The Metallome of Lung Cancer and its Potential Use as Biomarker
Abstract
:1. Introduction
2. Metal Dyshomeostasis in Lung Cancer: Biofluids and Tissues
3. Inter-Element Ratios and Correlations as Biomarkers of Lung Cancer
4. Selenometabolites and Selenoproteins and Their Role in Lung Cancer
5. Chemical Species, Metal-Metabolites, and Metalloproteins
6. Gaps and Future
Funding
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61. [Google Scholar] [CrossRef] [PubMed]
- Spira, A.; Ettinger, D.S. Multidisciplinary Management of Lung Cancer—NEJM. N. Engl. J. Med. 2004, 350, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Lui, G.Y.L.; Kovacevic, Z.; Richardson, V.; Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget 2015, 6, 18748–18779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, D.J.R.; Mills, T.M.; Shafie, N.H.; Merlot, A.M.; Saleh Moussa, R.; Kalinowski, D.S.; Kovacevic, Z.; Richardson, D.R. Expanding horizons in iron chelation and the treatment of cancer: Role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim. Biophys. Acta Rev. Cancer 2014, 1845, 166–181. [Google Scholar] [CrossRef] [PubMed]
- Déliot, N.; Constantin, B. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration. Biochim. Biophys. Acta Biomembr. 2015, 1848, 2512–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, V.; Bedogni, B. The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol. Res. 2016, 111, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Fouani, L.; Menezes, S.V.; Paulson, M.; Richardson, D.R.; Kovacevic, Z. Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacol. Res. 2017, 115, 275–287. [Google Scholar] [CrossRef]
- Mounicou, S.; Szpunar, J.; Lobinski, R. Metallomics: the concept and methodology. Chem. Soc. Rev. 2009, 38, 1119–1138. [Google Scholar] [CrossRef] [PubMed]
- Tainer, J.A.; Roberts, V.A.; Getzoff, E.D. Metal-binding sites in proteins. Curr. Opin. Biotechnol. 1991, 2, 582–591. [Google Scholar] [CrossRef]
- Maret, W. The metals in the biological periodic system of the elements: Concepts and conjectures. Int. J. Mol. Sci. 2016. [Google Scholar] [CrossRef]
- Hsia, C.C.W. Respiratory function of hemoglobin. N. Engl. J. Med. 1998, 338, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, D.S.; Stefani, C.; Toyokuni, S.; Ganz, T.; Anderson, G.J.; Subramaniam, N.V.; Trinder, D.; Olynyk, J.K.; Chua, A.; Jansson, P.J.; et al. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, M.O.; Todd, S.L.; Smith, A.L.; Elpers, J.T.; Smith, A.P.; Murphy, R.D.; Bleser-Shartzer, A.S.; Hoerter, J.E.; Radde, B.N.; Klinge, C.M. Arsenite and cadmium activate MAPK/ERK via membrane estrogen receptors and g-protein coupled estrogen receptor signaling in human lung adenocarcinoma cells. Toxicol. Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Watson, W.H.; Yager, J.D. Arsenic: Extension of its endocrine disruption potential to interference with estrogen receptor-mediated signaling. Toxicol. Sci. 2007, 98, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, J.; Leonard, S.S.; Rao, K.M.K. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic. Biol. Med. 2004, 36, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Hei, T.K.; Filipic, M. Role of oxidative damage in the genotoxicity of arsenic. Free Radic. Biol. Med. 2004, 37, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Zabłocka-Słowińska, K.; Płaczkowska, S.; Prescha, A.; Pawełczyk, K.; Porębska, I.; Kosacka, M.; Pawlik-Sobecka, L.; Grajeta, H. Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. J. Trace Elem. Med. Biol. 2018, 45, 78–84. [Google Scholar] [CrossRef]
- Aguirre, J.D.; Culotta, V.C. Battles with iron: Manganese in oxidative stress protection. J. Biol. Chem. 2012, 287, 13541–13548. [Google Scholar] [CrossRef]
- Lützen, A.; Liberti, S.E.; Rasmussen, L.J. Cadmium inhibits human DNA mismatch repair in vivo. Biochem. Biophys. Res. Commun. 2004, 321, 21–25. [Google Scholar] [CrossRef]
- Hartwig, A. Cadmium and cancer. Met. Ions Life Sci. 2013, 11, 491–507. [Google Scholar]
- Andrews, G.S. Studies of plasma zinc, copper, caeruloplasmin, and growth hormone. With special reference to carcinoma of the bronchus. J. Clin. Pathol. 1979, 32, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Voyatzoglou, V.; Mountokalakis, T.; Tsata-Voyatzoglou, V.; Koutselinis, A.; Skalkeas, G. Serum zinc levels and urinary zinc excretion in patients with bronchogenic carcinoma. Effects of tumor resection. Am. J. Surg. 1982, 144, 355–358. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, Z.; Ren, Y.; Li, W.; Wang, M.; Xu, G. Diagnosis of lung cancer based on metal contents in serum and hair using multivariate statistical methods. Talanta 1997, 44, 1823–1831. [Google Scholar] [CrossRef]
- Armendariz, D.; Vulpe, A. International symposium on trace elements in man and animals. 11 th Int. Symp. trace Elem. man Anim. 2003, 113, 203E–282E. [Google Scholar]
- Parisi, A.F.; Vallee, B.L. Zinc metalloenzymes: characteristics and significance in biology and medicine. Am. J. Clin. Nutr. 1969, 22, 1222–1239. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Floyd, R.A. Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radic. Biol. Med. 1992, 12, 245–250. [Google Scholar] [CrossRef]
- Raju, K.S.; Alessandri, G.; Ziche, M.; Gullino, P.M. Ceruloplasmin, copper ions, and angiogenesis. J. Natl. Cancer Inst. 1982, 69, 1183–1188. [Google Scholar]
- Ho, E.; Ames, B.N. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NF-κB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA 2002, 99, 16770–16775. [Google Scholar] [CrossRef]
- Ho, E. Zinc deficiency, DNA damage and cancer risk. J. Nutr. Biochem. 2004, 15, 572–578. [Google Scholar] [CrossRef]
- Brewer, G.J.; Dick, R.D.; Grover, D.K.; LeClaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B.G.; Jahan, T.; Sondak, V.K.; et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res. 2000, 6, 1–10. [Google Scholar]
- Domej, W.; Krachler, M.; Goessler, W.; Maier, A.; Irgolic, K.J.; Lang, J.K. Concentrations of copper, zinc, manganese, rubidium, and magnesium in thoracic empyemata and corresponding sera. Biol. Trace Elem. Res. 2001, 78, 53–66. [Google Scholar] [CrossRef]
- Babacan, E.; Cavdar, A.O.; Arcasoy, A. Serum zinc levels, lymphocyte counts and functions in pediatric Hodgkin’s disease. Boll Ist Sieroter Milan. 1977, 56, 228–234. [Google Scholar] [PubMed]
- Barneda-zahonero, B.; Parra, M. Histone deacetylases and cancer. Mol. Oncol. 2012, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Belinsky, S.A.; Klinge, D.M.; Stidley, C.A.; Issa, J.; Herman, J.G.; March, T.H.; Baylin, S.B. Advances in Brief Inhibition of DNA Methylation and Histone Deacetylation Prevents Murine. Cancer Res. 2003, 7089–7093. [Google Scholar]
- Osada, H.; Tatematsu, Y.; Saito, H.; Yatabe, Y.; Mitsudomi, T.; Takahashi, T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int. J. Cancer 2004, 112, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, P.A.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: Causes and therapies. Nat. Rev. Cancer 2001, 1, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.A.; Chabner, B.A. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol. 2009, 27, 5459–5468. [Google Scholar] [CrossRef]
- Amin, S.A.; Adhikari, N.; Jha, T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol. Res. 2018, 131, 128–142. [Google Scholar] [CrossRef]
- Jung, K.H.; Noh, J.H.; Kim, J.K.; Eun, J.W.; Bae, H.J.; Xie, H.J.; Chang, Y.G.; Kim, M.G.; Park, H.; Lee, J.Y.; et al. HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. J. Cell. Biochem. 2012, 113, 2167–2177. [Google Scholar] [CrossRef]
- Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E.C.; Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.; De Francesco, R.; Gallinari, P.; et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. USA 2004, 101, 15064–15069. [Google Scholar] [CrossRef] [Green Version]
- Sarita, P.; Raju, G.J.N.; Kumar, M.R.; Pradeep, A.S.; Reddy, S.B. Analysis of blood serum of lung cancer patients using particle induced X-ray emission. J. Radioanal. Nucl. Chem. 2013, 297, 431–436. [Google Scholar] [CrossRef]
- Ho, E.; Courtemanche, C.; Ames, B.N. Zinc Deficiency Induces Oxidative DNA Damage and Increases P53 Expression in Human Lung Fibroblasts. J. Nutr. 2003, 133, 2543–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nève, J. Methods in determination of selenium states. J. Trace Elem. Electrolytes Health Dis. 1991, 5, 1–17. [Google Scholar]
- Combs, G., Jr.; Clarkb, L.; Turnbullc, B. An analysis of cancer prevention by selenium. BioFactors 2001, 14, 153–159. [Google Scholar] [CrossRef]
- Baum, M.K.; Miguez-Burbano, M.J.; Campa, A.; Shor-Posner, G. Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J. Infect.Dis. 2000, 182 Suppl, S69–S73. [Google Scholar] [CrossRef]
- García-Barrera, T.; Gómez-Ariza, J.L.; González-Fernández, M.; Moreno, F.; García-Sevillano, M.A.; Gómez-Jacinto, V. Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species. Anal. Bioanal. Chem. 2012, 403, 2237–2253. [Google Scholar] [CrossRef] [Green Version]
- Menter, D.G.; Sabichi, A.L.; Lippman, S.M. Selenium effects on prostate cell growth. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1171–1182. [Google Scholar]
- Stoltzfus, R.J. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. J. Nutr. 2001, 131, 616–635. [Google Scholar] [CrossRef]
- Oberley, L.W. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed. Pharmacother. 2005, 59, 143–148. [Google Scholar] [CrossRef]
- Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in the lung and human lung diseases. Am. J. Respir. Crit. Care Med. 2003, 167, 1600–1619. [Google Scholar] [CrossRef]
- Ambrosone, C.B.; Freudenheim, J.L.; Thompson, P.A.; Bowman, E.; Vena, J.E.; Marshall, J.R.; Graham, S.; Laughlin, R.; Nemoto, T.; Shields, P.G. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res. 1999, 59, 602–606. [Google Scholar] [PubMed]
- Mitrunen, K.; Sillanpää, P.; Kataja, V.; Eskelinen, M.; Kosma, V.-M.; Benhamou, S.; Uusitupa, M.; Hirvonen, A. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk. Carcinogenesis 2001, 22, 827–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, M.; Ahnström, M.; Wegman, P.P.; Wingren, S. Polymorphism in the manganese superoxide dismutase (MnSOD) gene and risk of breast cancer in young women. J. Cancer Res. Clin. Oncol. 2005, 131, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Sunderman, F.W.; Selin, C.E. The metabolism of nickel-63 carbonyl. Toxicol. Appl. Pharmacol. 1968, 12, 207–218. [Google Scholar] [CrossRef]
- KS, K. Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Investig. 1995, 13, 411–430. [Google Scholar]
- Schrauzer, G.N.; White, D.A.; Schneider, C.J. Cancer mortality correlation studies-IV: Associations with dietary intakes and blood levels of certain trace elements, notably se-antagonists. Bioinorg. Chem. 1977, 7, 35–56. [Google Scholar] [CrossRef]
- Clementino, M.; Shi, X.; Zhang, Z. Oxidative stress and metabolic reprogramming in Cr(VI) carcinogenesis. Curr. Opin. Toxicol. 2018, 8, 20–27. [Google Scholar] [CrossRef] [PubMed]
- León, I.E.; Cadavid-Vargas, J.F.; Di Virgilio, A.L.; Etcheverry, S. Vanadium, ruthenium and copper compounds: A new class of non-platinum Metallodrugs with anticancer activity. Curr. Med. Chem. 2016, 23. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Rathje, O.; Levina, A.; Lay, P.A. High cytotoxicity of vanadium(IV) complexes with 1,10-phenanthroline and related ligands is due to decomposition in cell culture medium. J. Biol. Inorg. Chem. 2017, 22, 663–672. [Google Scholar] [CrossRef]
- Banci, L.; Bertini, I. Metallomics and the cell: Some definitions and general comments. In Metal Ions in Life Sciences; Springer: Dordrecht, The Netherlands, 2013; pp. 1–13. [Google Scholar]
- Williams, R.J. Chemical selection of elements by cells. Coord. Chem. Rev. 2001, 216-217, 583–595. [Google Scholar] [CrossRef]
- Lobinski, R.; Becker, J.S.; Haraguchi, H.; Sarkar, B. Metallomics: Guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Koppenaal, D.W.; Hieftje, G.M. Metallomics?an interdisciplinary and evolving field. J. Anal. At. Spectrom. 2007, 22, 855. [Google Scholar]
- González-Fernández, M.; García-Barrera, T.; Jurado, J.; Prieto-Álamo, M.J.; Pueyo, C.; López-Barea, J.; Gómez-Ariza, J.L. Integrated application of transcriptomics, proteomics, and metallomics in environmental studies. Pure Appl. Chem. 2008, 80, 2609–2626. [Google Scholar] [CrossRef]
- Luis Gómez-Ariza, J.; García-Barrera, T.; Lorenzo, F.; Arias, A. Analytical characterization of bioactive metal species in the cellular domain (metallomics) to simplify environmental and biological proteomics. Int. J. Environ. Anal. Chem. 2005, 85, 255–266. [Google Scholar] [CrossRef]
- Gómez-Ariza, J.L.; Gonzalez-Fernandez, M.; Garcia-Barrera, T.; Lopez-Barea, J.; Pueyo, C. Integration metallomics, proteomics and transcriptomics in environmental issues. Chem. List. 2008, 102. [Google Scholar]
- González-Fernandez, M.; García-Sevillano, M.A.; Jara-Biedma, R.; Navarro-Roldán, F.; García-Barrera, T.; López-Barea, J.; Pueyo, C.; Gomez-Ariza, J.L. Use of metallomics in environmental pollution assessment using mice mus musculus/mus spretus as bioindicators. Curr. Anal. Chem. 2013, 9, 229–243. [Google Scholar]
- Sanz-Medel, A. Heteroatom(isotope)-tagged genomics and proteomics. Anal. Bioanal. Chem. 2008, 390, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Templeton, D.M.; Ariese, F.; Cornelis, R.; Danielsson, L.G.; Muntau, H.; Van Leeuwen, H.P.; Łobiński, R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000). Pure Appl. Chem. 2000, 72, 1453–1470. [Google Scholar] [CrossRef]
- Drake Ii, E.N.; Sky-Peck2, H.H. Discriminant Analysis of Trace Element Distribution in Normal and Malignant Human Tissues1. CANCER Res. 1989, 49, 4210–4215. [Google Scholar]
- Kubala-Kukuś, A.; Braziewicz, J.; Banaś, D.; Majewska, U.; Góźdź, S.; Urbaniak, A. Trace element load in cancer and normal lung tissue. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 150, 193–199. [Google Scholar] [CrossRef]
- Benderli Cihan, Y.; Öztürk Yildirim, S. A discriminant analysis of trace elements in scalp hair of healthy controls and Stage-IIIB non-small cell lung cancer (NSCLC) patients. Biol. Trace Elem. Res. 2011, 144, 272–294. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Chen, H.; Xia, C. Early prediction of lung cancer based on the combination of trace element analysis in urine and an Adaboost algorithm. J. Pharm. Biomed. Anal. 2009, 49, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Callejón-Leblic, B.; Gómez-Ariza, J.L.; Pereira-Vega, A.; García-Barrera, T. Metal dyshomeostasis based biomarkers of lung cancer using human biofluids. Metallomics 2018, 10, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Wei, F.-S.; Wu, G.-P. Study on the relationship between lung cancer of indoor air pollution exposure and trace elements in blood plasma. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009. [Google Scholar]
- Kim, J.Y.; Lim, H.B.; Moon, M.H. Online Miniaturized Asymmetrical Flow Field-Flow Fractionation and Inductively Coupled Plasma Mass Spectrometry for Metalloprotein Analysis of Plasma from Patients with Lung Cancer. Anal. Chem. 2016, 88, 10198–10205. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, C.; Xu, H.; Xue, S.; Wang, Y.; Hou, Y.; Kong, Y.; Xu, Y. Combined effects of serum trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: A hospital based case-control study in China. Cancer Epidemiol. 2011, 35, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Chen, H.; Wu, T. Classification models for detection of lung cancer based on nine element distribution of urine samples. Biol. Trace Elem. Res. 2011, 142, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Y.; Feng, P.-H.; Chuang, H.-C.; Wu, S.-M.; Liu, W.-T.; Chen, K.-Y.; Liu, C.-Y.; Ho, S.-C. Trace Elements in Pleural Effusion Correlates with Smokers with Lung Cancer. Biol. Trace Elem. Res. 2017, 182, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Atukorala, S.; Basu, T.K.; Dickerson, J.W.; Donaldson, D.; Sakula, A. Vitamin A, zinc and lung cancer. Br. J. Cancer 1979, 40, 927–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zowczak, M.; Iskra, M.; Paszkowski, J.; Manczak, M.; Torlinski, L.; Wysocka, E. Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J. Trace Elem. Med. Biol. 2001, 15, 193–196. [Google Scholar] [CrossRef]
- Harlyk, C.; Mccourt, J.; Bordin, G.; Rodriguez, A.R.; Van Der Eeckhout, A. Determination of copper, zinc and iron in broncho-alveolar lavages by atomic absorption spectroscopy. J. Trace Elem. Med. Biol. 1997, 11, 137–142. [Google Scholar] [CrossRef]
- Censi, P.; Zuddas, P.; Randazzo, L.A.; Tamburo, E.; Speziale, S.; Cuttitta, A.; Punturo, R.; Aricò, P.; Santagata, R. Source and nature of inhaled atmospheric dust from trace element analyses of human bronchial fluids. Environ. Sci. Technol. 2011, 45, 6262–6267. [Google Scholar] [CrossRef] [PubMed]
- Escribano Montaner, A.; Moreno Galdó, A. Técnicas fibrobroncoscópicas especiales: lavado broncoalveolar, biopsia bronquial y biopsia transbronquial. An. Pediatría 2005, 62, 352–366. [Google Scholar] [CrossRef]
- Díez, M.; Cerdà, F.J.; Arroyo, M.; Balibrea, J.L. Use of the copper/zinc ratio in the diagnosis of lung cancer. Cancer 1989, 63, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Issell, B.F.; Macfadyen, B.V.; Gum, E.T.; Valdivieso, M.; Dudrick, S.J.; Bodey, G.P. Serum zinc levels in lung cancer patients. Cancer 1981, 47, 1845–1848. [Google Scholar] [CrossRef] [Green Version]
- Borella, P.; Bargellini, A.; Caselgrandi, E.; Piccinini, L. Observations on the use of plasma, hair and tissue to evaluate trace element status in cancer. J. Trace Elem. Med. Biol. 1997, 11, 162–165. [Google Scholar] [CrossRef]
- Schwartz, M.K. Role of Trace Elements in Cancer. Cancer Res. 1975, 35, 3481–3487. [Google Scholar] [PubMed]
- Schicha, H.; Klein, H.; Kasperek, K.; Ritzl, F. Activation analytical estimation of some trace elements in several organs and in cancerous tissue. Beitr. Path. Anat. Allg. Pathol. 1969, 138, 245–271. [Google Scholar]
- Bargagli, E.; Monaci, F.; Bianchi, N.; Bucci, C.; Rottoli, P. Analysis of trace elements in bronchoalveolar lavage of patients with diffuse lung diseases. Biol. Trace Elem. Res. 2008, 124, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Higuchi, H.; Iwano, H.; Lakritz, J.; Sera, K.; Koiwa, M.; Taguchi, K. Analysis of trace and major elements in bronchoalveolar lavage fluid of Mycoplasma bronchopneumonia in calves. Biol. Trace Elem. Res. 2012, 145, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Caffrey, J.L.; Chang, M.-H.; Dowling, N.; Lin, J.-W. Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder. Respir. Res. 2010, 11, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanoeteren, C.; Cornelis, R.; Dams, R. Evaluation of trace elements in human lung tissue. II. Recovery and analysis of inhaled particulates. Sci. Total Env. 1986, 54, 231–236. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamaya, Y.; Kanzawa, N.; Chiba, M.; Sera, K.; Asano, R. Trace and major elements status in bronchoalveolar lavage fluid in dogs with or without bronchopneumonia. Biol. Trace Elem. Res. 2008, 124, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Maier, E.A.; Dietemann-Molard, A.; Rastegar, F.; Heimburger, R.; Ruch, C.; Maier, A.; Roegel, E.; Leroy, M.J. Simultaneous determination of trace elements in lavage fluids from human bronchial alveoli by energy-dispersive X-ray fluorescence. 3. Routine analysis. Clin. Chem. 1987, 33, 2234–2239. [Google Scholar] [PubMed]
- Richter, P.; Faroon, O.; Pappas, R.S. Cadmium and cadmium/zinc ratios and tobacco-related morbidities. Int. J. Environ. Res. Public Health 2017, 14, 1154. [Google Scholar] [CrossRef] [PubMed]
- Wiernsperger, N.; Rapin, J. Trace elements in glucometabolic disorders: An update. Diabetol. Metab. Syndr. 2010, 2. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Metallomics 2014, 6, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Lobinski, R.; Edmonds, J.S.; Suzuki, K.T.; Uden, P.C. Species-selective determination of selenium compounds in biological materials (Technical report). Pure Appl. Chem. 2000, 72, 447–461. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, K.E. Selenoprotein P: An Extracellular Protein with Unique Physical Characteristics and a Role in Selenium Homeostasis. Annu. Rev. Nutr. 2005, 25, 215–235. [Google Scholar] [CrossRef] [PubMed]
- García-Sevillano, M.A.; García-Barrera, T.; Gómez-Ariza, J.L. Development of a new column switching method for simultaneous speciation of selenometabolites and selenoproteins in human serum. J. Chromatogr. A 2013, 1318, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Epplein, M.; Burk, R.F.; Cai, Q.; Hargreaves, M.K.; Blot, W.J. A prospective study of plasma selenoprotein P and lung cancer risk among low-income adults. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, K.; Gupta, S.; Durda, K.; Muszyńska, M.; Sukiennicki, G.; Jaworowska, E.; Grodzki, T.; Sulikowski, M.; Woloszczyk, P.; Wójcik, J.; et al. A Low Selenium Level Is Associated with Lung and Laryngeal Cancers. PLoS ONE 2013, 8, e59051. [Google Scholar] [CrossRef]
- Clark, L.C.; Combs, G.F., Jr.; Turnbull, B.W.; Slate, E.H.; Chalker, D.K.; Chow, J.; Davis, L.S.; Glover, R.A.; Graham, G.F.; Gross, E.G.; et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized controlled trial. J. Am. Med. Assoc. 1996, 276, 1957–1963. [Google Scholar] [CrossRef]
- Jackson, M.I.; Combs, G.F., Jr. Selenium and anticarcinogenesis: Underlying mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 718–726. [Google Scholar] [CrossRef]
- Selenius, M.; Rundlöf, A.-K.; Olm, E.; Fernandes, A.P.; Björnstedt, M. Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxidants Redox Signal. 2010, 12, 867–880. [Google Scholar] [CrossRef]
- Björnstedt, M.; Fernandes, A.P. Selenium in the prevention of human cancers. EPMA J. 2010, 1, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.-C.; Ding, X.-L.; Zhu, S.-F.; Su, L.; Cai, D.-M.; Chen, L.; He, W. Common SEP15 polymorphisms and susceptibility to cancer: A systematic review and meta-analysis. Transl. Cancer Res. 2017, 6, 886–893. [Google Scholar] [CrossRef]
- Jablonska, E.; Gromadzinska, J.; Sobala, W.; Reszka, E.; Wasowicz, W. Lung cancer risk associated with selenium status is modified in smoking individuals by Sep15 polymorphism. Eur. J. Nutr. 2008, 47, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenoproteins and human health: Insights from epidemiological data. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Poerschke, R.L.; Moos, P.J. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction. Biochem. Pharmacol. 2011, 81, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, K.; Landvik, N.E.; Lind, H.; Skaug, V.; Haugen, A.; Zienolddiny, S. A combination of functional polymorphisms in the CASP8, MMP1, IL10 and SEPS1 genes affects risk of non-small cell lung cancer. Lung Cancer 2011, 71, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Anzellotti, A.I.; Farrell, N.P. Zinc metalloproteins as medicinal targets. Chem. Soc. Rev. 2008, 37, 1629–1651. [Google Scholar] [CrossRef] [PubMed]
- Hrabeta, J.; Eckschlager, T.; Stiborova, M.; Heger, Z.; Krizkova, S.; Adam, V. Zinc and zinc-containing biomolecules in childhood brain tumors. J. Mol. Med. 2016, 94, 1199–1215. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Lang, J. The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 2018, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.-Y.; Lu, S.-X.; Xu, G.; Liu, X.-D.; Li, J.; Zhang, D.-S. Expression of metallothionein and Nrf2 pathway genes in lung cancer and cancer-surrounding tissues. World J. Surg. Oncol. 2013, 11, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Motta, L.L.; De Bastiani, M.A.; Stapenhorst, F.; Klamt, F. Oxidative stress associates with aggressiveness in lung large-cell carcinoma. Tumor Biol. 2015, 36, 4681–4688. [Google Scholar] [CrossRef]
Element | Sample | Average Concentration (µg·L−1) | FC (LC/HC) | p | Analytical Technique | Reference | |||
---|---|---|---|---|---|---|---|---|---|
LC | SD | HC | SD | ||||||
Ag | Pleural effusion | 0.2 *,1 | - | 0.18 *,1 | - | 1.11 | N.S.a | ICP-MS | [80] |
Hair | 0.547 | 0.696 | 0.722 | 1.416 | 0.76 | p < 0.05 b | ICP-MS | [73] | |
Al | Pleural effusion | 91.1 *,1 | - | 199.3 *,1 | - | 0.46 | N.S. a | ICP-MS | [80] |
Hair | 1879 | 2405 | 12820 | 4104 | 0.15 | N.SP. | ICP-AES | [24] | |
Hair | 16.46 | 16.31 | 11.366 | 12.685 | 1.45 | N.S. b | ICP-MS | [73] | |
Urine | 189.11 | 58.94 | 220.8 | 147.3 | 0.86 | p < 0.01 b | ICP-AES | [79] | |
As | Pleural effusion | 3.95 *,1 | - | 2.66 *,1 | - | 1.48 | N.S. a | ICP-MS | [80] |
Plasma | 2.49 | 1.35 | 2.74 | 1.91 | 0.91 | N.S. b | ICP-MS | [76] | |
Hair | 0.458 | 1.269 | 0.558 | 0.742 | 0.82 | N.S. b | ICP-MS | [73] | |
Au | Hair | 2.744 | 6.471 | 0.687 | 1.218 | 3.99 | p < 0.05 b | ICP-MS | [73] |
B | Hair | 277 | 386 | 1896 | 953 | 0.15 | N.SP. | ICP-AES | [24] |
Plasma | 65.79 | 38.06 | 70.13 | 35.81 | 0.94 | N.S. b | ICP-MS | [76] | |
Hair | 1.764 | 2.058 | 1.136 | 1.915 | 1.55 | N.S. b | ICP-MS | [73] | |
Ba | Hair | 96,780 | 117,900 | 156,900 | 114,800 | 0.62 | N.SP. | ICP-AES | [24] |
Plasma | 7.78 | 5.98 | 6.42 | 5.07 | 1.21 | N.S. b | ICP-MS | [76] | |
Hair | 1.461 | 1.972 | 1.396 | 1.513 | 1.05 | N.S. b | ICP-MS | [73] | |
Be | Hair | 0.012 | 0.017 | 0.038 | 0.074 | 0.32 | p < 0.05 b | ICP-MS | [73] |
Bi | Hair | 0.872 | 0.916 | 0.445 | 0.718 | 1.96 | p < 0.05 b | ICP-MS | [73] |
Ca | Serum | 75,620 | 11,140 | 93,780 | 6851 | 0.81 | N.SP. | ICP-AES | [24] |
Hair | 969,300 | 944,700 | 1,215,000 | 822,200 | 0.80 | N.SP. | ICP-AES | [24] | |
Hair | 68.25 | 61.33 | 30.812 | 18.809 | 2.22 | p < 0.05 b | ICP-MS | [73] | |
Cd | Hair | 51 | 48 | 245 | 501 | 0.21 | N.SP. | ICP-AES | [24] |
Hair | 0.209 | 0.176 | 0.316 | 0.426 | 0.66 | p < 0.05 b | ICP-MS | [73] | |
Urine | 10.06 | 2.66 | 6.69 | 5.11 | 1.50 | p < 0.01 b | ICP-AES | [79] | |
Serum | 0.18 1 | 0.04 | 0.07 1 | 0.00 | 2.50 | N.S. c | ICP-QQQ-MS | [75] | |
Urine | 1.58 1 | 0.21 | 0.55 1 | 0.07 | 2.86 | p < 0.05 c | ICP-QQQ-MS | [75] | |
BALF | 0.14 1 | 0.04 | 0.08 1 | 0.02 | 1.82 | N.S. c | ICP-QQQ-MS | [75] | |
Ce | Hair | 2.724 | 8.11 | 0.958 | 2.886 | 2.84 | p < 0.05 b | ICP-MS | [73] |
Co | Pleural effusion | 0.24 *,1 | - | 0.17 *,1 | - | 1.41 | N.S. a | ICP-MS | [80] |
Hair | 33 | 36 | 57 | 47 | 0.58 | N.SP. | ICP-AES | [24] | |
Hair | 3.131 | 11.057 | 0.392 | 0.467 | 7.99 | p < 0.05 b | ICP-MS | [73] | |
Serum | 0.46 | 0.07 | 0.27 | 0.07 | 1.71 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 0.43 | 0.02 | 0.65 | 0.05 | 0.67 | p < 0.05 c | ICP-QQQ-MS | [75] | |
BALF | 0.008 | 0.003 | 0.001 | 0.001 | 5.60 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Cr | Pleural effusion | 1.37 *,1 | - | 0.98 *,1 | - | 1.40 | N.S. a | ICP-MS | [80] |
Serum | 1706 | 1326 | 111 | 164 | 15.37 | N.SP. | ICP-AES | [24] | |
Hair | ND | - | 814 | 401 | - | N.SP. | ICP-AES | [24] | |
Plasma | 33.4 | 7.64 | 31.47 | 8.55 | 1.06 | N.S. b | ICP-MS | [76] | |
Hair | 2.492 | 4.021 | 0.934 | 1.016 | 2.67 | p < 0.05 b | ICP-MS | [73] | |
Urine | 44.61 | 14.44 | 23.08 | 20.52 | 1.93 | p < 0.01 b | ICP-AES | [79] | |
Serum | 0.96 | 0.15 | 0.51 | 0.21 | 1.89 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 1.90 | 0.17 | 1.91 | 0.27 | 0.99 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 0.30 | 0.07 | 0.19 | 0.04 | 1.58 | N.S. c | ICP-QQQ-MS | [75] | |
Cs | Hair | 0.264 | 0.284 | 0.246 | 384 | 1.07 | N.S. b | ICP-MS | [73] |
Cu | Pleural effusion | 850.2 *,1 | - | 910.5 *,1 | - | 0.93 | N.S. a | ICP-MS | [80] |
Serum | 1392 | 278 | 929 | 232 | 1.50 | N.SP. | ICP-AES | [24] | |
Hair | 9827 | 1526 | 11,540 | 1237 | 0.85 | N.SP. | ICP-AES | [24] | |
Plasma | 1256.3 | 214.7 | 1007 | 197.4 | 1.25 | p < 0.01 b | ICP-MS | [76] | |
Serum | 1518.8 | 69.9 | 1264.7 | 57.2 | 1.20 | N.S. ** | AAS | [81] | |
Hair | 24.45 | 18.47 | 15.753 | 16.73 | 1.55 | p < 0.05 b | ICP-MS | [73] | |
Urine | 73.25 | 24.04 | 29.93 | 21.87 | 2.45 | p < 0.01 b | ICP-AES | [79] | |
Serum | 1455.3 | 394.01 | 953.25 | 95.325 | 1.53 | p≤0.05 b | AAS | [82] | |
Serum | 1428.7 | 51.5 | 1251.1 | 56.0 | 1.14 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 20.5 | 2.0 | 15.2 | 1.8 | 1.35 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 4.93 | 0.96 | 3.55 | 1.54 | 1.39 | N.S. c | ICP-QQQ-MS | [75] | |
Fe | Pleural effusion | 747.7 *,1 | - | 1049 *,1 | - | 0.71 | N.S. a | ICP-MS | [80] |
Serum | 2168 | 938 | 1988 | 913 | 1.09 | N.SP. | ICP-AES | [24] | |
Hair | 23,100 | 13,550 | 16,180 | 4619 | 1.43 | N.SP. | ICP-AES | [24] | |
Plasma | 1298.2 | 642.6 | 1469.1 | 514.2 | 0.88 | N.S. b | ICP-MS | [76] | |
Hair | 9.65 | 6.64 | 25.052 | 22.93 | 0.39 | p < 0.05 b | ICP-MS | [73] | |
Urine | 309.32 | 85.05 | 310.4 | 242.1 | 1.00 | N.S. b | ICP-AES | [79] | |
Serum | 6151.7 1 | 981.3 | 2947.9 1 | 470.8 | 2.09 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 50.5 1 | 4.2 | 35.5 1 | 3.6 | 1.42 | p < 0.05 c | ICP-QQQ-MS | [75] | |
BALF | 21.7 1 | 5.1 | 39.8 1 | 20.1 | 0.55 | N.S. c | ICP-QQQ-MS | [75] | |
Ga | Hair | 0.288 | 0.59 | 0.25 | 0.23 | 1.15 | p < 0.05 b | ICP-MS | [73] |
Hg | Hair | 1.233 | 1.367 | 0.585 | 0.713 | 2.11 | p < 0.05 b | ICP-MS | [73] |
K | Hair | 15.32 | 18.66 | 10.701 | 9.25 | 1.43 | p < 0.05 b | ICP-MS | [73] |
La | Hair | 369 | 381 | 728 | 372 | 0.51 | N.SP. | ICP-AES | [24] |
Li | Hair | 0.595 | 0.67 | 571 | 0.586 | 0.00 | N.S. b | ICP-MS | [73] |
Mg | Serum | 20,160 | 3770 | 24,580 | 2655 | 0.82 | N.SP. | ICP-AES | [24] |
Hair | 77,330 | 93,220 | 141,800 | 107,900 | 0.55 | N.SP. | ICP-AES | [24] | |
Hair | 28.92 | 24.203 | 31.921 | 21.315 | 0.91 | N.S. b | ICP-MS | [73] | |
Mn | Pleural effusion | 0.83 *,1 | - | 0.87 *,1 | - | 0.95 | N.S. a | ICP-MS | [80] |
Hair | 2523 | 1898 | 1130 | 1714 | 2.23 | N.SP. | ICP-AES | [24] | |
Plasma | 5.29 | 5.06 | 4.22 | 2.88 | 1.25 | N.S. b | ICP-MS | [76] | |
Hair | 1.82 | 2.16 | 1.144 | 1.119 | 1.59 | N.S. b | ICP-MS | [73] | |
Urine | 4.74 | 3.23 | 6.95 | 5.43 | 0.68 | p < 0.01 b | ICP-AES | [79] | |
Serum | 1.74 1 | 0.08 | 1.14 1 | 0.14 | 1.52 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 3.48 1 | 0.23 | 4.09 1 | 0.58 | 0.85 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 0.69 1 | 0.09 | 0.46 1 | 0.06 | 1.51 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Mo | Pleural effusion | 1.23 *,1 | - | 1.05 *,1 | - | 1.17 | N.S. a | ICP-MS | [80] |
Hair | 158 | 221 | 132 | 75 | 1.20 | N.SP. | ICP-AES | [24] | |
Serum | 0.73 1 | 0.22 | 0.43 1 | 0.06 | 1.67 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 32.8 1 | 2.9 | 25.8 1 | 3.5 | 1.27 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 0.11 1 | 0.02 | 0.09 1 | 0.02 | 1.14 | N.S. c | ICP-QQQ-MS | [75] | |
Na | Hair | 23.316 | 30.458 | 21.378 | 15.79 | 1.09 | N.S. b | ICP-MS | [73] |
Ni | Hair | 117 | 168 | 454 | 907 | 0.26 | N.SP. | ICP-AES | [24] |
Plasma | 14.35 | 11.09 | 13.36 | 9.43 | 1.07 | N.S. b | ICP-MS | [76] | |
Hair | 1.126 | 0.8 | 0.58 | 0.547 | 1.94 | p < 0.05 b | ICP-MS | [73] | |
Urine | 59.378 | 8.21 | 21 | 12.7 | 2.83 | p < 0.01 b | ICP-AES | [79] | |
P | Hair | 176,800 | 3,891,000 | 203,100 | 44,160 | 0.87 | N.SP. | ICP-AES | [24] |
Serum | 103,700 | 17,600 | 116,100 | 32,760 | 0.89 | N.SP. | ICP-AES | [24] | |
Pb | Pleural effusion | 0.63 *,1 | - | 1.04 *,1 | - | 0.61 | N.S. a | ICP-MS | [80] |
Hair | 2364 | 2302 | 4476 | 7295 | 0.53 | N.SP. | ICP-AES | [24] | |
Plasma | 10.61 | 5.63 | 9.31 | 5.94 | 1.14 | N.S. b | ICP-MS | [76] | |
Hair | 8.577 | 19.88 | 5.09 | 6.198 | 1.69 | N.S. b | ICP-MS | [73] | |
Serum | 1.54 1 | 0.18 | 1.11 1 | 0.11 | 1.38 | N.S. c | ICP-QQQ-MS | [75] | |
Urine | 7.37 1 | 0.46 | 6.20 1 | 0.48 | 1.19 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 0.47 1 | 0.13 | 0.16 1 | 0.02 | 2.98 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Rb | Hair | 0.47 | 0.753 | 0.251 | 0.3 | 1.87 | p < 0.05 b | ICP-MS | [73] |
Rh | Hair | 0.555 | 0.614 | 0.414 | 0.486 | 1.34 | p < 0.05 b | ICP-MS | [73] |
Sb | Plasma | 4.8 | 3.36 | 5.93 | 3.55 | 0.81 | p < 0.05 b | ICP-MS | [76] |
Hair | 0.988 | 0.77 | 0.235 | 0.344 | 4.20 | p < 0.05 b | ICP-MS | [73] | |
Sc | Hair | 0.134 | 0.545 | 0.027 | 0 | 4.96 | p < 0.05 b | ICP-MS | [73] |
Se | Plasma | 69.88 | 15.88 | 77.95 | 17.38 | 0.90 | p < 0.05 b | ICP-MS | [76] |
Hair | 13.7 | 19.784 | 20.135 | 21.042 | 0.68 | N.S. b | ICP-MS | [73] | |
Urine | 15.026 | 8.33 | 5.36 | 2.78 | 2.80 | p < 0.01 b | ICP-AES | [79] | |
Serum | 191.9 1 | 6.6 | 187.8 1 | 5.9 | 1.02 | N.S. c | ICP-QQQ-MS | [75] | |
Urine | 51.6 1 | 6.4 | 36.5 1 | 4.5 | 1.42 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 3.54 1 | 0.58 | 3.43 1 | 0.52 | 1.03 | N.S. c | ICP-QQQ-MS | [75] | |
Sn | Pleural effusion | 0.36 *,1 | - | 0.33 *,1 | - | 1.09 | N.S. a | ICP-MS | [80] |
Hair | 33.94 | 24.72 | 21.509 | 19.48 | 1.58 | N.S. b | ICP-MS | [73] | |
Sr | Serum | 753 | 209 | 762 | 253 | 0.99 | N.SP. | ICP-AES | [24] |
Hair | 3037 | 2663 | 4894 | 3889 | 0.62 | N.SP. | ICP-AES | [24] | |
Plasma | 24.4 | 12.8 | 23.9 | 13.2 | 1.02 | N.S. b | ICP-MS | [76] | |
Hair | 1.91 | 1.914 | 1.455 | 1.68 | 1.31 | N.S. b | ICP-MS | [73] | |
Ti | Plasma | 48.5 | 24.5 | 44.5 | 30.1 | 1.09 | N.S. b | ICP-MS | [76] |
Hair | 12.64 | 19.128 | 2.079 | 4.46 | 6.08 | p < 0.05 b | ICP-MS | [73] | |
V | Pleural effusion | 0.22 *,1 | - | 0.36 *,1 | - | 0.61 | N.S. a | ICP-MS | [80] |
Plasma | 3.54 | 1.23 | 3.57 | 1.18 | 0.99 | N.S. b | ICP-MS | [76] | |
Hair | 1.83 | 2.29 | 1.047 | 1.74 | 1.75 | p < 0.05 b | ICP-MS | [73] | |
Serum | 0.17 | 0.04 | 0.05 | 0.02 | 3.77 | N.S. c | ICP-QQQ-MS | [75] | |
Urine | 1.34 | 0.09 | 1.31 | 0.09 | 1.02 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 1.38 | 0.03 | 1.24 | 0.04 | 1.11 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Y | Hair | 10 | 33 | ND | - | - | N.SP. | ICP-AES | [24] |
Zn | Pleural effusion | 351.7 *,1 | - | 545.7 *,1 | - | 0.64 | p < 0.05 a | ICP-MS | [80] |
Hair | 151,380 | 37,160 | 171,100 | 41,160 | 0.88 | N.SP. | ICP-AES | [24] | |
Plasma | 702.4 | 129.2 | 772.2 | 191.4 | 0.91 | p < 0.01 b | ICP-MS | [76] | |
Serum | 836.87 | 45.77 | 934.93 | 84.99 | 0.90 | N.S. ** | AAS | [81] | |
Hair | 53.22 | 60.3 | 109.763 | 95.33 | 0.48 | p < 0.05 b | ICP-MS | [73] | |
Urine | 1519.8 | 194.8 | 568.9 | 544.7 | 2.67 | p < 0.01 b | ICP-AES | [79] | |
Serum | 1136.4 | 67.0 | 917.5 1 | 75.5 | 1.24 | p < 0.05 c | ICP-QQQ-MS | [75] | |
Urine | 637.0 | 89.7 | 572.3 1 | 115.1 | 1.11 | N.S. c | ICP-QQQ-MS | [75] | |
BALF | 35.1 | 13.4 | 15.0 1 | 5.7 | 2.33 | p < 0.05. c | ICP-QQQ-MS | [75] | |
Serum | 29 | 12 | 33 | 14 | 0.88 | N.SP. | ICP-AES | [24] | |
Serum | 784.56 | 130.36 | 902.24 | 130.76 | 0.87 | p ≤ 0.05 b | AAS | [82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callejón-Leblic, B.; Arias-Borrego, A.; Pereira-Vega, A.; Gómez-Ariza, J.L.; García-Barrera, T. The Metallome of Lung Cancer and its Potential Use as Biomarker. Int. J. Mol. Sci. 2019, 20, 778. https://doi.org/10.3390/ijms20030778
Callejón-Leblic B, Arias-Borrego A, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. The Metallome of Lung Cancer and its Potential Use as Biomarker. International Journal of Molecular Sciences. 2019; 20(3):778. https://doi.org/10.3390/ijms20030778
Chicago/Turabian StyleCallejón-Leblic, Belén, Ana Arias-Borrego, Antonio Pereira-Vega, José Luis Gómez-Ariza, and Tamara García-Barrera. 2019. "The Metallome of Lung Cancer and its Potential Use as Biomarker" International Journal of Molecular Sciences 20, no. 3: 778. https://doi.org/10.3390/ijms20030778
APA StyleCallejón-Leblic, B., Arias-Borrego, A., Pereira-Vega, A., Gómez-Ariza, J. L., & García-Barrera, T. (2019). The Metallome of Lung Cancer and its Potential Use as Biomarker. International Journal of Molecular Sciences, 20(3), 778. https://doi.org/10.3390/ijms20030778