Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (Hordeum vulgare L.) Grain and Nutrient Utilization, Biodegradation, and Bioavailability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Curve-Linear Relationship Between Altered Carbohydrate Macromolecular Traits and Chemical Profiles
2.2. Curve-Linear Relationship Between Altered Carbohydrate Macromolecular Traits and Protein and Carbohydrate Fractions
2.3. Curve-Linear Relationship Between Altered Carbohydrate Macromolecular Traits and Total Digestible Nutrients (TDN), Energy Values
2.4. Curve-Linear Relationship Between Altered Carbohydrate Macromolecular Traits and Ruminal Degradation Kinetics of Various Nutrients
3. Materials and Methods
3.1. Sample Collection and Preparation
3.2. Chemical Analysis
3.3. Partitioning Protein and Carbohydrate Fractions
3.4. Estimation of Total Digestible Nutrient and Energy Value
3.5. In Situ Incubation Technique and Degradation Kinetics
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AAFC-Agriculture and Agrifood Canada. Outlook for Principal Field Crops [WWW Document]. 2016. Available online: http://www.agr.gc.ca/eng/industry-markets-and-trade/statistics-and-market-information/by-product-sector/crops-industry/outlook-for-principal-field-crops-in-canada/canada-outlook-for-principal-field-crops-2016-12-21/?id=1482940873764#a2 (accessed on 1 October 2017).
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Hart, K.J.; Rossnagel, B.G.; Yu, P. Investigate the magnitude of differences in total metabolizable protein among different genotypes of barley grown for three consecutive years. Cereal Res. Commun. 2012, 40, 405–412. [Google Scholar] [CrossRef]
- Ullrich, S.E. Barley: Production, Improvement, and Uses; Wiley-Blackwell Publisher: Ames, IA, USA, 2011. [Google Scholar]
- Evers, A.D.; Blakeney, A.B.; Brien, L.O. Cereal structure and composition. Austral. J. Agr. Res. 1999, 50, 629–650. [Google Scholar] [CrossRef]
- Nair, J.; Christensen, D.; Yu, P.; Beattie, A.D.; Mcallister, T.; Damiran, D.; Preston, N.; Fuhr, L.; Mckinnon, J.J. A nutritional evaluation of common barley varieties grown for silage by beef and dairy producers in western Canada. Can. J. Anim. Sci. 2016, 96, 598–608. [Google Scholar] [CrossRef]
- Damiran, D.; Yang, L.; Yu, P. The metabolic characteristics of the proteins in Canadian hulless barley: Comparison of the zero-amylose waxy, waxy, and high-amylose cultivars with the normal starch cultivar. Amino Acids. 2011, 41 (Suppl. 1), S60. [Google Scholar]
- Yang, L.; Yu, P. Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery. Crit Rev. Food Sci. Nutr. 2017, 57, 224–236. [Google Scholar] [CrossRef]
- Granfeldt, Y.; Liljeberg, H.; Drews, A.; Newman, R.; Björck, I. Glucose and insulin responses to barley products: Influence of food structure and amylose-amylopectin ratio. Am. J. Clin. Nutr. 1994, 59, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch-Composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Deckardt, K.; Metzler-Zebeli, B.U.; Zebeli, Q. Processing barley grain with lactic acid and tannic acid ameliorates rumen microbial fermentation and degradation of dietary fibre in vitro. J. Sci. Food Agric. 2016, 96, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Tetlow, I.J.; Ahmed, R.; Morell, M.K.; Emes, M.J. Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci. 2015, 233, 95–106. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ropp, J.K.; Hunt, C.W. Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia-N in vitro. Anim. Feed Sci. Technol. 2002, 99, 25–36. [Google Scholar] [CrossRef]
- Yang, L.; McKinnon, J.J.; Christensen, D.A.; Beattie, A.D.; Yu, P. Characterizing the molecular structure features of newly developed hulless barley cultivars with altered carbohydrate traits (Hordeum vulgare L.) by globar-sourced infrared spectroscopy in relation to nutrient utilization and availability. J. Cereal Sci. 2014, 60, 48–59. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Uhlen, A.K.; Bråthen, E.; Sahlstrøm, S.; Knutsen, S.H. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 2006, 94, 348–358. [Google Scholar] [CrossRef]
- Granfeldt, Y. Food Factors Affecting Metabolic Responses to Cereal Products. Ph.D. Thesis, University of Lund, Longde, Sweden, 1994. [Google Scholar]
- Yang, L.; Christensen, D.A.; McKinnon, J.J.; Beattie, A.D.; Yu, P. Effect of altered carbohydrate traits in hulless barley (Hordeum vulgare L.) on nutrient profiles and availability and nitrogen to energy synchronization. J. Cereal Sci. 2013, 58, 182–190. [Google Scholar] [CrossRef]
- Yang, L.; Christensen, D.A.; Mckinnon, J.J.; Beattie, A.D.; Xin, H.; Yu, P. Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy. J. Agric. Food Chem. 2013, 61, 11250–11260. [Google Scholar] [CrossRef]
- Yang, L.; Christensen, D.A.; McKinnon, J.J.; Beattie, A.D.; Yu, P. Predicted truly absorbed protein supply to dairy cattle from hulless barley (Hordeum vulgare L.) with altered carbohydrate traits with multi-year samples. J. Cereal Sci. 2013, 58, 372–379. [Google Scholar] [CrossRef]
- Sun, B.; Khan, N.A.; Sun, M.; Prates, L.L.; Yu, P. Curve-linear relationship between altered carbohydrate traits and molecular structure and truly absorbed nutrient supply to dairy cattle in hulless barley (Hordeum vulgare L.). Anim. Feed Sci. Technol. 2018, 235, 177–188. [Google Scholar] [CrossRef]
- Oscarsson, M.; Parkkonen, T.; Autio, K.; Åman, P. Composition and Microstructure of Waxy, Normal and High Amylose Barley Samples. J. Cereal Sci. 1997, 26, 259–264. [Google Scholar] [CrossRef]
- Engstrom, D.F.; Mathison, G.W.; Goonewardene, L.A. Effect of beta-glucan, starch, and fibre content and steam vs. dry rolling of barley grain on its degradability and utilization by steers. Anim. Feed Sci. Technol. 1992, 37, 33–46. [Google Scholar] [CrossRef]
- Hang, A.; Obert, D.; Gironella, A.I.N.; Burton, C.S. Barley amylose and B-glucan: Their relationships to protein, agronomic traits, and environmental factors. Crop Sci. 2007, 47, 1754–1760. [Google Scholar] [CrossRef]
- Chappell, A.; Scott, K.P.; Griffiths, I.A.; Cowan, A.A.; Hawes, C.; Wishart, J.; Martin, P. The agronomic performance and nutritional content of oat and barley varieties grown in a northern maritime environment depends on variety and growing conditions. J. Cereal Sci. 2017, 74, 1–10. [Google Scholar] [CrossRef]
- Yu, P.; Christensen, D.A.; McKinnon, J.J. Comparison of the National Research Council-2001 model with the Dutch system (DVE/OEB) in the prediction of nutrient supply to dairy cows from forages. J. Dairy Sci. 2003, 86, 2178–2192. [Google Scholar] [CrossRef]
- Tylutki, T.P.; Fox, D.G.; Durbal, V.M.; Tedeschi, L.O.; Russell, J.B.; van Amburgh, M.E.; Overton, T.R.; Chase, L.E.; Pell, A.N. Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Anim. Feed Sci. Technol. 2008, 143, 174–202. [Google Scholar] [CrossRef]
- Van Amburgh, M.E.; Collao-Saenz, E.; Higgs, R.J.; Ross, D.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef] [PubMed]
- Leah, R.; Kigel, J.; Svendsen, I.; Mundy, J. Biochemical and molecular characterization of a barley seed B-glucosidase. J. Biol. Chem. 1995, 270, 15789–15797. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Damiran, D.; Yu, P. Chemical profile, rumen degradation kinetics, and energy value of four hull-less barley cultivars: Comparison of the zero-amylose waxy, waxy, high-amylose, and normal starch cultivars. J. Agric. Food Chem. 2010, 58, 10553–10559. [Google Scholar] [CrossRef] [PubMed]
- Higgs, R.J.; Chase, L.E.; Ross, D.A.; van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef] [PubMed]
- Van Amburgh, M.E.; Chase, L.E.; Overton, T.R.; Ross, D.A.; Recktenwald, E.B.; Higgs, R.J.; Tylutki, T.P. Updates to the Cornell Net Carbohydrate and Protein System v6.1 and implications for ration formulation. In Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, Syracuse, NY, USA, 19–21 October 2010. [Google Scholar]
- Weiss, W.P.; Conrad, H.R.; St. Pierre, N.R. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Gomaa, W.M.S.; Mosaad, G.M.; Yu, P. On a molecular basis, investigate association of molecular structure with bioactive compounds, anti-nutritional factors and chemical and nutrient profiles of canola seeds and co-products from canola processing: Comparison crusher plants within Canada and within china as well as between Canada and China. Nutrients 2018, 10, 519. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Yu, P.; Meier, J.A.; Christensen, D.A.; Rossnagel, B.G.; McKinnon, J.J. Using the NRC-2001 model and the DVE/OEB system to evaluate nutritive values of Harrington (malting-type) and Valier (feed-type) barley fors. Anim. Feed Sci. Technol. 2003, 107, 45–60. [Google Scholar] [CrossRef]
- Prates, L.L.; Lei, Y.; Refat, B.; Zhang, W.; Yu, P. Effects of heat processing methods on protein subfractions and protein degradation kinetics in dairy cattle in relation to protein molecular structure of barley grain using advanced molecular spectroscopy. J. Cereal Sci. 2018, 80, 212–220. [Google Scholar] [CrossRef]
- Yan, X.; Shi, H.; Zhang, F.; Ying, Y.; Zhang, W.; Yu, P. Effect of durations of microwave irradiation (3 and 5 min) on truly absorbable nutrient supply of newly developed hulless barley varieties (Hordeum vulgare L.) in comparison with conventional hulled barley variety. J. Cereal Sci. 2018, 79, 424–430. [Google Scholar] [CrossRef]
- Yu, P.; Goelema, J.O.; Tamminga, S. Using the DVE/OEB model to determine optimal conditions of pressure toasting on horse beans (Vicia faba) for the dairy feed industry. Anim. Feed Sci. Technol. 2000, 86, 165–176. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Tamminga, S.; van Straalen, W.M.; Subnel, A.P.J.; Meijer, R.G.M.; Steg, A.; Wever, C.J.G.; Blok, M.C. The Dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 1994, 40, 139–155. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P. Differentiation of mixtures of co-product blend with barley grain based on Fourier transform infrared attenuated total reflection molecular spectroscopy: Carbohydrate molecular spectral profiles and nutritive characteristics in dairy cattle. J. Dairy Sci. 2012, 95, 6624–6634. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.C.S. Orthogonal contrasts: Definitions and concepts. Sci. Agric. 2004, 61, 118–124. [Google Scholar] [CrossRef]
Item | Chemical and Nutrient Profile of Hulless Barley | Orthogonal Polynomial Contrast (p Value) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio of A:AP | β-Glucan Level | ||||||||||||
n | Mean | STD | Range | Min | Max | CV | L | Q | C | L | Q | C | |
Basic chemical profile | |||||||||||||
DM (g/kg) | 11 | 912.4 | 3.7 | 10.5 | 906.4 | 916.9 | 0.4 | 0.998 | 0.099 | 0.925 | 0.151 | 0.391 | 0.535 |
Ash (g/kg DM) | 11 | 21.6 | 2.0 | 7.1 | 18.3 | 25.4 | 9.2 | 0.037 | 0.012 | 0.219 | 0.005 | 0.424 | 0.064 |
EE (g/kg DM) | 11 | 25.0 | 2.3 | 7.4 | 20.1 | 27.5 | 9.3 | 0.807 | 0.003 | 0.713 | 0.005 | 0.095 | 0.186 |
Carbohydrate profile | |||||||||||||
NDF (g/kg DM) | 11 | 114.1 | 13.3 | 44.7 | 99.4 | 144.1 | 11.6 | 0.002 | 0.001 | 0.086 | 0.045 | <0.001 | 0.574 |
ADF (g/kg DM) | 11 | 25.4 | 3.7 | 12.8 | 17.8 | 30.6 | 14.4 | 0.884 | 0.241 | 0.862 | 0.327 | 0.599 | 0.554 |
ADL (g/kg DM) | 11 | 5.8 | 1.2 | 3.6 | 4.0 | 7.6 | 20.1 | 0.033 | 0.493 | 0.164 | 0.436 | 0.029 | 0.398 |
CHO (g/kg DM) | 11 | 810.4 | 17.2 | 52.4 | 783.3 | 835.7 | 2.1 | <0.001 | <0.001 | 0.005 | 0.000 | 0.004 | <0.001 |
NSC (g/kg CHO) | 11 | 882.9 | 16.1 | 51.4 | 858.9 | 910.3 | 1.8 | 0.052 | 0.003 | 0.231 | 0.017 | 0.005 | 0.556 |
Starch (g/kg DM) | 11 | 562.1 | 41.8 | 143.3 | 487.0 | 630.3 | 7.4 | 0.052 | <0.001 | 0.448 | <0.001 | 0.040 | 0.006 |
Protein profile | |||||||||||||
CP (g/kg DM) | 11 | 143.0 | 14.1 | 42.2 | 122.2 | 164.4 | 9.8 | <0.001 | <0.001 | 0.015 | <0.001 | 0.004 | <0.001 |
SCP (g/kg DM) | 11 | 71.1 | 5.2 | 15.7 | 64.0 | 79.7 | 7.3 | <0.001 | <0.001 | 0.015 | <0.001 | 0.001 | <0.001 |
NPN (g/kg DM) | 11 | 8.3 | 2.2 | 6.7 | 4.4 | 11.1 | 26.7 | 0.492 | 0.315 | 0.074 | 0.068 | 0.372 | 0.584 |
NDICP (g/kg DM) | 11 | 19.3 | 4.6 | 14.1 | 14.8 | 28.9 | 23.7 | 0.040 | 0.332 | 0.400 | 0.891 | 0.039 | 0.297 |
ADICP (g/kg DM) | 11 | 1.5 | 0. 9 | 2.7 | 0.4 | 3.1 | 61.2 | 0.218 | 0.078 | 0.629 | 0.238 | 0.081 | 0.943 |
SCP (g/kg CP) | 11 | 498.8 | 18.2 | 51.1 | 473.5 | 524.6 | 3.6 | 0.009 | 0.093 | 0.391 | 0.086 | 0.201 | 0.007 |
NPN (g/kg CP) | 11 | 57.2 | 16.1 | 57.1 | 29.2 | 86.3 | 28.1 | 0.349 | 0.789 | 0.029 | 0.097 | 0.117 | 0.353 |
NDICP (g/kg CP) | 11 | 137.3 | 40.4 | 121.1 | 90.3 | 211.4 | 29.4 | 0.014 | 0.964 | 0.317 | 0.217 | 0.030 | 0.094 |
ADICP (g/kg CP) | 11 | 10.7 | 6.5 | 17.3 | 3.3 | 20.6 | 60.4 | 0.094 | 0.113 | 0.431 | 0.476 | 0.046 | 0.683 |
Item | n | Mean | STD | Range | Min | Max | CV | Orthogonal Polynomial Contrast (p Value) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio of A:AP | β-Glucan Level | ||||||||||||
L | Q | C | L | Q | C | ||||||||
Protein fractions | |||||||||||||
PA (g/kg CP) | 11 | 58.8 | 16.8 | 61.1 | 29.2 | 90.3 | 28.4 | 0.451 | 0.698 | 0.258 | 0.890 | 0.882 | 0.173 |
PB1 (g/kg CP) | 11 | 439.9 | 17.2 | 55.9 | 408.7 | 464.6 | 3.9 | 0.007 | 0.080 | 0.730 | 0.029 | 0.072 | 0.013 |
PB2 (g/kg CP) | 11 | 363.9 | 54.0 | 156.5 | 270.1 | 426.6 | 14.8 | 0.007 | 0.485 | 0.580 | 0.115 | 0.030 | 0.024 |
PB3 (g/kg CP) | 11 | 126.6 | 35.7 | 106.4 | 84.4 | 190.8 | 28.2 | 0.017 | 0.697 | 0.356 | 0.163 | 0.044 | 0.090 |
PC (g/kg CP) | 11 | 10.7 | 6.5 | 17.3 | 3.3 | 20.6 | 60.4 | 0.094 | 0.113 | 0.431 | 0.476 | 0.046 | 0.683 |
Carbohydrate fractions | |||||||||||||
CA (g/kg CHO) | 11 | 320.8 | 38.4 | 130.6 | 266.6 | 397.2 | 11.9 | 0.009 | 0.001 | 0.147 | <0.001 | 0.860 | 0.007 |
CB1 (g/kg CHO) | 11 | 562.1 | 41.8 | 143.3 | 487.0 | 630.3 | 7.4 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CB2 (g/kg CHO) | 11 | 100.0 | 15.7 | 49.1 | 78.3 | 127.4 | 15.7 | 0.024 | 0.004 | 0.163 | 0.035 | 0.003 | 0.816 |
CC (g/kg CHO) | 11 | 17.1 | 3.6 | 11.7 | 11.4 | 23.1 | 21.2 | 0.022 | 0.778 | 0.126 | 0.215 | 0.024 | 0.283 |
Truly digestible nutrients | |||||||||||||
TDN (g/kg DM) | 11 | 892.0 | 5.9 | 16.6 | 887.1 | 903.7 | 0.6 | 0.933 | 0.325 | 0.939 | 0.398 | 0.668 | 0.674 |
tdNFC (g/kg DM) | 11 | 729.4 | 24.4 | 76.5 | 698.8 | 775.3 | 3.3 | 0.100 | <0.001 | 0.693 | 0.001 | 0.100 | 0.014 |
tdCP (g/kg DM) | 11 | 142.4 | 14.1 | 42.4 | 121.6 | 164.0 | 9.9 | <0.001 | <0.001 | 0.011 | <0.001 | 0.003 | <0.001 |
tdNDF (g/kg DM) | 11 | 56.5 | 8.8 | 27.8 | 45.5 | 73.3 | 15.6 | 0.010 | 0.005 | 0.116 | 0.072 | 0.002 | 0.826 |
tdFA (g/kg DM) | 11 | 15.0 | 2.3 | 7.4 | 10.1 | 17.5 | 15.5 | 0.807 | 0.003 | 0.713 | 0.005 | 0.095 | 0.186 |
Energy values | |||||||||||||
DE1× (Mcal/kg) | 11 | 3.94 | 0.02 | 0.06 | 3.91 | 3.97 | 0.63 | 0.012 | 0.337 | 0.157 | 0.047 | 0.034 | 0.086 |
DEp3× (Mcal/kg) | 11 | 3.18 | 0.02 | 0.04 | 3.16 | 3.20 | 0.51 | 0.001 | 0.016 | 0.104 | 0.003 | 0.008 | 0.004 |
MEp3× (Mcal/kg) | 11 | 2.76 | 0.02 | 0.04 | 2.74 | 2.78 | 0.62 | 0.001 | 0.038 | 0.055 | 0.004 | 0.008 | 0.011 |
NELp3× (Mcal/kg) | 11 | 1.75 | 0.01 | 0.04 | 1.73 | 1.77 | 0.68 | 0.001 | 0.004 | 0.218 | 0.001 | 0.022 | 0.002 |
ME (Mcal/kg) | 11 | 3.23 | 0.02 | 0.06 | 3.20 | 3.26 | 0.69 | 0.017 | 0.100 | 0.257 | 0.025 | 0.091 | 0.059 |
NEm (Mcal/kg) | 11 | 2.22 | 0.02 | 0.04 | 2.2 | 2.24 | 0.80 | 0.011 | 0.161 | 0.159 | 0.026 | 0.043 | 0.065 |
NEg (Mcal/kg) | 11 | 1.53 | 0.01 | 0.04 | 1.51 | 1.55 | 0.96 | 0.036 | 0.118 | 0.305 | 0.037 | 0.164 | 0.107 |
Item | n | Mean | STD | Range | Min | Max | CV | Orthogonal Polynomial Contrast (p Value) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio of A:AP | β-Glucan Level | ||||||||||||
L | Q | C | L | Q | C | ||||||||
In situ DM degradation | |||||||||||||
Kd (%/h) | 22 | 12.78 | 3.10 | 11.18 | 8.38 | 19.56 | 24.2 | <0.001 | <0.001 | <0.001 | 0.160 | 0.030 | 0.237 |
S (%) | 22 | 4.66 | 2.50 | 8.77 | 0.94 | 9.26 | 53.6 | 0.374 | 0.085 | 0.926 | 0.167 | 0.077 | 0.838 |
D (%) | 22 | 84.00 | 2.72 | 9.54 | 80.50 | 90.04 | 3.2 | 0.788 | 0.811 | 0.246 | 0.632 | 0.420 | 0.515 |
U (%) | 22 | 11.34 | 2.73 | 9.95 | 6.31 | 16.26 | 24.0 | 0.452 | 0.157 | 0.260 | 0.630 | 0.104 | 0.532 |
BDM (g/kg DM) | 22 | 388.9 | 55.69 | 191.2 | 300.9 | 492.1 | 14.3 | 0.022 | 0.006 | 0.792 | 0.054 | 0.005 | 0.432 |
EDDM (g/kg DM) | 22 | 611.0 | 55.69 | 191.2 | 507.8 | 699.0 | 9.1 | 0.022 | 0.006 | 0.792 | 0.054 | 0.005 | 0.432 |
In situ CP degradation | |||||||||||||
S (%) | 22 | 6.44 | 5.66 | 16.04 | 0.00 | 16.04 | 87.9 | 0.510 | 0.398 | 0.179 | 0.818 | 0.125 | 0.483 |
D (%) | 22 | 86.61 | 6.30 | 23.32 | 74.60 | 97.92 | 7.2 | 0.304 | 0.620 | 0.904 | 0.668 | 0.715 | 0.312 |
RUP (g/kg DM) | 22 | 65.00 | 10.25 | 38.17 | 45.99 | 84.16 | 15.7 | 0.212 | <0.001 | 0.577 | 0.001 | 0.216 | 0.081 |
BCP (g/kg DM) | 22 | 72.15 | 11.38 | 42.37 | 51.05 | 93.42 | 15.7 | 0.212 | <0.001 | 0.576 | 0.001 | 0.216 | 0.081 |
EDCP (g/kg CP) | 22 | 545.0 | 60.1 | 194.8 | 450.9 | 645.7 | 11.0 | 0.016 | 0.003 | 0.117 | 0.188 | <0.001 | 0.992 |
EDCP (g/kg DM) | 22 | 77.97 | 12.05 | 43.67 | 61.37 | 105.0 | 15.1 | <0.001 | 0.814 | 0.001 | 0.001 | <0.001 | 0.021 |
In situ NDF degradation | |||||||||||||
Kd (%/h) | 22 | 11.54 | 9.16 | 41.25 | 1.57 | 42.82 | 79.4 | 0.526 | 0.133 | 0.143 | 0.035 | 0.680 | 0.944 |
S (%) | 22 | 8.01 | 8.17 | 27.08 | 0.00 | 27.08 | 101.9 | 0.286 | 0.694 | 0.129 | 0.474 | 0.116 | 0.727 |
D (%) | 22 | 54.63 | 10.44 | 46.53 | 41.08 | 87.61 | 19.1 | 0.636 | 0.495 | 0.401 | 0.969 | 0.317 | 0.681 |
U (%) | 22 | 37.36 | 11.28 | 57.43 | 0.00 | 57.43 | 30.1 | 0.693 | 0.770 | 0.765 | 0.623 | 0.783 | 0.853 |
BNDF (g/kg DM) | 22 | 58.67 | 9.31 | 39.38 | 46.66 | 86.04 | 15.8 | 0.912 | 0.019 | 0.539 | 0.079 | 0.146 | 0.286 |
EDNDF (g/kg DM) | 22 | 56.77 | 11.33 | 49.31 | 42.00 | 91.31 | 19.9 | <0.001 | 0.007 | 0.008 | 0.954 | <0.001 | 0.540 |
In situ starch degradation | |||||||||||||
Kd (%/h) | 22 | 13.80 | 4.74 | 18.36 | 8.64 | 27.00 | 34.3 | 0.028 | 0.005 | 0.003 | 0.689 | <0.001 | 0.154 |
S (%) | 22 | 5.66 | 6.66 | 28.54 | 0.00 | 28.54 | 117.6 | 0.083 | 0.684 | 0.066 | 0.298 | 0.032 | 0.957 |
D (%) | 22 | 94.34 | 6.66 | 28.54 | 71.46 | 100.0 | 7.0 | 0.083 | 0.684 | 0.066 | 0.298 | 0.032 | 0.957 |
BST (g/kg DM) | 22 | 172.3 | 33.22 | 132.0 | 93.06 | 225.0 | 19.2 | <0.001 | 0.007 | <0.001 | 0.320 | <0.001 | 0.374 |
EDST (g/kg DM) | 22 | 389.7 | 56.01 | 192.5 | 297.5 | 490.0 | 14.3 | 0.064 | <0.001 | 0.003 | <0.001 | <0.001 | 0.002 |
In situ CHO degradation | |||||||||||||
Kd (%/h) | 22 | 14.68 | 4.93 | 19.06 | 8.77 | 27.83 | 33.6 | 0.034 | 0.010 | 0.002 | 0.961 | <0.001 | 0.125 |
S (%) | 22 | 5.85 | 5.13 | 19.80 | 0.00 | 19.80 | 87.7 | 0.148 | 0.793 | 0.139 | 0.375 | 0.080 | 0.986 |
D (%) | 22 | 85.63 | 7.19 | 29.99 | 63.38 | 93.37 | 8.4 | 0.140 | 0.981 | 0.052 | 0.163 | 0.062 | 0.824 |
U (%) | 22 | 8.52 | 2.90 | 12.63 | 4.19 | 16.82 | 34.0 | 0.312 | 0.585 | 0.033 | 0.070 | 0.152 | 0.558 |
BCHO (g/kg DM) | 22 | 148.2 | 18.34 | 59.00 | 123.7 | 182.7 | 12.3 | <0.001 | <0.001 | 0.001 | 0.416 | <0.001 | 0.993 |
EDCHO (g/kg DM) | 22 | 527.9 | 44.77 | 170.3 | 432.9 | 603.3 | 8.4 | 0.084 | <0.001 | 0.566 | <0.001 | <0.001 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Prates, L.L.; Yu, P. Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (Hordeum vulgare L.) Grain and Nutrient Utilization, Biodegradation, and Bioavailability. Int. J. Mol. Sci. 2019, 20, 1366. https://doi.org/10.3390/ijms20061366
Sun B, Prates LL, Yu P. Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (Hordeum vulgare L.) Grain and Nutrient Utilization, Biodegradation, and Bioavailability. International Journal of Molecular Sciences. 2019; 20(6):1366. https://doi.org/10.3390/ijms20061366
Chicago/Turabian StyleSun, Baoli, Luciana L. Prates, and Peiqiang Yu. 2019. "Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (Hordeum vulgare L.) Grain and Nutrient Utilization, Biodegradation, and Bioavailability" International Journal of Molecular Sciences 20, no. 6: 1366. https://doi.org/10.3390/ijms20061366
APA StyleSun, B., Prates, L. L., & Yu, P. (2019). Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (Hordeum vulgare L.) Grain and Nutrient Utilization, Biodegradation, and Bioavailability. International Journal of Molecular Sciences, 20(6), 1366. https://doi.org/10.3390/ijms20061366