Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants
Abstract
:1. Introduction
2. Results
2.1. Prediction of Transcription Factor Binding Sites
2.2. The Common TFs and REs
2.3. Type-Specific and Species-Specific TFs and REs
2.4. Isoform-Specific TFs and REs
2.5. GO Classification
3. Discussion
3.1. Putative Involvement of Msrs in Regulation of Plant Growth and Development
3.2. Predictions vs. Experimental Data
3.2.1. The Involvement of MYB and NAC Family TFs in the Regulation of Msr Gene Expression
3.2.2. Hormone-Dependent Regulation of Msr Gene Expression
3.2.3. Seed Traits Control
3.3. Perspectives
4. Materials and Methods
4.1. Material
4.2. The Search for Transcription Factor Binding Sites and Responsive Elements
4.3. GO-Based Functional Classification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ID | identification number |
GO | gene ontology |
JA | jasmonic acid |
MetSO | methionine sulfoxide |
Msr | methionine sulfoxide reductase |
MYB | v-myb avian myeloblastosis viral oncogene homolog |
NAC | no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon |
NCBI | National Center for Biotechnology Information |
REs | Responsive elements |
TFs | Transcription factors |
References
- Brot, N.; Weissbach, L.; Werth, J.; Weissbach, H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. USA 1981, 78, 2155–2158. [Google Scholar] [CrossRef] [PubMed]
- Grimaud, R.; Ezraty, B.; Mitchell, K.J.; Lafitte, D.; Briand, C.; Derrick, P.J.; Barras, F. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 2001, 276, 48915–48920. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Johnson, L.C.; Weissbach, H.; Brot, N.; Lively, M.O.; Lowther, T.W. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc. Natl. Acad. Sci. USA 2007, 104, 9597–9602. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, F.; Vandekerckhove, J.; Gevaert, K. Redox proteomics of protein-bound methionine oxidation. Mol. Cell. Proteom. 2011, 10, M110.006866. [Google Scholar] [CrossRef]
- Tarrago, L.; Laugier, E.; Rey, P. Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: Gene organization, reduction mechanisms, and physiological roles. Mol. Plant 2009, 2, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J. Methionine sulfoxide reductases: Ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim. Biophys. Acta 2005, 1703, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Rouhier, N.; Vieira Dos Santos, C.; Tarrago, L.; Rey, P. Plant methionine sulfoxide reductase A and B multigenic families. Photosynth. Res. 2006, 89, 247–262. [Google Scholar] [CrossRef]
- Rey, P.; Tarrago, L. Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants 2018, 7, 114. [Google Scholar] [CrossRef]
- Boschi-Muller, S.; Olry, A.; Antoine, M.; Branlant, G. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta 2005, 1703, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Jacques, S.; Ghesquière, B.; De Bock, P.J.; Demol, H.; Wahni, K.; Willems, P.; Messens, J.; Van Breusegem, F.; Gevaert, K. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress. Mol. Cell. Proteom. 2015, 14, 1217–1229. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Lee, S.H.; Chieh, P.S.; Lin, C.S.; Wang, Y.C.; Chan, M.T. Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress. Plant Cell Physiol. 2012, 53, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.E.; Hong, S.W.; Lee, Y.; Koh, E.K.; Kim, K.; Seo, Y.W.; Chung, N.; Jeong, M.; Jang, C.S.; Lee, B.; et al. Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in Arabidopsis. Plant Sci. 2005, 169, 1030–1036. [Google Scholar] [CrossRef]
- Romero, H.M.; Pell, E.J.; Tien, M. Expression profile analysis and biochemical properties of the peptide methionine sulfoxide reductase A (PMSRA) gene family in Arabidopsis. Plant Sci. 2006, 170, 705–714. [Google Scholar] [CrossRef]
- Danon, A.; Coll, N.S.; Apel, K. Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2006, 103, 17036–17041. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.J.; Moskovitz, J.; Salamini, F.; Bartels, D. Reverse genetic approaches in plants and yeast suggest a role for novel, evolutionarily conserved, selenoprotein-related genes in oxidative stress defense. Mol. Genet. Genom. 2002, 267, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Nandi, A.K. Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant Mol. Biol. 2017, 93, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Kwon, S.I.; Bae, M.S.; Cho, E.J.; Park, O.K. Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in Arabidopsis. Plant Cell Physiol. 2007, 48, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Vieira Dos Santos, C.; Cuiné, S.; Rouhier, N.; Rey, P. The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol. 2005, 138, 909–922. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Y.; Wang, Y.; Chen, Y.; Chu, C. OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 2009, 230, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.T.; Lee, T.M. Abscisic acid-dependent nitric oxide pathway and abscisic acid-independent nitric oxide routes differently modulate NaCl stress induction of the gene expression of methionine sulfoxide reductase A and B in rice roots. J. Plant Physiol. 2018, 231, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.A.; Pena, L.B.; Benavides, M.P.; Gallego, S.M. Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis. Biochimie 2016, 131, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Memgmeng, M.; Wang, G.; Quian, M.; Chen, Y.; Zheng, L.; Zhang, H.; Hu, Z.; Shen, Z.; Xia, Y. A methionine-R-sulfoxide reductase, OsMSRB5, is required for rice defense against copper toxicity. Environ. Exp. Bot. 2018, 153, 45–53. [Google Scholar] [CrossRef]
- Sadanandom, A.; Poghosyan, Z.; Faibairn, D.J.; Murphy, D.J. Differential regulation of plastidial and cytosolic izoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiol. 2000, 123, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Begara-Morales, J.C.; Sánchez-Calvo, B.; Luque, F.; Leyva-Pérez, M.O.; Leterrier, M.; Corpas, F.J.; Barroso, J.B. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol. 2014, 55, 1080–1095. [Google Scholar] [CrossRef] [PubMed]
- Mata-Pérez, C.; Sánchez-Calvo, B.; Begara-Morales, J.C.; Luque, F.; Jiménez-Ruiz, J.; Padilla, M.N.; Fierro-Risco, J.; Valderrama, R.; Fernández-Ocaña, A.; Corpas, F.J.; et al. Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Front. Plant Sci. 2015, 6, 122. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, U.; Murphy, D.J.; Mullineaux, P.M. Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell 2004, 16, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Shahmuradov, I.A.; Umarov, R.K.; Solovyev, V.V. TSSPlant: A new tool for prediction of plant Pol II promoters. Nucleic Acids Res. 2017, 45, e65. [Google Scholar] [CrossRef]
- Porto, M.S.; Pinheiro, M.P.; Batista, V.G.; dos Santos, R.C.; Filho Pde, A.; de Lima, L.M. Plant promoters: An approach of structure and function. Mol. Biotechnol. 2014, 56, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Franco-Zorrilla, J.M.; López-Vidriero, I.; Carrasco, J.L.; Godoy, M.; Vera, P.; Solano, R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl. Acad. Sci. USA 2014, 111, 2367–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Li, M.Z.; Wang, S.M.; Yin, H.J. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int. J. Mol. Sci. 2018, 19, 1634. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB transcription factor genes as regulators for plant responses: An overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Sharoni, A.M.; Kikuchi, S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 2013, 4, 248. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, I.; Vermeirssen, V.; Van Aken, O.; Vandepoele, K.; Murcha, M.W.; Law, S.R.; Inzé, A.; Ng, S.; Ivanova, A.; Rombaut, D.; et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 2013, 25, 3472–3490. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Wang, B.; Wu, F.; Yan, J.; Li, L.; Wang, C.; Wang, Y.; Yang, B.; Jiang, Y.Q. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants. Biochem. Biophys. Res. Commun. 2014, 454, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Tong, T.; Li, X.; Chen, Q.; Dai, M.; Niu, F.; Yang, M.; Deyholos, M.K.; Yang, B.; Jiang, Y.Q. A Novel NAC-Type Transcription Factor, NAC87, from Oilseed Rape Modulates Reactive Oxygen Species Accumulation and Cell Death. Plant Cell Physiol. 2018, 59, 290–303. [Google Scholar] [CrossRef]
- Chou, M.L.; Liao, W.Y.; Wei, W.C.; Li, A.Y.; Chu, C.Y.; Wu, C.L.; Liu, C.L.; Fu, T.H.; Lin, L.F. The Direct Involvement of Dark-Induced Tic55 Protein in Chlorophyll Catabolism and Its Indirect Role in the MYB108-NAC Signaling Pathway during Leaf Senescence in Arabidopsis thaliana. Int. J. Mol. Sci. 2018, 19, 1854. [Google Scholar] [CrossRef] [PubMed]
- Cartharius, K.; Frech, K.; Grote, K.; Klocke, B.; Haltmeier, M.; Klingenhoff, A.; Frisch, M.; Bayerlein, M.; Werner, T. MatInspector and beyond: Promoter analysis based on transcription factor binding sites. Bioinformatics 2005, 21, 2933–2942. [Google Scholar] [CrossRef]
- Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999, 27, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 2013, 8, 1551–1566. [Google Scholar] [CrossRef]
- Ogawa, E.; Yamada, Y.; Sezaki, N.; Kosaka, S.; Kondo, H.; Kamata, N.; Abe, M.; Komeda, Y.; Takahashi, T. ATML1 and PDF2 Play a Redundant and Essential Role in Arabidopsis Embryo Development. Plant Cell Physiol. 2015, 56, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Hawker, N.P.; Bowman, J.L. Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol. 2004, 135, 2261–2270. [Google Scholar] [CrossRef]
- Curaba, J.; Herzog, M.; Vachon, G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1. Plant J. 2003, 33, 305–317. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, L.; Xu, B.; Yang, L.; Ling, Q.; Wang, H.; Huang, H. Genetic interactions between leaf polarity-controlling genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis leaf patterning. Plant Cell Physiol. 2007, 48, 724–735. [Google Scholar] [CrossRef]
- Castorina, G.; Fox, S.; Tonelli, C.; Galbiati, M.; Conti, L. A novel role for STOMATAL CARPENTER 1 in stomata patterning. BMC Plant Biol. 2016, 16, 172. [Google Scholar] [CrossRef]
- Fitter, D.W.; Martin, D.J.; Copley, M.J.; Scotland, R.W.; Langdale, J.A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J. 2002, 31, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.U.; Algreen-Petersen, R.G.; Hoedl, M.; Jurkiewicz, A.; Cvitanich, C.; Braunschweig, U.; Schauser, L.; Oh, S.A.; Twell, D.; Jensen, E.Ø. The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J. Exp. Bot. 2007, 58, 3657–3670. [Google Scholar] [CrossRef]
- Ashe, M.; de Bruin, R.A.; Kalashnikova, T.; McDonald, W.H.; Yates, J.R., 3rd; Wittenberg, C. The SBF- and MBF-associated protein Msa1 is required for proper timing of G1-specific transcription in Saccharomyces cerevisiae. J. Biol. Chem. 2008, 283, 6040–6049. [Google Scholar] [CrossRef]
- Maurya, J.P.; Sethi, V.; Gangappa, S.N.; Gupta, N.; Chattopadhyay, S. Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development. Plant J. 2015, 83, 439–450. [Google Scholar] [CrossRef]
- Nietzsche, M.; Guerra, T.; Alseekh, S.; Wiermer, M.; Sonnewald, S.; Fernie, A.R.; Börnke, F. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1. Plant Physiol. 2018, 176, 1773–1792. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Wheatley, K.; Hanzawa, Y.; Wright, L.; Mizoguchi, M.; Song, H.R.; Carré, I.A.; Coupland, G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2002, 2, 629–641. [Google Scholar] [CrossRef]
- Galego, L.; Almeida, J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 2002, 16, 880–891. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.K.; Irish, V.F. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiol. 2006, 140, 1095–1108. [Google Scholar] [CrossRef]
- Verdonk, J.C.; Haring, M.A.; van Tunen, A.J.; Schuurink, R.C. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 2005, 17, 1612–1624. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.; Broholm, S.; Becker, A. CRABS CLAW Acts as a Bifunctional Transcription Factor in Flower Development. Front. Plant Sci. 2018, 29, 835. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Franks, R.G.; Levin, J.Z.; Liu, Z. Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. Plant Cell 2004, 16, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Aukerman, M.J.; Sakai, H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 2003, 15, 2730–2741. [Google Scholar] [CrossRef]
- Yan, Y.; Shen, L.; Chen, Y.; Bao, S.; Thong, Z.; Yu, H. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev. Cell 2014, 30, 437–448. [Google Scholar] [CrossRef]
- Stracke, R.; Ishihara, H.; Huep, G.; Barsch, A.; Mehrtens, F.; Niehaus, K.; Weisshaar, B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 2007, 50, 660–677. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Sheen, J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 1998, 10, 75–89. [Google Scholar] [CrossRef]
- Shin, R.; Burch, A.Y.; Huppert, K.A.; Tiwari, S.B.; Murphy, A.S.; Guilfoyle, T.J.; Schachtman, D.P. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 2007, 19, 2440–2453. [Google Scholar] [CrossRef]
- Gibbs, D.J.; Coates, J.C. AtMYB93 is an endodermis-specific transcriptional regulator of lateral root development in arabidopsis. Plant Signal. Behav. 2014, 9, e970406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, P.J.; Park, C.M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol. 2010, 186, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Jiang, N.; Zhou, X.; Hou, X.; Yang, G.; Meng, J.; Luan, Y. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta 2018, 248, 1487–1503. [Google Scholar] [CrossRef]
- Park, M.Y.; Kang, J.Y.; Kim, S.Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol. Cells 2011, 31, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Kim, S.Y.; Hyeon do, Y.; Kim, D.H.; Dong, T.; Park, Y.; Jin, J.B.; Joo, S.H.; Kim, S.K.; Hong, J.C.; et al. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 2013, 25, 4708–4724. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.P.; Wang, X.F.; Zhang, J.; Ma, F.; Hao, Y.J. MdMYB58 modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant Cell Physiol. 2018, 59, 2476–2489. [Google Scholar] [CrossRef]
- Ogo, Y.; Kobayashi, T.; Nakanishi, I.R.; Nakanishi, H.; Kakei, Y.; Takahashi, M.; Toki, S.; Mori, S.; Nishizawa, N.K. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J. Biol. Chem. 2008, 283, 13407–13417. [Google Scholar] [CrossRef]
- Devaiah, B.N.; Madhuvanthi, R.; Karthikeyan, A.S.; Raghothama, K.G. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant 2009, 2, 43–58. [Google Scholar] [CrossRef]
- Wasternack, C. Action of jasmonates in plant stress responses and development—Applied aspects. Biotechnol. Adv. 2014, 32, 31–39. [Google Scholar] [CrossRef]
- Jung, C.; Seo, J.S.; Han, S.W.; Koo, Y.J.; Kim, C.H.; Song, S.I.; Nahm, B.H.; Choi, Y.D.; Cheong, J.J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 2008, 146, 623–635. [Google Scholar] [CrossRef]
- Dai, C.; Wang, M.H. Characterization and functional analysis of methionine sulfoxide reductase A gene family in tomato. Mol. Biol. Rep. 2012, 39, 6297–6308. [Google Scholar] [CrossRef]
- Kang, H.G.; Singh, K.B. Characterization of salicylic acid-responsive, arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defects. Plant J. 2000, 21, 329–339. [Google Scholar] [CrossRef]
- Wang, H.Z.; Yang, K.Z.; Zou, J.J.; Zhu, L.L.; Xie, Z.D.; Morita, M.T.; Tasaka, M.; Frim, J.; Grotewold, E.; Beeckman, T.; et al. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat. Commun. 2015, 6, 8822. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.; Niu, Q.W.; Frugis, G.; Chua, N.H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 2002, 30, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Kunieda, T.; Mitsuda, N.; Ohme-Takagi, M.; Takeda, S.; Aida, M.; Tasaka, M.; Kondo, M.; Nishimura, M.; Hara-Nishimura, I. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 2008, 20, 2631–2642. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, W.; Shi, J.; Xu, J.; Zhang, D. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. J. Integr. Plant Biol. 2013, 55, 1166–1178. [Google Scholar] [CrossRef]
- Lashbrooke, J.; Cohen, H.; Levy-Samocha, D.; Tzfadia, O.; Panizel, I.; Zeisler, V.; Massalha, H.; Stern, A.; Trainotti, L.; Schreiber, L.; et al. MYB107 and MYB9 Homologs Regulate Suberin Deposition in Angiosperms. Plant Cell 2016, 28, 2097–2116. [Google Scholar] [CrossRef]
- Alonso-Peral, M.M.; Li, J.; Li, Y.; Allen, R.S.; Schnippenkoetter, W.; Ohms, S.; White, R.G.; Millar, A.A. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 2010, 154, 757–771. [Google Scholar] [CrossRef]
- Peng, L.; Sun, Q.; Xue, H.; Wang, X. iTRAQ-based quantitative proteomic analysis reveals pathways associated with re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. J. Proteom. 2018, 179, 1–16. [Google Scholar] [CrossRef]
- Higashi, Y.; Hirai, M.Y.; Fujiwara, T.; Naito, S.; Noji, M.; Saito, K. Proteomic and transcriptomic analysis of Arabidopsis seeds: Molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J. 2006, 48, 557–571. [Google Scholar] [CrossRef]
- Staszak, A.M.; Pawłowski, T.A. Proteomic analysis of embryogenesis and the acquisition of seed dormancy in Norway maple (Acer platanoides L.). Int. J. Mol. Sci. 2014, 15, 10868–10891. [Google Scholar] [CrossRef]
- Wang, F.; Perry, S.E. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol. 2013, 161, 1251–1264. [Google Scholar] [CrossRef]
- Châtelain, E.; Satour, P.; Laugier, E.; Ly Vu, B.; Payet, N.; Rey, P.; Montrichard, F. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc. Natl. Acad. Sci. USA 2013, 110, 3633–3638. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.H.; Jeon, H.W.; Kim, W.C.; Kim, J.Y.; Han, K.H. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Ann. Bot. 2014, 114, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.H.; Yang, S.H.; Park, A.H.; Lerouxel, O.; Han, K.H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J. 2007, 50, 1035–1048. [Google Scholar] [CrossRef]
- Mandaokar, A.; Browse, J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol. 2009, 149, 851–862. [Google Scholar] [CrossRef]
- Alves-Ferreira, M.; Wellmer, F.; Banhara, A.; Kumar, V.; Riechmann, J.L.; Meyerowitz, E.M. Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol. 2007, 145, 747–762. [Google Scholar] [CrossRef]
- Asahina, M.; Azuma, K.; Pitaksaringkarn, W.; Yamazaki, T.; Mitsuda, N.; Ohme-Takagi, M.; Yamaguchi, S.; Kamiya, Y.; Okada, K.; Nishimura, T.; et al. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 16128–16132. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Wang, X.; Guo, H.; Cheng, Y.; Hou, C.; Chen, J.G.; Wang, S. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1. Plant Physiol. 2017, 174, 2363–2375. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.S.; Meng, F.N.; Zhang, Z.Z.; Long, H.; Lin, W.H.; Luo, X.M.; Wang, Z.Y.; Zhu, S.W. ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis. J. Integr. Plant Biol. 2016, 58, 442–451. [Google Scholar] [CrossRef]
Gene Name | TFBS + REs | TFs + REs |
---|---|---|
AtPMSR1 | 249 | 163 |
AtPMSR2 | 325 | 186 |
AtPMSR3 | 310 | 174 |
AtPMSR4 | 249 | 158 |
AtMsrA5 | 254 | 162 |
AtMsrB1 | 267 | 157 |
AtMsrB2 | 294 | 169 |
AtMsrB3 | 255 | 155 |
AtMsrB4 | 210 | 144 |
AtMsrB5 | 286 | 174 |
AtMsrB6 | 362 | 170 |
AtMsrB7 | 298 | 175 |
AtMsrB8 | 283 | 147 |
AtMsrB9 | 368 | 178 |
total | 4010 | 438 |
PtMsrA2.1 | 327 | 168 |
PtMsrA2.2 | 298 | 130 |
PtMsrA4.1 | 320 | 149 |
PtMsrA4.2 | 252 | 152 |
PtMsrA5 | 285 | 154 |
PtMsrB1 | 258 | 160 |
PtMsrB3.1 | 289 | 150 |
PtMsrB3.2 | 366 | 144 |
PtMsrB5 | 241 | 145 |
total | 2636 | 382 |
OsMsrA2.1 | 272 | 170 |
OsMsrA2.2 | 266 | 109 |
OsMsrA4 | 277 | 172 |
OsMsrA5 | 464 | 201 |
OsMsrB1 | 208 | 146 |
OsMsrB3 | 248 | 141 |
OsMsrB5 | 223 | 138 |
total | 1958 | 409 |
TF | Consensus Sequence | Not Detected in the Promoter of |
---|---|---|
Protodermal factor 2 | aaattgcaaATTCtagg | OsMsrA2.2 |
SBF-1 | ggatttagttTTAAaattt | OsMsrA2.2, OsMsrA5, OsMsrB3 |
Homeodomain protein WUSCHEL | gacgccATTAacacgtggc | OsMsrA2.2, PtMsrA2.2, PtMsrB5 |
Homeodomain GLABROUS 1 | cacgtgttAATGgcgtc | AtPMSR1, OsMsrA2.2, OsMsrB1 |
TESMIN/TSO1-like CXC 2 | atcaatctctcattCAAAatctcattctctc | AtMsrB4, OsMsrA2.2, OsMsrA5, PtMsrA4 |
KANADI | tcGAATaacaaat | AtMsrB3, OsMsrA2.2, OsMsrB3, OsMsrB5, PtMsrB3.1 |
G2-like family protein | caatagATTCctt | OsMsrA2.2, OsMsrB1, OsMsrB3, OsMsrB5, PtMsrA4.2 |
Stomatal Carpenter 1 (DOF5.7) | ttAGTTaacca | AtMsrB7, OsMsrA4, OsMsrB3, PtMsrA2.2, PtMsrA4.2 |
DIVARICATA 1 | tgctcgtTATCttcagccc | AtMsrB6, OsMsrA2.1, OsMsrA2.2, OsMsrA5, OsMsrB1 |
Trihelix transcription factor GT-1 | gaacatttgGTTAactaaa | AtMsrB4, OsMsrA2.2, OsMsrA5, OsMsrB3, OsMsrB5 |
Transcriptional repressor BELLRINGER | tcacaaaATTAattcttct | AtMsrB2, AtMsrB5, AtPMSR4, OsMsrA2.2, OsMsrB1 |
RAP2.2 | atATCTaacaa | AtMsrB1, AtMsrB8, OsMsrA2.2, OsMsrA5, OsMsrB1, OsMsrB3 |
DNA-binding storekeeper protein-related transcriptional regulator (AT4G00250) | aaaattGATCcaaagct | AtMsrB2, AtMsrB6, AtMsrB7, AtPMSR3, OsMsrA2.2, PtMsrA4.1 |
Class I GATA factors | aagatGATAaatgtgtg | AtMsrB6, AtPMSR2, OsMsrA2.2, OsMsrA5, OsMsrB1, PtMsrB5 |
Homeobox protein 32 | tagatttaTTATttgtatc | AtPMSR1, OsMsrA2.2, OsMsrA4, OsMsrB3, OsMsrB5, PtMsrB1, PtMsrB5 |
Myb-like protein of Petunia hybrid (ODO1) | ttaggattTAGTtttaaaatt | AtMsrB3, AtMsrB4, OsMsrA2.1, OsMsrA4, OsMsrA5, PtMsrA2.2, PtMsrB3.2 |
Heterodimer of NAC-domain transcription factors GmNAC30 and GmNAC81 | TGTGttg | AtMsrB2, OsMsrA2.1, OsMsrA2.2, OsMsrB1, OsMsrB5, PtMsrA4.2, PtMsrB5 |
Myb domain protein 96 MYBCOV1 | ttcgtatttAGTTaaccaaat | AtMsrB3, AtMsrB4, OsMsrA2.2, OsMsrA4, OsMsrA5, PtMsrB3.2, PtMsrB5 |
Late elongated hypocotyl 1 | tgtgtaTATAttttgga | AtMsrA5, AtMsrB1, AtMsrB4, OsMsrA2.2, OsMsrA5, OsMsrB3, PtMsrB5 |
Target of early activation tagged 1 (RAP2.7) | tgacATTAaaa | AtMsrB4, AtMsrB6, AtMsrB8, AtPMSR4, OsMsrA2.1, OsMsrA2.2, OsMsrB1 |
Yabby transcription factor CRABS CLAW | aagaTGATaaatg | AtPMSR3, OsMsrA2.2, OsMsrA4, OsMsrA5, OsMsrB1, OsMsrB3, PtMsrB5 |
AS1/AS2 repressor | gctTTGAct | AtMsrB1, AtPMSR1, OsMsrA2.2, OsMsrA4, OsMsrB1, OsMsrB3, PtMsrA4.2 |
NAC with transmembrane motif 1-like 6 (NTL6/NTM1) | tttgttagatatatTAAGaaagg | AtMsrA5, AtMsrB2, OsMsrA2.2, OsMsrB3, OsMsrB5, PtMsrA4.2, PtMsrA5, PtMsrB3.2 |
Storekeeper (STK), plant specific DNA binding protein | cccacaTATCcactatt | AtMsrB3, AtMsrB4, AtPMSR4, OsMsrA2.1, OsMsrA2.2, OsMsrA5, PtMsrA2.1, PtMsrB5 |
Homeobox protein 34 | ataagactTAATgaaaaca | AtMsrA5, AtMsrB1, AtMsrB7, AtPMSR4, OsMsrA2.2, OsMsrA5, OsMsrB1, OsMsrB3 |
bZIP protein G-Box binding factor 1 | tttcacCACGtcactgctt | AtMsrA5, AtMsrB4, AtMsrB4, AtPMSR1, OsMsrA5, OsMsrB5, PtMsrA5, PtMsrB3.1, PtMsrB5 |
Gene Name | Nr | TFs and REs |
---|---|---|
AtPMSR1 | 1 | NAC domain containing protein 3 (NAC3) |
AtPMSR3 | 3 | WRKY transcription factor 8 (WRKY8), R2R3-type myb-like transcription factor IIG-type binding site (MYB0), Cooperatively regulated by ethylene and jasmonate 1 (CEJ1) |
AtPMSR4 | 2 | Myb domain protein 116 (MYB116), RY and Sph motifs conserved in seed-specific promoters |
AtMsrA5 | 1 | Heat stress transcription factor C-1 (HSFC1) |
AtMsrB1 | 1 | NAC domain containing protein 45 (NAC045) |
AtMsrB2 | 4 | Transcription factor TGA3 (TGA3), Arabidopsis NAC domain containing protein 81 (NAC081), ATAF2 WRKY transcription factor 55 (WRKY55) |
AtMsrB6 | 1 | Indeterminate (ID)-domain 11 (IDD11) |
AtMsrB7 | 2 | REVEILLE 5 (RVE5), Dof zinc finger protein DOF4.7 AT4G38000 (DOF4.7) |
AtMsrB8 | 2 | Indeterminate (ID)-domain 5 protein RAVEN (IDD5), ABA-responsive element binding protein 3 (AREB3) |
AtMsrB9 | 1 | Phytochrome-interacting fator 5 (PIL6) |
PtMsrA2.1 | 2 | Dof zinc finger protein DOF5.1 AT5G02460 (DOF5.1), Dof zinc finger protein DOF2.2 AT2G28810 (DOF2.2) |
PtMsrA4.1 | 1 | C-repeat-binding factor 3 (DREB1A) |
PtMsrA4.2 | 1 | Myb domain protein 118 Plant Growth Activator 37 (MYB118) |
PtMsrA5 | 2 | B3 domain-containing transcription factor NGA4 (NGA4), Myb domain protein 111 (MYB111) |
PtMsrB3.1 | 2 | C-repeat-binding factor 2 (DREB1C,) Dof zinc finger protein DOF5.8 AT5G66940 (DOF5.8) |
OsMsrA2.2 | 2 | Iron-dependent regulatory sequence, TCP class II transcription factor (BRC1) |
OsMsrA4 | 3 | NAC domain containing protein 96 (NAC096), Ethylene-responsive transcription factor 105 (ERF105), Redox responsive transcription factor 1 (RRTF1) |
OsMsrA5 | 8 | Ethylene-responsive transcription factor 2 (ERF2), Rice bHLH protein (bHLH39), Ethylene-responsive transcription factor 10 (ERF10), Nodulin consensus sequence 3, Ethylene-responsive transcription factor 115 (ERF115), C-repeat-binding factor 2 (DREB1B), Ethylene-responsive transcription factor 5 (ERF5), TCP domain protein 21 AT5G08330 (TCP21) |
OsMsrB1 | 4 | Dehydration-responsive element-binding protein 2C (DREB2C), LIM domain protein binding to a PAL-box like sequence (WLIM1), E2F transcription factor 3 (E2F3), BBES1/BZR1-like protein 2 AT4G36780 (BEH2) |
OsMsrB3 | 1 | Transcription factor TCP15 AT1G69690 (TCP15) |
OsMsrB5 | 1 | Heat stress transcription factor A-1b (HSF3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalemba, E.M.; Stolarska, E. Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. Int. J. Mol. Sci. 2019, 20, 1309. https://doi.org/10.3390/ijms20061309
Kalemba EM, Stolarska E. Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. International Journal of Molecular Sciences. 2019; 20(6):1309. https://doi.org/10.3390/ijms20061309
Chicago/Turabian StyleKalemba, Ewa M., and Ewelina Stolarska. 2019. "Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants" International Journal of Molecular Sciences 20, no. 6: 1309. https://doi.org/10.3390/ijms20061309
APA StyleKalemba, E. M., & Stolarska, E. (2019). Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. International Journal of Molecular Sciences, 20(6), 1309. https://doi.org/10.3390/ijms20061309