PFKFB2 Promoter Hypomethylation as Recurrence Predictive Marker in Well-Differentiated Thyroid Carcinomas
Abstract
:1. Introduction
2. Results
2.1. High Agreement between Global DNA Methylation and Bisulfite Pyrosequencing Results
2.2. PFKFB2 Hypomethylation in Thyroid Carcinomas in Poor Prognosis Patients
2.3. Methylation Levels of PFKFB2 as Recurrence Predictor in WDTC
2.4. Lower Methylation Level of PFKFB2 is an Independent Marker of High Risk of Recurrence in WDTC
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sample Processing, DNA Extraction, and Detection of BRAF and TERT Mutation
4.3. Bisulfite Pyrosequencing for DNA Methylation Analysis
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATC | anaplastic thyroid carcinoma |
AUC | area under the curve |
BTL | benign thyroid lesions |
CpG | 5-cytosine-phosphate-guanine-3 |
FTC | follicular thyroid carcinoma |
NT | non-neoplastic adjacent tissues |
PDTC | poorly-differentiated thyroid carcinoma |
PTC | papillary thyroid carcinoma |
TCGA | The Cancer Genome Atlas |
TSH | Thyroid-Stimulating Hormone |
WDTC | well-differentiated thyroid carcinoma |
WDTC-GP | good-prognosis well-differentiated thyroid carcinoma |
WDTC-PP | poor-prognosis well-differentiated thyroid carcinoma |
References
- Fagin, J.A.; Wells, S.A. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016, 375, 1054–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed? Cancer 2017, 123, 372–381. [Google Scholar] [CrossRef]
- Czarniecka, A.; Kowal, M.; Rusinek, D.; Krajewska, J.; Jarzab, M.; Stobiecka, E.; Chmielik, E.; Zembala-Nozynska, E.; Poltorak, S.; Sacher, A.; et al. The Risk of Relapse in Papillary Thyroid Cancer (PTC) in the Context of BRAFV600E Mutation Status and Other Prognostic Factors. PLoS ONE 2015, 10, e0132821. [Google Scholar] [CrossRef]
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, T.; Liu, Z. Associations between BRAF(V600E) and prognostic factors and poor outcomes in papillary thyroid carcinoma: A meta-analysis. World J. Surg. Oncol. 2016, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Chen, E.; Dong, S.; Cai, Y.; Zhang, X.; Zhou, Y.; Zeng, R.; Yang, F.; Pan, C.; Liu, Y.; et al. BRAF and TERT promoter mutations in the aggressiveness of papillary thyroid carcinoma: A study of 653 patients. Oncotarget 2016, 7, 18346–18355. [Google Scholar] [CrossRef]
- Vuong, H.G.; Altibi, A.M.A.; Duong, U.N.P.; Hassell, L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin. Endocrinol. (Oxf.) 2017, 87, 411–417. [Google Scholar] [CrossRef]
- Shen, X.; Zhu, G.; Liu, R.; Viola, D.; Elisei, R.; Puxeddu, E.; Fugazzola, L.; Colombo, C.; Jarzab, B.; Czarniecka, A.; et al. Patient Age-Associated Mortality Risk Is Differentiated by BRAF V600E Status in Papillary Thyroid Cancer. J. Clin. Oncol. 2018, 36, 438–445. [Google Scholar] [CrossRef]
- Trovisco, V.; Soares, P.; Preto, A.; de Castro, I.V.; Lima, J.; Castro, P.; Máximo, V.; Botelho, T.; Moreira, S.; Meireles, A.M.; et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch. 2005, 446, 589–595. [Google Scholar] [CrossRef]
- Pelttari, H.; Schalin-Jäntti, C.; Arola, J.; Löyttyniemi, E.; Knuutila, S.; Välimäki, M.J. BRAF V600E mutation does not predict recurrence after long-term follow-up in TNM stage I or II papillary thyroid carcinoma patients. APMIS 2012, 120, 380–386. [Google Scholar] [CrossRef]
- Bu, R.; Siraj, A.K.; Divya, S.P.; Kong, Y.; Parvathareddy, S.K.; Al-Rasheed, M.; Al-Obaisi, K.A.S.; Victoria, I.G.; Al-Sobhi, S.S.; Al-Dawish, M.; et al. Telomerase reverse transcriptase mutations are independent predictor of disease-free survival in Middle Eastern papillary thyroid cancer. Int. J. Cancer 2018, 142, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, T.; Zhu, G.; Xing, M. Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/GABP in human cancer. Nat. Commun. 2018, 9, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Bishop, J.; Zhu, G.; Zhang, T.; Ladenson, P.W.; Xing, M. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol. 2016, 3, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Borre, P.V.; LaBarbera, D.V.; Tan, A.C.; et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin. Cancer Res. 2018, 24, 3059–3068. [Google Scholar] [CrossRef]
- Smekalova, E.M.; Petrova, O.A.; Zvereva, M.I.; Dontsova, O.A. Hansenula Polymorpha TERT: A Telomerase Catalytic Subunit Isolated in Recombinant Form with Limited Reverse Transcriptase Activity. Acta Nat. 2012, 4, 70–73. [Google Scholar]
- Liu, X.; Bishop, J.; Shan, Y.; Pai, S.; Liu, D.; Murugan, A.K.; Sun, H.; El-Naggar, A.K.; Xing, M. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 2013, 20, 603–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.A.; Fan, C.Y.; Zou, C.; Bodenner, D.; Kokoska, M.S. Methylation status of genes in papillary thyroid carcinoma. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 1006–1011. [Google Scholar] [CrossRef]
- Mancikova, V.; Buj, R.; Castelblanco, E.; Inglada-Pérez, L.; Diez, A.; de Cubas, A.A.; Curras-Freixes, M.; Maravall, F.X.; Mauricio, D.; Matias-Guiu, X.; et al. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int. J. Cancer 2014, 135, 598–610. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Cui, W.; Wu, X.; Qu, Y.; Wang, N.; Shi, B.; Hou, P. RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence. Am. J. Cancer Res. 2014, 4, 725–737. [Google Scholar]
- Bisarro Dos Reis, M.; Barros-Filho, M.C.; Marchi, F.A.; Beltrami, C.M.; Kuasne, H.; Pinto, C.A.L.; Ambatipudi, S.; Herceg, Z.; Kowalski, L.P.; Rogatto, S.R. Prognostic Classifier Based on Genome-Wide DNA Methylation Profiling in Well-Differentiated Thyroid Tumors. J. Clin. Endocrinol. Metab. 2017, 102, 4089–4099. [Google Scholar] [CrossRef] [Green Version]
- Buj, R.; Mallona, I.; Díez-Villanueva, A.; Zafon, C.; Mate, J.L.; Roca, M.; Puig-Domingo, M.; Reverter, J.L.; Mauricio, D.; Peinado, M.A.; et al. Kallikreins Stepwise Scoring Reveals Three Subtypes of Papillary Thyroid Cancer with Prognostic Implications. Thyroid 2018, 28, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Hay, I.D.; Thompson, G.B.; Grant, C.S.; Bergstralh, E.J.; Dvorak, C.E.; Gorman, C.A.; Maurer, M.S.; McIver, B.; Mullan, B.P.; Oberg, A.L.; et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940-1999): Temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J. Surg. 2002, 26, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Amoako-Tuffour, Y.; Graham, M.E.; Bullock, M.; Rigby, M.H.; Trites, J.; Taylor, S.M.; Hart, R.D. Papillary thyroid cancer recurrence 43 Years following Total Thyroidectomy and radioactive iodine ablation: A case report. Thyroid Res. 2017, 10. [Google Scholar] [CrossRef]
- Nishi, T.; Forgac, M. The vacuolar (H+)-ATPases--nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 2002, 3, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lenferink, A.E.; Deng, Y.; Collins, C.; Cui, Q.; Purisima, E.O.; O’Connor-McCourt, M.D.; Wang, E. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat. Commun. 2010, 1, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Okar, D.A.; Manzano, A.; Navarro-Sabatè, A.; Riera, L.; Bartrons, R.; Lange, A.J. PFK-2/FBPase-2: Maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem. Sci. 2001, 26, 30–35. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, G.; Le, X.; Wang, C.; Xu, L.; Feng, M.; Zhang, Y.; Yang, H.; Xuan, Y.; Yang, Y.; et al. Long Noncoding RNA LINC00092 Acts in Cancer-Associated Fibroblasts to Drive Glycolysis and Progression of Ovarian Cancer. Cancer Res. 2017, 77, 1369–1382. [Google Scholar] [CrossRef]
- Gomez-Rueda, H.; Palacios-Corona, R.; Gutiérrez-Hermosillo, H.; Trevino, V. A robust biomarker of differential correlations improves the diagnosis of cytologically indeterminate thyroid cancers. Int. J. Mol. Med. 2016, 37, 1355–1362. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Ortiz, I.M.D.; Barros-Filho, M.d.C.; Reis, M.B.d.; Beltrami, C.M.; Marchi, F.A.; Kuasne, H.; Pinto, C.; Kowalski, L.; Rogatto, S. MiRNAs genes are regulated by methylation in papillary thyroid carcinomas. In Proceedings of the American Association for Cancer Research (AACR) Annual Meeting, Chicago, IL, USA, 14–18 April 2018. [Google Scholar]
- Matsuse, M.; Yabuta, T.; Saenko, V.; Hirokawa, M.; Nishihara, E.; Suzuki, K.; Yamashita, S.; Miyauchi, A.; Mitsutake, N. TERT promoter mutations and Ki-67 labeling index as a prognostic marker of papillary thyroid carcinomas: Combination of two independent factors. Sci Rep. 2017, 7, 41752. [Google Scholar] [CrossRef] [PubMed]
- Network CGAR. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Kowalska, A.; Walczyk, A.; Kowalik, A.; Pałyga, I.; Trybek, T.; Kopczyński, J.; Kajor, M.; Chrapek, M.; Pięciak, L.; Chłopek, M.; et al. Increase in Papillary Thyroid Cancer Incidence Is Accompanied by Changes in the Frequency of the BRAF V600E Mutation: A Single-Institution Study. Thyroid 2016, 26, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, C.M.; Dos Reis, M.B.; Barros-Filho, M.C.; Marchi, F.A.; Kuasne, H.; Pinto, C.A.L.; Ambatipudi, S.; Herceg, Z.; Kowalski, L.P.; Rogatto, S.R. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas. Clin Epigenetics 2017, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, N.; Cao, J.; Sofiadis, A.; Dinets, A.; Zedenius, J.; Larsson, C.; Xu, D. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 2014, 33, 4978–4984. [Google Scholar] [CrossRef] [PubMed]
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (CI95%) | p | HR (CI95%) | p | |
Age | ||||
<55 years | 1.0 | |||
≥55 years | 0.48 (0.11–2.05) | 0.325 | ||
Gender | ||||
Female | 1.0 | 1.0 | ||
Male | 3.63 (1.65–7.98) | 0.001 | 1.89 (0.65–5.47) | 0.242 |
Tumor Size (cm) | ||||
≤1 cm | 1.0 | |||
>1 cm | 1.69 (0.71–4.05) | 0.239 | ||
Multicentricity | ||||
No | 1.0 | 1.0 | ||
Yes | 2.10 (0.95–4.63) | 0.066 | 1.53 (0.58–4.05) | 0.396 |
Histology | ||||
PTC | 1.0 | |||
FTC | 1.08 (0.25–4.57) | 0.919 | ||
PTC Variant | ||||
Classic | 1.0 | |||
Others | 0.43 (0.13–1.43) | 0.169 | ||
Extrathyroidal Extension | ||||
No | 1.0 | 1.0 | ||
Yes | 1.96 (0.89–4.31) | 0.093 | 1.53 (0.41–5.61) | 0.525 |
Lymph node Metastasis | ||||
No (cN0, pN0) | 1.0 | 1.0 | ||
Yes (pN1) | 4.19 (1.85–9.51) | <0.001 | 5.77 (0.64–52) | 0.118 |
Risk stratification * | ||||
Low | 1.0 | 1.0 | ||
Intermediate | 2.49 (0.98–6.33) | 0.055 | 0.35 (0.03–4.54) | 0.419 |
High | 6.08 (1.22–30.35) | 0.028 | 0.35 (0.01–12.36) | 0.563 |
BRAFV600E # | ||||
No | 1.0 | 1.0 | ||
Yes | 0.98 (0.42–2.26) | 0.955 | 0.74 (0.27–2.02) | 0.560 |
TERT C228T/C250T | ||||
No | 1.0 | |||
Yes | 1.21 (0.16–8.95) | 0.854 | ||
CXXC5 Methylation | ||||
Below Median | 1.22 (0.51–2.94) | 0.658 | ||
Above Median | 1.0 | |||
ATP6V0C Methylation | ||||
Below Median | 1.0 | |||
Above Median | 1.93 (0.85–4.36) | 0.116 | ||
PFKFB2 Methylation | ||||
Below Median | 3.85 (1.42–10.44) | 0.008 | 3.17 (1.06–9.46) | 0.038 |
Above Median | 1.0 | 1.0 |
Characteristics | Microarray Dependent | Microarray Independent | ||
---|---|---|---|---|
N = 42 | % | N = 79 | % | |
Age | ||||
Median (interquartile range) | 40.4 (31.4–49.9) | 44.2 (34.5–51.0) | ||
<55 years | 35 | 83.3% | 67 | 84.8% |
≥55 years | 7 | 16.7% | 12 | 15.2% |
Gender | ||||
Female | 36 | 85.7% | 54 | 68.4% |
Male | 6 | 14.3% | 25 | 31.6% |
Histology | ||||
PTC classic variant | 28 | 66.7% | 56 | 70.9% |
PTC follicular variant | 4 | 9.5% | 15 | 19.0% |
PTC rare variant | 4 | 9.5% | 5 | 6.3% |
FTC | 6 | 14.3% | 3 | 3.8% |
Tumor dimension (cm) | ||||
Median (interquartile range) | 1.3 (0.9–1.9) | 1.4 (1.0–2.2) | ||
≤1 cm | 15 | 35.7% | 31 | 39.2% |
>1 cm | 27 | 64.3% | 48 | 60.8% |
Multicentricity | ||||
No | 32 | 76.2% | 42 | 53.2% |
Yes | 10 | 23.8% | 37 | 46.8% |
Extrathyroidal extension | ||||
No | 27 | 64.3% | 48 | 60.8% |
Yes | 15 | 35.7% | 31 | 39.2% |
Lymph node metastasis | ||||
No (cN0, pN0) | 26 | 61.9% | 53 | 67.1% |
Yes (pN1) | 16 | 38.1% | 26 | 32.9% |
Risk stratification * | ||||
Low | 16 | 38.1% | 36 | 45.6% |
Intermediate | 23 | 54.8% | 42 | 53.2% |
High | 3 | 7.1% | 1 | 1.3% |
Clinical evolution | ||||
Free of disease | 35 | 83.3% | 61 | 77.2% |
Relapsed | 7 | 16.7% | 18 | 22.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo Barros-Filho, M.; Barreto Menezes de Lima, L.; Bisarro dos Reis, M.; Bette Homem de Mello, J.; Moraes Beltrami, C.; Lopes Pinto, C.A.; Kowalski, L.P.; Rogatto, S.R. PFKFB2 Promoter Hypomethylation as Recurrence Predictive Marker in Well-Differentiated Thyroid Carcinomas. Int. J. Mol. Sci. 2019, 20, 1334. https://doi.org/10.3390/ijms20061334
Camargo Barros-Filho M, Barreto Menezes de Lima L, Bisarro dos Reis M, Bette Homem de Mello J, Moraes Beltrami C, Lopes Pinto CA, Kowalski LP, Rogatto SR. PFKFB2 Promoter Hypomethylation as Recurrence Predictive Marker in Well-Differentiated Thyroid Carcinomas. International Journal of Molecular Sciences. 2019; 20(6):1334. https://doi.org/10.3390/ijms20061334
Chicago/Turabian StyleCamargo Barros-Filho, Mateus, Larissa Barreto Menezes de Lima, Mariana Bisarro dos Reis, Julia Bette Homem de Mello, Caroline Moraes Beltrami, Clóvis Antonio Lopes Pinto, Luiz Paulo Kowalski, and Silvia Regina Rogatto. 2019. "PFKFB2 Promoter Hypomethylation as Recurrence Predictive Marker in Well-Differentiated Thyroid Carcinomas" International Journal of Molecular Sciences 20, no. 6: 1334. https://doi.org/10.3390/ijms20061334
APA StyleCamargo Barros-Filho, M., Barreto Menezes de Lima, L., Bisarro dos Reis, M., Bette Homem de Mello, J., Moraes Beltrami, C., Lopes Pinto, C. A., Kowalski, L. P., & Rogatto, S. R. (2019). PFKFB2 Promoter Hypomethylation as Recurrence Predictive Marker in Well-Differentiated Thyroid Carcinomas. International Journal of Molecular Sciences, 20(6), 1334. https://doi.org/10.3390/ijms20061334