; Tobo, M.; Kon, J.; Misawa, N.; Sato, K.; Okajima, F. Prostaglandin I 2 Production and CAMP Accumulation in Response to Acidic Extracellular PH through OGR1 in Human Aortic Smooth Muscle Cells. J. Biol. Chem. 2005, 280, 34458–34464. [Google Scholar] [CrossRef] [PubMed]
- Ichimonji, I.; Tomura, H.; Mogi, C.; Sato, K.; Aoki, H.; Hisada, T.; Dobashi, K.; Ishizuka, T.; Mori, M.; Okajima, F. Extracellular Acidification Stimulates IL-6 Production and Ca(2+) Mobilization through Proton-Sensing OGR1 Receptors in Human Airway Smooth Muscle Cells. Am. J. Physiol. Cell. Mol. Physiol. 2010, 299, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Saxena, H.; Deshpande, D.A.; Tiegs, B.C.; Yan, H.; Battafarano, R.J. The GPCR OGR1 (GPR68) Mediates Diverse Signalling and Contraction of Airway Smooth Muscle in Response to Small Reductions in Extracellular PH. Br. J. Pharmacol. 2012, 166, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Mcaleer, J.P.; Fan, J.; Roar, B.; Primerano, D.A.; Denvir, J. Cytokine Regulation in Human CD4 T Cells by the Aryl Hydrocarbon Receptor and Gq-Coupled Receptors. Sci. Rep. 2018, 8, 10954. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Mogi, C.; Tobo, M.; Nakakura, T.; Sato, K.; Tomura, H.; Okajima, F. Inhibition of Superoxide Anion Production by Extracellular Acidification in Neutrophils. Cell. Immunol. 2009, 259, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Consortium, Gte. The Genotype-Tissue Expression (GTEx) Project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Vivian, J.; Rao, A.A.; Nothaft, F.A.; Ketchum, C.; Armstrong, J.; Novak, A.; Pfeil, J.; Narkizian, J.; Deran, A.D.; Musselman-Brown, A.; et al. Toil Enables Reproducible, Open Source, Big Biomedical Data Analyses. Nat. Biotechnol. 2017, 35, 314. [Google Scholar] [CrossRef] [PubMed]
- De Vallière, C.; Wang, Y.; Eloranta, J.J.; Vidal, S.; Clay, I.; Spalinger, M.R.; Tcymbarevich, I.; Terhalle, A.; Ludwig, M.; Suply, T.; et al. G Protein-coupled pH-sensing Receptor OGR1 Is a Regulator of Intestinal Inflammation. Inflamm. Bowel Dis. 2015, 21, 1269–1281. [Google Scholar] [PubMed] [Green Version]
- De Vallière, C.; Cosin-Roger, J.; Simmen, S.; Atrott, K.; Melhem, H.; Zeitz, J.; Madanchi, M.; Tcymbarevich, I.; Fried, M.; Kullak-Ublick, G.A.; et al. Hypoxia Positively Regulates the Expression of PH-Sensing G-Protein-Coupled Receptor OGR1 (GPR68). Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 796–810. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Birnbaum, M.J.; Mackay, C.A.; Mason-savas, A.; Odgren, P.R. Expression of and Role for Ovarian Cancer G-Protein-Coupled Receptor 1 (OGR1) during Osteoclastogenesis. J. Biol. Chem. 2006, 281, 23598–23605. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V.; Karamitri, A.; Richards, P.; Co., F.; Ramond, C.; Joc, R.; Armanet, M.; Albagli-curiel, O.; Scharfmann, R. Extracellular Acidification Stimulates GPR68 Mediated IL-8 Production in Human Pancreatic β Cells. Sci. Rep. 2016, 6, 25765. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Liu, X.; Bolanos, L.; Barker, B.; Rigolino, C.; Cortelezzi, A.; Oliva, E.N.; Cuzzola, M.; Grimes, H.L.; Fontanillo, C.; et al. A Calcium- and Calpain-Dependent Pathway Determines the Response to Lenalidomide in Myelodysplastic Syndromes. Nat. Med. 2016, 22, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, S.; Ishizuka, T.; Yamada, H.; Kamide, Y.; Hisada, T. Extracellular Acidification Induces Connective Tissue Growth Factor Production through Proton-Sensing Receptor OGR1 in Human Airway Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 2011, 413, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Q.; Zhou, X.; Kolosov, V.P.; Perelman, J.M. Regulator of G-Protein Signaling 2 Inhibits Acid-Induced Mucin5AC Hypersecretion in Human Airway Epithelial Cells. Respir. Physiol. Neurobiol. 2013, 185, 265–271. [Google Scholar] [CrossRef]
- Tomura, H.; Wang, J.; Liu, J.; Komachi, M.; Damirin, A.; Mogi, C.; Tobo, M.; Nochi, H.; Tamoto, K.; Im, D.; et al. Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Response to Acidic PH Through OGR1 in a Human Osteoblastic Cell Line. J. Bone Miner. Res. 2008, 23, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Mogi, C.; Tomura, H.; Tobo, M.; Wang, J.Q.; Damirin, A.; Kon, J.; Komachi, M.; Hashimoto, K.; Sato, K.; Okajima, F. Sphingosylphosphorylcholine Antagonizes Proton-Sensing Ovarian Cancer G-Protein-Coupled Receptor 1 (OGR1)-Mediated Inositol Phosphate Production and CAMP Accumulation. J. Pharmacol. Sci. 2005, 99, 160–167. [Google Scholar] [CrossRef]
- Huang, X.-P.; Karpiak, J.; Kroeze, W.K.; Zhu, H.; Chen, X.; Moy, S.S.; Saddoris, K.A.; Nikolova, V.D.; Farrell, M.S.; Wang, S.; et al. Allosteric Ligands for the Pharmacologically Dark Receptors GPR68 and GPR65. Nature 2015, 527, 477. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.; Tomura, H.; Okajima, F. Ovarian Cancer G-Protein-Coupled Receptor 1 Induces the Expression of the Pain Mediator Prostaglandin E2 in Response to an Acidic Extracellular Environment in Human Osteoblast-like Cells. Int. J. Biochem. Cell Biol. 2012, 44, 1937–1941. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.S.; Berk, M.; Oates, R.; Zhao, Z.; Tan, H.; Jiang, Y.; Zhou, A.; Kirmani, K.; Steinmetz, R.; Lindner, D.; et al. Ovarian Cancer G Protein—Coupled Receptor 1, a New Metastasis Suppressor Gene in Prostate Cancer. J. Natl. Cancer Inst. 2007, 99, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, B.; Wang, J.; Cheng, X.; Xu, Y.; Sang, J. Ovarian Cancer G Protein Coupled Receptor 1 Suppresses Cell Migration of MCF7 Breast Cancer Cells via a Gα12/13-Rho-Rac1 Pathway. J. Mol. Signal. 2013, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Su, Y.; Chang, C.; Sun, W. Heteromerization of G2A and OGR1 Enhances Proton Sensitivity and Proton-Induced Calcium Signals Proton-Induced Calcium Signals. J. Recept. Signal Transduct. 2016, 36, 633–644. [Google Scholar] [CrossRef]
- Tan, M.; Yamaguchi, S.; Nakamura, M.; Nagamune, T.; Al, T.A.N.E.T.; Ioeng, J.B.I.B. Real-Time Monitoring of PH-Dependent Intracellular Trafficking of Ovarian Cancer G Protein-Coupled Receptor 1 in Living Leukocytes. J. Biosci. Bioeng. 2018, 126, 363–370. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Singh, L.S.; Berk, M.; Tan, H.; Zhao, Z.; Steinmetz, R.; Kirmani, K.; Wei, G.; Xu, Y. Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1. PLoS ONE 2009, 4, e5705. [Google Scholar] [CrossRef]
- Iwai, K.; Koike, M.; Ohshima, S.; Miyatake, K.; Uchiyama, Y.; Saeki, Y.; Ishii, M. RGS18 Acts as a Negative Regulator of Osteoclastrogenesis by Modulating Acid-Sensing OGR1/NFAT Signaling Pathway. J. Bone Miner. Res. 2007, 22, 1612–1620. [Google Scholar] [CrossRef]
- Pereverzev, A.; Komarova, S.V.; Kor, J.; Armstrong, S.; Tremblay, G.B.; Dixon, S.J.; Sims, S.M. Extracellular Acidification Enhances Osteoclast Survival through an NFAT-Independent, Protein Kinase C-Dependent Pathway. Bone 2008, 42, 150–161. [Google Scholar] [CrossRef]
- Krieger, N.S.; Bushinsky, D.A. Pharmacological Inhibition of Intracellular Calcium Release Blocks Acid-Induced Bone Resorption. Am. J. Physiol. Physiol. 2011, 300, 91–97. [Google Scholar] [CrossRef]
- Krieger, N.S.; Yao, Z.; Kyker-snowman, K.; Kim, M.H.; Boyce, B.F.; Bushinsky, D.A. Increased Bone Density in Mice Lacking the Proton Receptor OGR1. Kidney Int. 2016, 89, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Nakakura, T.; Mogi, C.; Tobo, M.; Tomura, H.; Sato, K.; Kobayashi, M.; Ohnishi, H.; Tanaka, S.; Wayama, M.; Sugiyama, T.; et al. Deficiency of Proton-Sensing Ovarian Cancer G Protein-Coupled Receptor 1 Attenuates Glucose-Stimulated Insulin Secretion. Endocrinology 2012, 153, 4171–4180. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Mathur, J.; Vessières, E.; Hammack, S.; Nonomura, K.; Favre, J.; Grimaud, L.; Petrus, M.; Francisco, A.; Li, J.; et al. GPR68 Senses Flow and Is Essential for Vascular Physiology. Cell 2018, 173, 762–775.e16. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-C.; Bianchi, F.; Wang, Y.-K.; Tang, M.-J.; Ye, H.; Glitsch, M.D. Coincidence Detection of Membrane Stretch and Extracellular PH by the Proton-Sensing Receptor OGR1 (GPR68). Curr. Biol. 2018, 28, 3815–3823.e4. [Google Scholar] [CrossRef] [PubMed]
- De Vallière, C.; Vidal, S.; Clay, I.; Jurisic, G.; Tcymbarevich, I.; Lang, S.; Ludwig, M.; Okoniewski, M.; Eloranta, J.J.; Kullak-ublick, G.A.; et al. The PH-Sensing Receptor OGR1 Improves Barrier Function of Epithelial Cells and Inhibits Migration in an Acidic Environment. Am. J. Physiol. Liver Physiol. 2015, 309, 475–490. [Google Scholar] [CrossRef]
- Hutter, S.; van Haaften, W.T.; Hünerwadel, A.; Baebler, K.; Herfarth, N.; Raselli, T.; Mamie, C.; Misselwitz, B.; Rogler, G.; Weder, B.; et al. Intestinal Activation of PH-Sensing Receptor OGR1 [GPR68] Contributes to Fibrogenesis. J. Crohn’s Colitis 2018, 12, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Horman, S.R.; To, J.; Lamb, J.; Zoll, J.H.; Leonetti, N.; Tu, B.; Moran, R.; Newlin, R.; Walker, J.R.; Orth, A.P. Functional Profiling of Microtumors to Identify Cancer Associated Fibroblast-Derived Drug Targets. Oncotarget 2017, 8, 99913–99930. [Google Scholar] [CrossRef]
- Wei, W.; Huang, W.; Lin, Y.; Becker, E.B.E.; Ansorge, O.; Flockerzi, V.; Conti, D.; Cenacchi, G.; Glitsch, M.D. Functional Expression of Calcium-Permeable Canonical Transient Receptor Potential 4-Containing Channels Promotes Migration of Medulloblastoma Cells. J. Physiol. 2017, 16, 5525–5544. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Swietach, P.; Way, H. Extracellular Acidification Elicits Spatially and Temporally Distinct Ca2+ Signals. Curr. Biol. 2008, 18, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Nassios, A.; Wallner, S.; Haferkamp, S.; Klingelhöffer, C.; Brochhausen, C.; Schreml, S. Expression of Proton-Sensing G-Protein-Coupled Receptors in Selected Skin Tumors. Exp. Dermatol. 2019, 28, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Network, T.C.G.A.R.; Chang, K.; Creighton, C.J.; Davis, C.; Donehower, L.; Drummond, J.; Wheeler, D.; Ally, A.; Balasundaram, M.; Birol, I.; et al. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45, 1113. [Google Scholar]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature 2012, 483, 603. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, N.A.; Petryszak, R.; Marioni, J.; Brazma, A. IRAP—an Integrated RNA-Seq Analysis Pipeline. bioRxiv 2014. [Google Scholar] [CrossRef]
- Latulippe, E.; Satagopan, J.; Smith, A.; Scher, H.; Scardino, P.; Reuter, V.; Gerald, W.L. Comprehensive Gene Expression Analysis of Prostate Cancer Reveals Distinct Transcriptional Programs Associated with Metastatic Disease 1. Cancer Res. 2002, 62, 4499–4506. [Google Scholar]
- Ren, J.; Zhang, L. Effects of Ovarian Cancer G Protein Coupled Receptor 1 on the Proliferation, Migration, and Adhesion of Human Ovarian Cancer Cells. Chin. Med. J. 2011, 124, 1327–1332. [Google Scholar]
- Yan, L.; Singh, L.S.; Zhang, L.; Xu, Y. Role of OGR1 in Myeloid-Derived Cells in Prostate Cancer. Oncogene 2014, 33, 157–164. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, S.; Zhang, Y.; Yin, J.; Yin, W.; Tao, S.; Wang, Y.; Zhang, C. Proton-Sensing GPCR-YAP Signalling Promotes Cancer- Associated Fibroblast Activation of Mesenchymal Stem. Int. J. Biol. Sci. 2016, 12, 389–396. [Google Scholar] [CrossRef]
- Huang, W.; Swietach, P.; Vaughan-jones, R.D.; Glitsch, M.D. Differentiation Impairs Low PH-Induced Ca 2 + Signaling and ERK Phosphorylation in Granule Precursor Tumour Cells. Cell Calcium 2009, 45, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.L.; Goetsch, S.C.; Aguilar, H.R.; Coe, H.; Luo, X.; Liu, N.; van Rooij, E.; Frantz, D.E.; Schneider, J.W. Regulated Expression of PH Sensing G Protein-Coupled Receptor-68 Identified through Chemical Biology Defines a New Drug Target for Ischemic Heart Disease. ACS Chem. Biol. 2012, 7, 1077–1083. [Google Scholar] [CrossRef]
- Dioum, E.M.; Osborne, J.K.; Goetsch, S.; Russell, J.; Schneider, J.W.; Cobb, M.H. A Small Molecule Differentiation Inducer Increases Insulin Production by Pancreatic β Cells. Proc. Natl. Acad. Sci. USA 2011, 108, 20713–20718. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.W.; Goetsch, S.C.; Leng, X.; Ludwig, S.M.; Russell, J.L.; Yang, C. Coupling Hippocampal Neurogenesis to Brain PH through Proneurogenic Small Molecules That Regulate Proton Sensing G Protein-Coupled Receptors. ACS Chem. Neurosci. 2012, 3, 557–568. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Hsu, T.; Aguilar, H.R.; Frantz, D.E.; Schneider, J.W.; Bachoo, R.M.; Hsieh, J. Small-Molecule Blocks Malignant Astrocyte Proliferation and Induces Neuronal Gene Expression. Differentiation 2011, 81, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Okajima, F. Regulation of Inflammation by Extracellular Acidification and Proton-Sensing GPCRs. Cell Signal. 2013, 25, 2263–2271. [Google Scholar] [CrossRef]
- Mogi, C.; Nakakura, T.; Okajima, F. Role of Extracellular Proton-Sensing OGR1 in Regulation of Insulin Secretion and Pancreatic β-Cell Functions. Endocr. J. 2014, 61, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Ito, S.; Watari, K.; Mogi, C.; Arisawa, M.; Okajima, F.; Kurose, H.; Shuto, S. Identification of a Potent and Selective GPR4 Antagonist as a Drug Lead for the Treatment of Myocardial Infarction. ACS Med. Chem. Lett. 2016, 7, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Manglik, A.; Kobilka, B.K.; Steyaert, J. Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Annu. Rev. Pharmacol. Toxic. 2017, 57, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Pera, T.; Deshpande, D.A.; Ippolito, M.; Wang, B.; Gavrila, A.; Michael, J.V.; Nayak, A.P.; Tompkins, E.; Farrell, E.; Kroeze, W.K.; et al. Biased Signaling of the Proton-Sensing Receptor OGR1 by Benzodiazepines. FASEB J. 2018, 32, 862–874. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiley, S.Z.; Sriram, K.; Salmerón, C.; Insel, P.A. GPR68: An Emerging Drug Target in Cancer. Int. J. Mol. Sci. 2019, 20, 559. https://doi.org/10.3390/ijms20030559
Wiley SZ, Sriram K, Salmerón C, Insel PA. GPR68: An Emerging Drug Target in Cancer. International Journal of Molecular Sciences. 2019; 20(3):559. https://doi.org/10.3390/ijms20030559
Chicago/Turabian StyleWiley, Shu Z., Krishna Sriram, Cristina Salmerón, and Paul A. Insel. 2019. "GPR68: An Emerging Drug Target in Cancer" International Journal of Molecular Sciences 20, no. 3: 559. https://doi.org/10.3390/ijms20030559
APA StyleWiley, S. Z., Sriram, K., Salmerón, C., & Insel, P. A. (2019). GPR68: An Emerging Drug Target in Cancer. International Journal of Molecular Sciences, 20(3), 559. https://doi.org/10.3390/ijms20030559