Processivity vs. Beating: Comparing Cytoplasmic and Axonemal Dynein Microtubule Binding Domain Association with Microtubule
Abstract
:1. Introduction
2. Results
2.1. Electrostatic Features of Axonemal and Cytoplasmic MTBDs
2.2. Comparing the Number of Contacts of MTBD-E-Hooks for Axonemal and Cytoplasmic MTBDs at Various Distances
2.3. Conformational Changes of Axonemal and Cytoplasmic MTBDs
2.4. MTBDs Cluster Analysis
2.5. E-Hooks Cluster Analysis
2.6. Binding Free Energy
3. Materials and Methods
3.1. Molecular Dynamics (MD) Simulations
3.2. Electrostatic Potential, Electrostatic Field Lines, and Binding Energy
3.3. Analysis of Contacts
3.4. Analysis of Conformational States
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VDW | Van der Waals |
Å | Angstrom |
RMSF | Root-Mean-Square Fluctuation |
PBE | Poisson-Boltzmann equation |
MM/GB | Molecular Mechanics Generalized Born |
MT | Microtubule |
RMSD | Root-Mean-Square Deviation |
PDB | Protein Data Bank |
MD | Molecular Dynamics |
E-hook | Intrinsic disordered region in C-terminal domain of tubulins |
MTBD | Microtubule Binding Domain |
ATP | Adenosine Triphosphate |
KT/e | KT/e is electrostatic potential unit. |
Ns | Nano second |
Elect | Electrostatics |
VMD | Visual Molecular Dynamics |
NMR | Nuclear Magnetic Resonance |
NAMD | Nanoscale Molecular dynamics |
CHARMM | Chemistry at Harvard Macromolecular Mechanics |
References
- Verhey, K.J.; Hammond, J.W. Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 2009, 10, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Sakato, M.; King, S.M. Design and regulation of the AAA+ microtubule motor dynein. J. Struct. Biol. 2004, 146, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Cianfrocco, M.A.; DeSantis, M.E.; Leschziner, A.E.; Reck-Peterson, S.L. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol. 2015, 31, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Heissler, S.M.; Sellers, J.R. Various Themes of Myosin Regulation. J. Mol. Biol. 2016, 428, 1927–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 2002, 219, 115–155. [Google Scholar] [PubMed]
- Yagi, T.; Uematsu, K.; Liu, Z.; Kamiya, R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J. Cell Sci. 2009, 122, 1306–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, Y.S.; Yagi, T.; Harris, S.A.; Ohki, S.Y.; Yura, K.; Shimizu, Y.; Honda, S.; Kamiya, R.; Burgess, S.A.; Tanokura, M. Structure of the microtubule-binding domain of flagellar dynein. Structure 2014, 22, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.J.; Kon, T.; Knight, P.J.; Sutoh, K.; Burgess, S.A. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 2013, 14, 713–726. [Google Scholar] [CrossRef] [PubMed]
- King, S.M. Axonemal Dynein Arms. Cold Spring Harb. Perspect. Biol. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Fossella, J.; Samant, S.A.; Silver, L.M.; King, S.M.; Vaughan, K.T.; Olds-Clarke, P.; Johnson, K.A.; Mikami, A.; Vallee, R.B.; Pilder, S.H. An axonemal dynein at the Hybrid Sterility 6 locus: implications for t haplotype-specific male sterility and the evolution of species barriers. Mamm. Genome 2000, 11, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, I.R.; Garbarino, J.E.; Tan, C.E.; Reck-Peterson, S.L.; Vale, R.D.; Carter, A.P. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 2005, 280, 23960–23965. [Google Scholar] [CrossRef] [PubMed]
- Redwine, W.B.; Hernandez-Lopez, R.; Zou, S.; Huang, J.; Reck-Peterson, S.L.; Leschziner, A.E. Structural basis for microtubule binding and release by dynein. Science 2012, 337, 1532–1536. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.A.; Walker, M.L.; Sakakibara, H.; Knight, P.J.; Oiwa, K. Dynein structure and power stroke. Nature 2003, 421, 715–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kon, T.; Imamula, K.; Roberts, A.J.; Ohkura, R.; Knight, P.J.; Gibbons, I.R.; Burgess, S.A.; Sutoh, K. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 2009, 16, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, L.; de la Torre, J.; Maccioni, R.B.; Avila, J. Involvement of the carboxyl-terminal domain of tubulin in the regulation of its assembly. Proc. Natl. Acad. Sci. USA 1984, 81, 5989–5993. [Google Scholar] [CrossRef] [PubMed]
- Aiken, J.; Sept, D.; Costanzo, M.; Boone, C.; Cooper, J.A.; Moore, J.K. Genome-wide analysis reveals novel and discrete functions for tubulin carboxy-terminal tails. Curr. Biol. 2014, 24, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Zanic, M.; Stear, J.H.; Hyman, A.A.; Howard, J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 2009, 4, e7585. [Google Scholar] [CrossRef] [PubMed]
- Roll-Mecak, A.; Vale, R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 2008, 451, 363–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirajuddin, M.; Rice, L.M.; Vale, R.D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 2014, 16, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakamper, S.; Meyhofer, E. The E-hook of tubulin interacts with kinesin’s head to increase processivity and speed. Biophys. J. 2005, 89, 3223–3234. [Google Scholar] [CrossRef] [PubMed]
- Shojania Feizabadi, M.; Janakaloti Narayanareddy, B.R.; Vadpey, O.; Jun, Y.; Chapman, D.; Rosenfeld, S.; Gross, S.P. Microtubule C-Terminal Tails Can Change Characteristics of Motor Force Production. Traffic 2015, 16, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Johnson, M.L.; Stukenberg, P.T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr. Biol. 2008, 18, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Ramey, V.H.; Wang, H.W.; Nakajima, Y.; Wong, A.; Liu, J.; Drubin, D.; Barnes, G.; Nogales, E. The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule. Mol. Biol. Cell 2011, 22, 457–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinrichs, M.H.; Jalal, A.; Brenner, B.; Mandelkow, E.; Kumar, S.; Scholz, T. Tau protein diffuses along the microtubule lattice. J. Biol. Chem. 2012, 287, 38559–38568. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sheetz, M.P. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 2000, 78, 1955–1964. [Google Scholar] [CrossRef]
- McKenney, R.J.; Huynh, W.; Vale, R.D.; Sirajuddin, M. Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J. 2016, 35, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Alper, J.D.; Decker, F.; Agana, B.; Howard, J. The motility of axonemal dynein is regulated by the tubulin code. Biophys. J. 2014, 107, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
- Tajielyato, N.; Li, L.; Peng, Y.; Alper, J.; Alexov, E. E-hooks provide guidance and a soft landing for the microtubule binding domain of dynein. Sci. Rep. 2018, 8, 13266. [Google Scholar] [CrossRef] [PubMed]
- Brokaw, C.J. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics. Cytoskeleton (Hoboken) 2014, 71, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Brokaw, C.J. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves. Cell Motil. Cytoskeleton 2002, 53, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Brokaw, C.J. Stochastic simulation of processive and oscillatory sliding using a two-headed model for axonemal dynein. Cell Motil. Cytoskeleton 2000, 47, 108–119. [Google Scholar] [CrossRef]
- Murase, M. Simulation of ciliary beating by an excitable dynein model: oscillations, quiescence and mechano-sensitivity. J. Theor. Biol. 1990, 146, 209–231. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Alexov, E. DelPhiPKa web server: predicting pKa of proteins, RNAs and DNAs. Bioinformatics 2016, 32, 614–615. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Lowe, J.; Li, H.; Downing, K.H.; Nogales, E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 2001, 313, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Asenjo, A.B.; Chatterjee, C.; Tan, D.; DePaoli, V.; Rice, W.J.; Diaz-Avalos, R.; Silvestry, M.; Sosa, H. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep. 2013, 3, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 2006, 7, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.T.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kale, L.V.; Skeel, R.D.; Schulten, K. NAMD: A parallel, object oriented molecular dynamics program. Int. J. High Perform. Comput. Appl. 1996, 10, 251–268. [Google Scholar] [CrossRef]
- Onufriev, A.; Case, D.A.; Bashford, D. Effective Born radii in the generalized Born approximation: the importance of being perfect. J. Comput. Chem. 2002, 23, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Li, L.; Alper, J.; Alexov, E. Cytoplasmic dynein binding, run length, and velocity are guided by long-range electrostatic interactions. Sci. Rep. 2016, 6, 31523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, C.; Sarkar, S.; Zhang, J.; Witham, S.; Zhang, Z.; Wang, L.; Smith, N.; Petukh, M.; Alexov, E. DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys. 2012, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W.F.; Mark, A.E. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
Cytoplasmic MTBD | Number of Contacts | Percentage of Contacts |
LH1 | 401 | 70.97% |
H1 | 5 | 0.88% |
H2 | 0 | 0.00% |
H3 | 0 | 0.00% |
H4 | 0 | 0.00% |
H5 | 159 | 28.14% |
H6 | 0 | 0.00% |
Axonemal MTBD | Number of Contacts | Percentage of Contacts |
LH1 | 95 | 0.82% |
H1 | 0 | 0.00% |
H2 | 1871 | 16.10% |
H3 | 0 | 0.00% |
H4 | 0 | 0.00% |
H5 | 1081 | 9.30% |
H6 | 0 | 0.00% |
Flap | 4780 | 41.11% |
LF | 3799 | 32.67% |
(a) | ||||||
Cytoplasmic MTBD residues interacting with E-hook B | MTBD in bound state | MTBD in 5 A° | MTBD in 15 A° | MTBD in 25 A° | MTBD in 35 A° | |
LYS3295 | 16 | 7 | 1 | 0 | 0 | |
SER3296 | 16 | 0 | 1 | 0 | 0 | |
ILE3297 | 6 | 0 | 0 | 0 | 0 | |
LYS3298 | 363 | 505 | 334 | 97 | 4 | |
LYS3299 | 4 | 0 | 30 | 162 | 14 | |
GLN3300 | 1 | 0 | 58 | 68 | 2 | |
(b) | ||||||
Cytoplasmic MTBD residues interacting with E-hook D | MTBD in bound state | MTBD in 5 A° | MTBD in 15 A° | |||
ILE3361 | 4 | 1 | 0 | |||
LYS3364 | 141 | 39 | 68 | |||
LYS3367 | 14 | 28 | 125 | |||
(c) | ||||||
Axonemal MTBD residues interacting with E-hook B | MTBD in bound state | MTBD in 5 A° | MTBD in 15 A° | MTBD in 25 A° | MTBD in 35 A° | |
THR22 | 14 | 5 | 0 | 0 | 0 | |
LEU23 | 8 | 0 | 0 | 0 | 0 | |
LYS24 | 73 | 517 | 16 | 50 | 5 | |
THR29 | 0 | 0 | 0 | 4 | 4 | |
(d) | ||||||
Axonemal MTBD residues interacting with E-hook D | MTBD in bound state | MTBD in 5 A° | MTBD in 15 A° | MTBD in 25 A° | MTBD in 35 A° | MTBD in 45 A° |
ARG42 | 51 | 0 | 0 | 0 | 0 | 241 |
ARG43 | 1820 | 0 | 155 | 0 | 0 | 0 |
MET51 | 659 | 0 | 0 | 0 | 0 | 0 |
LYS52 | 209 | 0 | 1 | 0 | 0 | 0 |
GLY53 | 233 | 1 | 13 | 0 | 0 | 0 |
VAL54 | 388 | 0 | 4 | 0 | 0 | 0 |
LYS55 | 1715 | 7 | 11 | 0 | 26 | 0 |
PRO56 | 595 | 0 | 0 | 0 | 0 | 0 |
ALA57 | 966 | 0 | 0 | 0 | 2 | 0 |
ARG58 | 2126 | 0 | 1269 | 256 | 0 | 177 |
VAL59 | 4 | 0 | 1 | 0 | 0 | 0 |
LYS60 | 35 | 0 | 563 | 15 | 628 | 104 |
ASP61 | 1 | 2 | 2 | 1 | 1 | 5 |
THR62 | 0 | 0 | 2 | 25 | 1 | 0 |
ALA63 | 1 | 213 | 37 | 37 | 3 | 1 |
SER64 | 0 | 457 | 20 | 6 | 147 | 27 |
GLY65 | 0 | 10 | 3 | 3 | 0 | 5 |
ARG66 | 1629 | 4492 | 1352 | 105 | 1189 | 620 |
MET67 | 18 | 1 | 2 | 1 | 0 | 1 |
VAL68 | 0 | 6 | 0 | 1 | 0 | 4 |
LYS103 | 208 | 5 | 56 | 7 | 0 | 0 |
ARG105 | 774 | 0 | 0 | 0 | 0 | 0 |
PRO106 | 24 | 0 | 0 | 0 | 0 | 0 |
PHE107 | 75 | 0 | 3 | 1 | 0 | 0 |
3 (a) Cytoplasmic MTBD–microtubule distance = 0 Å | |||||
Free-E-hook | Cluster1 (51.2%) | Cluster2 (20.85) | Cluster3 (8.6%) | Cluster4 (7.95%) | Cluster5 (4.45%) |
Cluster1 (59.8%) | 5 | 5.2 | 5.17 | 4.79 | 5.86 |
Cluster2 (8.1%) | 3.83 | 3.56 | 3.58 | 3.33 | 4.1 |
Cluster3 (6.5%) | 3.32 | 3.27 | 3.21 | 4.08 | 5.39 |
Cluster4 (5.3%) | 2.9 | 3 | 3.03 | 3.5 | 5.57 |
Cluster5 (4.7%) | 2.68 | 2.28 | 2.31 | 3.06 | 4.3 |
3 (b) Cytoplasmic MTBD–microtubule distance = 25 Å | |||||
Free-E-hook | Cluster1 (33%) | Cluster2 (19.1%) | Cluster3 (12.65%) | Cluster4 (9.32%) | Cluster5 (5.05%) |
Cluster1 (59.8%) | 7.04 | 4.91 | 6.31 | 6.35 | 5.82 |
Cluster2 (8.1%) | 6.67 | 3.28 | 4.66 | 5.68 | 5.94 |
Cluster3 (6.5%) | 6.35 | 3.37 | 5.98 | 6.29 | 6.36 |
Cluster4 (5.3%) | 6.37 | 2.87 | 5.5 | 5.94 | 6.01 |
Cluster5 (4.7%) | 5.63 | 2.8 | 5.29 | 5.65 | 5.9 |
3 (c) Axonemal MTBD–microtubule distance = 0 Å | |||||
Free-E-hook | Cluster1 (31.54%) | Cluster2 (16.12%) | Cluster3 (7.44%) | Cluster4 (4.94%) | Cluster5 (4.24%) |
Cluster1 (59.8%) | 4.35 | 5.83 | 5.58 | 4.51 | 5.39 |
Cluster2 (8.1%) | 3.25 | 3.96 | 4.62 | 4.99 | 4.28 |
Cluster3 (6.5%) | 2.88 | 4.08 | 5.69 | 3.88 | 5.17 |
Cluster4 (5.3%) | 2.24 | 3.89 | 4.92 | 3.14 | 4.69 |
Cluster5 (4.7%) | 3.47 | 4.28 | 5.53 | 4.72 | 4.9 |
3 (d) Axonemal MTBD–microtubule distance = 25 Å | |||||
Free-E-hook | Cluster1 (36.15%) | Cluster2 (27.3%) | Cluster3 (16.35%) | Cluster4 (6.65%) | Cluster5 (4.8%) |
Cluster1 (59.8%) | 5.01 | 4.98 | 5.18 | 4.87 | 4.73 |
Cluster2 (8.1%) | 3.6 | 3.84 | 4.25 | 3.5 | 3.57 |
Cluster3 (6.5%) | 2.21 | 3.42 | 2.95 | 2.72 | 2.67 |
Cluster4 (5.3%) | 2.2 | 2.87 | 2.66 | 2.37 | 2.15 |
Cluster5 (4.7%) | 3.18 | 2.97 | 3.62 | 2.86 | 3.35 |
Binding Free Energy | Complex | MTBD | Free-Tubulins | Δbinding ± Standard Deviation |
---|---|---|---|---|
Cytoplasmic MTBD–microtubule with E-hooks | −22,243.6 | −3906.06 | −18,296.7 | −40.84 ± 7.56 |
Cytoplasmic MTBD–microtubule without E-hooks | −20,113.2 | −3906.06 | −16,227.9 | 20.76 ± 6.71 |
Axonemal MTBD–microtubule with E-hooks | −21,851.2 | −3520.25 | −18,302.2 | −28.75 ± 6.33 |
Axonemal MTBD–microtubule without E-hooks | −19,726 | −3520.25 | −16,230.8 | 25.05 ± 10.29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajielyato, N.; Alexov, E. Processivity vs. Beating: Comparing Cytoplasmic and Axonemal Dynein Microtubule Binding Domain Association with Microtubule. Int. J. Mol. Sci. 2019, 20, 1090. https://doi.org/10.3390/ijms20051090
Tajielyato N, Alexov E. Processivity vs. Beating: Comparing Cytoplasmic and Axonemal Dynein Microtubule Binding Domain Association with Microtubule. International Journal of Molecular Sciences. 2019; 20(5):1090. https://doi.org/10.3390/ijms20051090
Chicago/Turabian StyleTajielyato, Nayere, and Emil Alexov. 2019. "Processivity vs. Beating: Comparing Cytoplasmic and Axonemal Dynein Microtubule Binding Domain Association with Microtubule" International Journal of Molecular Sciences 20, no. 5: 1090. https://doi.org/10.3390/ijms20051090
APA StyleTajielyato, N., & Alexov, E. (2019). Processivity vs. Beating: Comparing Cytoplasmic and Axonemal Dynein Microtubule Binding Domain Association with Microtubule. International Journal of Molecular Sciences, 20(5), 1090. https://doi.org/10.3390/ijms20051090