Increased TGF-β and BMP Levels and Improved Chondrocyte-Specific Marker Expression In Vitro under Cartilage-Specific Physiological Osmolarity
Abstract
:1. Introduction:
2. Results
2.1. Cartilage Physosmotic Culture Induces Specific TGF-β Isoform Expression in HACs
2.2. Physosmolarity Increases Secretion of Bioactive TGF-β2
2.3. TGF-β2 Isoform-Specific Knockdown in HAC Cultures In Vitro
2.4. TGF-β2 RNAi Combined with Physosmotic Treatment Increases COL2A1 Gene Expression in HACs
3. Discussion
4. Materials and Methods
4.1. Cartilage and Chondrocyte Isolation
4.2. Chondrocyte Expansion and Culturing
4.3. RNA Expression Analysis
4.4. Immunoblotting
4.5. TGF-β2 ELISA
4.6. TGF-β Bioassay
4.7. RNAi Experiments
4.8. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Brittberg, M. Autologous chondrocyte transplantation. Clin. Orthop. Relat. Res. 1999, 147–155. [Google Scholar] [CrossRef]
- Das, R.; Timur, U.T.; Edip, S.; Haak, E.; Wruck, C.; Weinans, H.; Jahr, H. Tgf-beta2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions. Ann. Anat. 2015, 198, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Twycross-Lewis, R.; Maffulli, N. Microfracture produces inferior outcomes to other cartilage repair techniques in chondral injuries in the paediatric knee. Br. Med. Bull. 2015, 116, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Falah, M.; Nierenberg, G.; Soudry, M.; Hayden, M.; Volpin, G. Treatment of articular cartilage lesions of the knee. Int. Orthop. 2010, 34, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, J.P.; Hall, A.C.; Gehl, K.A. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell. Physiol. 1993, 154, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Benya, P.D.; Padilla, S.R.; Nimni, M.E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978, 15, 1313–1321. [Google Scholar] [CrossRef]
- Bhalla, A.; Sankaralingam, S.; Dundas, R.; Swaminathan, R.; Wolfe, C.D.; Rudd, A.G. Influence of raised plasma osmolality on clinical outcome after acute stroke. Stroke 2000, 31, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.E.; Markway, B.D.; Weekes, K.J.; McCarthy, H.E.; Johnstone, B. Physioxia promotes the articular chondrocyte-like phenotype in human chondroprogenitor-derived self-organized tissue. Tissue Eng. Part A 2017. [Google Scholar] [CrossRef]
- Johnson, Z.I.; Shapiro, I.M.; Risbud, M.V. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: Evolving role of tonebp. Matrix Biol. 2014, 40, 10–16. [Google Scholar] [CrossRef]
- Van der Windt, A.E.; Haak, E.; Das, R.H.; Kops, N.; Welting, T.J.; Caron, M.M.; van Til, N.P.; Verhaar, J.A.; Weinans, H.; Jahr, H. Physiological tonicity improves human chondrogenic marker expression through nuclear factor of activated t-cells 5 in vitro. Arthritis. Res. Ther. 2010, 12, R100. [Google Scholar] [CrossRef]
- Van der Kraan, P.M.; Buma, P.; van Kuppevelt, T.; van den Berg, W.B. Interaction of chondrocytes, extracellular matrix and growth factors: Relevance for articular cartilage tissue engineering. Osteoarthr. Cartil. 2002, 10, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Van der Kraan, P.M.; Blaney Davidson, E.N.; Blom, A.; van den Berg, W.B. Tgf-beta signaling in chondrocyte terminal differentiation and osteoarthritis: Modulation and integration of signaling pathways through receptor-smads. Osteoarthr. Cartil. 2009, 17, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Shinozaki, M.; Hara, T.; Furuya, T.; Miyazono, K. Two major smad pathways in tgf-beta superfamily signalling. Genes Cells 2002, 7, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B.; Sporn, M.B.; Assoian, R.K.; Smith, J.M.; Roche, N.S.; Wakefield, L.M.; Heine, U.I.; Liotta, L.A.; Falanga, V.; Kehrl, J.H.; et al. Transforming growth factor type beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 1986, 83, 4167–4171. [Google Scholar] [CrossRef] [PubMed]
- Sanford, L.P.; Ormsby, I.; Gittenberger-de Groot, A.C.; Sariola, H.; Friedman, R.; Boivin, G.P.; Cardell, E.L.; Doetschman, T. Tgfbeta2 knockout mice have multiple developmental defects that are non-overlapping with other tgfbeta knockout phenotypes. Development 1997, 124, 2659–2670. [Google Scholar] [PubMed]
- Parker, W.L. Tgf-β Receptors on Human Chondrocytes: Hetero-Oligomerization and Function; McGill University: Montreal, QC, Canada, 2003. [Google Scholar]
- Heldin, C.H.; Miyazono, K.; ten Dijke, P. Tgf-beta signalling from cell membrane to nucleus through smad proteins. Nature 1997, 390, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Finnson, K.W.; Parker, W.L.; ten Dijke, P.; Thorikay, M.; Philip, A. Alk1 opposes alk5/smad3 signaling and expression of extracellular matrix components in human chondrocytes. J. Bone Miner. Res. 2008, 23, 896–906. [Google Scholar] [CrossRef]
- Blaney Davidson, E.N.; Remst, D.F.; Vitters, E.L.; van Beuningen, H.M.; Blom, A.B.; Goumans, M.J.; van den Berg, W.B.; van der Kraan, P.M. Increase in alk1/alk5 ratio as a cause for elevated mmp-13 expression in osteoarthritis in humans and mice. J. Immunol. 2009, 182, 7937–7945. [Google Scholar] [CrossRef]
- Harrison, P.E.; Ashton, I.K.; Johnson, W.E.; Turner, S.L.; Richardson, J.B.; Ashton, B.A. The in vitro growth of human chondrocytes. Cell Tissue Bank 2000, 1, 255–260. [Google Scholar] [CrossRef]
- Dennler, S.; Itoh, S.; Vivien, D.; ten Dijke, P.; Huet, S.; Gauthier, J.M. Direct binding of smad3 and smad4 to critical tgf beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998, 17, 3091–3100. [Google Scholar] [CrossRef]
- Zheng, Z.; Le, H.; Chen, W.; Shen, W.; Ouyang, H. Progress on treatment of tendinopathy with platelet-enriched plasma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016, 45, 179–186. [Google Scholar] [PubMed]
- Gebauer, M.; Saas, J.; Sohler, F.; Haag, J.; Söder, S.; Pieper, M.; Bartnik, E.; Beninga, J.; Zimmer, R.; Aigner, T. Comparison of the chondrosarcoma cell line sw1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to il-1beta. Osteoarthr. Cartil. 2005, 13, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Blaney Davidson, E.N.; Scharstuhl, A.; Vitters, E.L.; van der Kraan, P.M.; van den Berg, W.B. Reduced transforming growth factor-beta signaling in cartilage of old mice: Role in impaired repair capacity. Arthritis Res. Ther. 2005, 7, R1338–R1347. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B.; Sporn, M.B. Differential expression of the tgf-beta isoforms in embryogenesis suggests specific roles in developing and adult tissues. Mol. Reprod. Dev. 1992, 32, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tchetina, E.V.; Antoniou, J.; Tanzer, M.; Zukor, D.J.; Poole, A.R. Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin e(2) production. Am. J. Pathol. 2006, 168, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Cheifetz, S.; Bellon, T.; Cales, C.; Vera, S.; Bernabeu, C.; Massague, J.; Letarte, M. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 1992, 267, 19027–19030. [Google Scholar] [PubMed]
- Finnson, K.W.; Parker, W.L.; Chi, Y.; Hoemann, C.D.; Goldring, M.B.; Antoniou, J.; Philip, A. Endoglin differentially regulates tgf-beta-induced smad2/3 and smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. Osteoarthr. Cartil. 2010, 18, 1518–1527. [Google Scholar] [CrossRef]
- Remst, D.F.; Blaney Davidson, E.N.; Vitters, E.L.; Bank, R.A.; van den Berg, W.B.; van der Kraan, P.M. Tgf-ss induces lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through alk5 signaling. Cell Tissue Res. 2014, 355, 163–171. [Google Scholar] [CrossRef]
- Tew, S.R.; Vasieva, O.; Peffers, M.J.; Clegg, P.D. Post-transcriptional gene regulation following exposure of osteoarthritic human articular chondrocytes to hyperosmotic conditions. Osteoarthr. Cartil. 2011, 19, 1036–1046. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Tan, Q.; Xu, W.; Qi, H.; Chen, D.; Zhou, S.; Ni, Z.; Kuang, L.; Guo, J.; Huang, J. Cartilage-specific deletion of alk5 gene results in a progressive osteoarthritis-like phenotype in mice. Osteoarthr. Cartil. 2017, 25, 1868–1879. [Google Scholar] [CrossRef]
- Takada, E.; Mizuno, S. Reproduction of characteristics of extracellular matrices in specific longitudinal depth zone cartilage within spherical organoids in response to changes in osmotic pressure. Int. J. Mol. Sci. 2018, 19, 1507. [Google Scholar] [CrossRef] [PubMed]
- Tew, S.R.; Peffers, M.J.; McKay, T.R.; Lowe, E.T.; Khan, W.S.; Hardingham, T.E.; Clegg, P.D. Hyperosmolarity regulates sox9 mrna posttranscriptionally in human articular chondrocytes. Am. J. Physiol. Cell Physiol. 2009, 297, C898–C906. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, X.F. Signaling cross-talk between tgf-beta/bmp and other pathways. Cell Res. 2009, 19, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Erndt-Marino, J.; Trinkle, E.; Hahn, M.S. Hyperosmolar potassium (K+) Treatment Suppresses Osteoarthritic Chondrocyte Catabolic and Inflammatory Protein Production in a 3-Dimensional In Vitro Model. Cartilage 2017. [Google Scholar] [CrossRef] [PubMed]
- Eltawil, N.M.; Ahmed, S.; Chan, L.H.; Simpson, A.H.R.W.; Hall, A.C. Chondroprotection in models of cartilage injury by raising the temperature and osmolarity of irrigation solutions. Cartilage 2018, 9, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Van der Windt, A.E.; Jahr, H.; Farrell, E.; Verhaar, J.A.; Weinans, H.; van Osch, G.J. Calcineurin inhibitors promote chondrogenic marker expression of dedifferentiated human adult chondrocytes via stimulation of endogenous tgfbeta1 production. Tissue Eng. Part A 2010, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Van der Windt, A.E.; Haak, E.; Kops, N.; Verhaar, J.A.; Weinans, H.; Jahr, H. Inhibiting calcineurin activity under physiologic tonicity elevates anabolic but suppresses catabolic chondrocyte markers. Arthritis Rheum. 2012, 64, 1929–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounedjah, O.; Hamon, L.; Savarin, P.; Desforges, B.; Curmi, P.A.; Pastré, D. Macromolecular crowding regulates assembly of mrna stress granules after osmotic stress: New role for compatible osmolytes. J. Biol. Chem. 2012, 287, 2446–2458. [Google Scholar] [CrossRef]
- Caron, M.M.; van der Windt, A.E.; Emans, P.J.; van Rhijn, L.W.; Jahr, H.; Welting, T.J. Osmolarity determines the in vitro chondrogenic differentiation capacity of progenitor cells via nuclear factor of activated t-cells 5. Bone 2013, 53, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Rivas, G.; Minton, A.P. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 2016, 41, 970–981. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J. How cells read tgf-beta signals. Nat. Rev. Mol. Cell Biol. 2000, 1, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Van der Kraan, P.M. The changing role of tgfβ in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 2017, 13, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Massagué, J. Mechanisms of tgf-beta signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef]
- Kuznetsova, I.M.; Turoverov, K.K.; Uversky, V.N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.M.; Emans, P.J.; Coolsen, M.M.; Voss, L.; Surtel, D.A.; Cremers, A.; van Rhijn, L.W.; Welting, T.J. Redifferentiation of dedifferentiated human articular chondrocytes: Comparison of 2d and 3d cultures. Osteoarthr. Cartil. 2012, 20, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.M.; Emans, P.J.; Surtel, D.A.; van der Kraan, P.M.; van Rhijn, L.W.; Welting, T.J. Bapx-1/nkx-3.2 acts as a chondrocyte hypertrophy molecular switch in osteoarthritis. Arthritis Rheumatol. 2015, 67, 2944–2956. [Google Scholar] [CrossRef]
- Das, R.H.; van Osch, G.J.; Kreukniet, M.; Oostra, J.; Weinans, H.; Jahr, H. Effects of individual control of ph and hypoxia in chondrocyte culture. J. Orthop. Res. 2009. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The miqe guidelines: Minimum information for publication of quantitative real-time pcr experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Maglott, D.; Ostell, J.; Pruitt, K.D.; Tatusova, T. Entrez gene: Gene-centered information at ncbi. Nucleic Acids Res. 2011, 39, D52–D57. [Google Scholar] [CrossRef]
- Korchynskyi, O.; ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the id1 promoter. J. Biol. Chem. 2002, 277, 4883–4891. [Google Scholar] [CrossRef]
Gene Amplicon | ID Tm | Forward/Sense (5′–3′) nt Positions | Reverse/Antisense (5′–3′) nt Positions |
---|---|---|---|
COL2A1 44 bp | 1280 62.0/62.4 | TGGACGATCAGGCGAAACC 3570–3588 | GCTGCGGATGCTCTCAATCT 3813–3794 |
TGFB1 209 bp | 7040 61.4/60.7 | CTAATGGTGGAAACCCACAACG 334–355 | TATCGCCAGGAATTGTTGCTG 542–522 |
TGFB2 154 bp | 7042 62.3/62.9 | CCATCCCGCCCACTTTCTAC 434–453 | AGCTCAATCCGTTGTTCAGGC 587–567 |
TGFB3 121 bp | 7043 60.9/60.3 | GGAAAACACCGAGTCGGAATAC 279–300 | GCGGAAAACCTTGGAGGTAAT 399–379 |
ALK1 194 bp | 94 62.3/62.3 | CATCGCCTCAGACATGACCTC 777–797 | GTTTGCCCTGTGTACCGAAGA 970–950 |
ALK5 167 bp | 7046 60.6/61.1 | ACGGCGTTACAGTGTTTCTG 94–113 | GCACATACAAACGGCCTATCTC 260–239 |
GAPDH 101 bp | 2597 62.0/62.9 | CTGGGCTACACTGAGCACC 694–712 | AAGTGGTCGTTGAGGGCAATG 794–774 |
TGF-β2 siRNA | − | CTAATGGTGGAAACCCACAACG | TATCGCCAGGAATTGTTGCTG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan Timur, U.; Caron, M.; van den Akker, G.; van der Windt, A.; Visser, J.; van Rhijn, L.; Weinans, H.; Welting, T.; Emans, P.; Jahr, H. Increased TGF-β and BMP Levels and Improved Chondrocyte-Specific Marker Expression In Vitro under Cartilage-Specific Physiological Osmolarity. Int. J. Mol. Sci. 2019, 20, 795. https://doi.org/10.3390/ijms20040795
Tan Timur U, Caron M, van den Akker G, van der Windt A, Visser J, van Rhijn L, Weinans H, Welting T, Emans P, Jahr H. Increased TGF-β and BMP Levels and Improved Chondrocyte-Specific Marker Expression In Vitro under Cartilage-Specific Physiological Osmolarity. International Journal of Molecular Sciences. 2019; 20(4):795. https://doi.org/10.3390/ijms20040795
Chicago/Turabian StyleTan Timur, Ufuk, Marjolein Caron, Guus van den Akker, Anna van der Windt, Jenny Visser, Lodewijk van Rhijn, Harrie Weinans, Tim Welting, Pieter Emans, and Holger Jahr. 2019. "Increased TGF-β and BMP Levels and Improved Chondrocyte-Specific Marker Expression In Vitro under Cartilage-Specific Physiological Osmolarity" International Journal of Molecular Sciences 20, no. 4: 795. https://doi.org/10.3390/ijms20040795
APA StyleTan Timur, U., Caron, M., van den Akker, G., van der Windt, A., Visser, J., van Rhijn, L., Weinans, H., Welting, T., Emans, P., & Jahr, H. (2019). Increased TGF-β and BMP Levels and Improved Chondrocyte-Specific Marker Expression In Vitro under Cartilage-Specific Physiological Osmolarity. International Journal of Molecular Sciences, 20(4), 795. https://doi.org/10.3390/ijms20040795