A Comparative Study of Biological Characteristics and Transcriptome Profiles of Mesenchymal Stem Cells from Different Canine Tissues
Abstract
:1. Introduction
2. Results
2.1. Isolation and Primary Culture of Mesenchymal Stem Cells
2.2. Growth Curve and Population Doubling Time of Mesenchymal Stem Cells
2.3. Mesenchymal Stem Cell Immunofluorescence Results
2.4. Adipogenic and Osteogenic Differentiation Results
2.5. Expression of Surface Marker Genes on Five Types of Mesenchymal Stem Cells in Dogs
2.6. Cluster Analysis of Differentially Expressed Genes
2.7. Transcriptome Sequencing Analysis
2.8. Validation of Transcriptome Results by Quantitative Reverse Transcriptase-PCR
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Primary Culture of the Mesenchymal Stem Cell
4.3. Cell Growth Curve Production
4.4. Calculating Population Doubling Time
4.5. Cellular Immunofluorescence Assay
4.6. Adipogenic and Osteogenic Differentiation
4.6.1. Induction of Adipogenesis
4.6.2. Induction of Osteogenesis
4.7. Transcriptome Sequencing of Mesenchymal Stem Cells
- (1)
- The cDNA library for tanscriptome sequencing was prepared by the PCR method;
- (2)
- The TruSeq PE Clustering Kit of v3-c Bot-HS (Illumia) was used to cluster the index coded samples on the c-bot clustering generation system;
- (3)
- Purification of the raw data (raw readings) in FASTQ format was performed by an internal perl script, to obtain purified data of high quality for downstream analyses;
- (4)
- Reference genome and gene model annotation files were downloaded directly from the genome website (https://www.ncbi.nlm.nih.gov/genome/85?genome_assembly_id=313739, accessed on: 9 August 2016). The index of the reference genome was constructed by Hisat2 v2.0.4, which was also used to compare the paired-end purified reads and the reference genome;
- (5)
- For quantification of the expression level of genes, HTSeq v0.9.1 (Fabio Zanini, Stanford University, USA) was used to calculate the readings mapped to each gene. The FPKM of each gene was then calculated based on the length of the gene, and the readings localized to that gene were calculated too;
- (6)
- The DEGSeq R software package (1.20.0) (Bioconductor, Stanford University, USA) was used for differential expression analysis, and the Benjamini and Hochberg method was used for the adjustment of the p value. A corrected p value of 0.005 and log2 (fold change) was set to 1, as a threshold for a significant difference expression.
4.8. Quantitative Reverse Transcriptase-PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Abbreviations
MSCs | Mesenchymal stem cells |
AD-MSCs | Adipose Mesenchymal Stem Cells |
AM-MSCs | Amniotic Mesenchymal Stem Cells |
BM-MSCs | Bone Marrow Mesenchymal Stem Cells |
P-MSCs | Placenta Mesenchymal Stem Cells |
UC-MSCs | Umbilical Cord Mesenchymal Stem Cells |
PDT | population doubling time |
APOE | Apolipoprotein E |
HSP90AA1 | heat shock protein 90 alpha family class A member 1 |
IGFBP4 | insulin like growth factor binding protein 4 |
THBS1 | thrombospondin 1 |
PDGFRA | platelet derived growth factor receptor alpha |
References
- Friedenstein, A.J.; Gorskaja, J.F.; Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1946, 4, 267–274. [Google Scholar]
- Liu, Y.; Goldberg, A.J.; Dennis, J.E.; Gronowicz, G.A.; Kuhn, L.T. One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS ONE 2012, 7, e33225. [Google Scholar] [CrossRef] [PubMed]
- Asutay, F.; Acar, H.A.; Yolcu, U.; Kirtay, M.; Alan, H. Dental stem cell sources and their potentials for bone tissue engineering. J. Istanb. Univ. Fac. Dent. 2015, 49, 51–56. [Google Scholar] [CrossRef]
- Dong, H.; Li, G.; Shang, C.; Yin, H.; Luo, Y.; Meng, H.; Li, X.; Wang, Y.; Lin, L.; Zhao, M. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy. Am. J. Transl. Res. 2018, 10, 901–906. [Google Scholar]
- Beeravolu, N.; McKee, C.; Alamri, A.; Mikhael, S.; Brown, C.; Perez-Cruet, M.; Chaudhry, G.R. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J. Vis. Exp. 2017. [Google Scholar] [CrossRef]
- Han, Z.C. Umbilical cord mesenchymal stem cells (UC-MSC: Biology, banking and clinical applications). Bull. Acad. Natl. Med. 2009, 193, 545–547. [Google Scholar]
- Heo, J.S.; Choi, Y.; Kim, H.S.; Kim, H.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int. J. Mol. Med. 2016, 37, 115–125. [Google Scholar] [CrossRef]
- Ling, L.; Feng, X.; Wei, T.; Wang, Y.; Wang, Y.; Zhang, W.; He, L.; Wang, Z.; Zeng, Q.; Xiong, Z. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Res. Ther. 2017, 8, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, W.; Wein, F.; Seckinger, A.; Frankhauser, M.; Wirkner, U.; Krause, U.; Blake, J.; Schwager, C.; Eckstein, V.; Ansorge, W.; et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 2005, 33, 1402–1416. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Putterman, A.B.; Trumpatori, B.; Mathews, K.G. Successful vascularized jejunal patch graft to treat severe orad duodenal injury secondary to foreign body obstruction in a dog. Vet. Surg. 2019. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Leiva, M.; Sanz, F.; Espejo, V.; Esteban, J.; Vergara, J.; Diaz, C.; Huguet, E.; Cairo, M.; Rios, J.; et al. A multicenter retrospective study on cryopreserved amniotic membrane transplantation for the treatment of complicated corneal ulcers in the dog. Vet. Ophthalmol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, S.; Di Bello, A.; Valastro, C.; Leo, C.; Lenoci, D.; Rana, E.; Franchini, D. Unilateral renal cystadenocarcinoma and nodular dermatofibrosis in a mixed-breed dog carrying a FLCN gene mutation. Vet. Dermatol. 2019. [Google Scholar] [CrossRef]
- Shionoya, Y.; Sunada, K.; Tsujimoto, G.; Shigeno, K.; Nakamura, T. Ethanol-induced cervical sympathetic ganglion block applications for promoting canine inferior alveolar nerve regeneration using an artificial nerve. J. Vis. Exp. 2018, 141, e58039. [Google Scholar] [CrossRef]
- Marolf, V.; Rohrbach, H.; Bolen, G.; Van Wijnsberghe, A.S.; Sandersen, C. Sciatic nerve block in dogs: Description and evaluation of a modified ultrasound-guided parasacral approach. Vet. Anaesth. Analg. 2019, 46, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Lei, P.; Liu, S.; Liu, X.; Wu, Z.; Lv, Y. A sutureless method for digestive tract reconstruction during pancreaticoduodenectomy in a dog model. Int. J. Clin. Exp. Med. 2015, 8, 289–296. [Google Scholar] [PubMed]
- Regan, D.; Garcia, K.; Thamm, D. Clinical, pathological, and ethical considerations for the conduct of clinical trials in dogs with naturally occurring cancer: A comparative approach to accelerate translational drug development. ILAR J. 2019. [Google Scholar] [CrossRef]
- Goto, A.; Hagiwara-Nagasawa, M.; Kambayashi, R.; Chiba, K.; Izumi-Nakaseko, H.; Naito, A.T.; Kanda, Y.; Sugiyama, A. Measurement of J-tpeakc along with QT-interval prolongation may increase the assay sensitivity and specificity for predicting the onset of drug-induced torsade de pointes: Experimental evidences based on proarrhythmia model animals. Cardiovasc. Toxicol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, M.G.; Labato, M.A. Use of therapeutic plasma exchange to treat nonsteroidal anti-inflammatory drug overdose in dogs. J. Vet. Intern. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Scholz, D.; Schuldt, H.H.; Althaus, P.; Schroder, K.; Mebel, M. Clinical and experimental results on the significance of kidney damage for long-term prognosis after kidney transplantation. Zeitschrift Urol. Nephrol. 1979, 72, 875–883. [Google Scholar]
- Kortum, A.J.; Cloup, E.A.; Williams, T.L.; Constantino-Casas, F.; Watson, P.J. Hepatocyte expression and prognostic importance of senescence marker p21 in liver histopathology samples from dogs with chronic hepatitis. J. Vet. Intern. Med. 2018, 32, 1629–1636. [Google Scholar] [CrossRef]
- Lawrence, Y.A.; Dangott, L.J.; Rodrigues-Hoffmann, A.; Steiner, J.M.; Suchodolski, J.S.; Lidbury, J.A. Proteomic analysis of liver tissue from dogs with chronic hepatitis. PLoS ONE 2018, 13, e208394. [Google Scholar] [CrossRef] [PubMed]
- Moshref, M.; Tangey, B.; Gilor, C.; Papas, K.K.; Williamson, P.; Loomba-Albrecht, L.; Sheehy, P.; Kol, A. Concise review: Canine diabetes mellitus as a translational model for innovative regenerative medicine approaches. Stem Cells Transl. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Setyawan, E.; Choi, Y.B.; Ra, J.C.; Kang, S.K.; Lee, B.C.; Kim, G.A. Clinical assessment after human adipose stem cell transplantation into dogs. J. Vet. Sci. 2018, 19, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lin, S.; Wang, B.; Gu, W.; Li, G. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis: A contemporary review of experimental studies. Bone Joint Res. 2017, 6, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Corradetti, B.; Taraballi, F.; Martinez, J.O.; Minardi, S.; Basu, N.; Bauza, G.; Evangelopoulos, M.; Powell, S.; Corbo, C.; Tasciotti, E. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci. Rep. 2017, 7, 7991. [Google Scholar] [CrossRef]
- Iaffaldano, L.; Nardelli, C.; D’Alessio, F.; D’Argenio, V.; Nunziato, M.; Mauriello, L.; Procaccini, C.; Maruotti, G.M.; Martinelli, P.; Matarese, G.; et al. Altered bioenergetic profile in umbilical cord and amniotic mesenchymal stem cells from newborns of obese women. Stem Cells Dev. 2018, 27, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, V.; Caterino, M.; Iaffaldano, L.; Nardelli, C.; Sirico, A.; Del, V.L.; Martinelli, P.; Pastore, L.; Pucci, P.; Sacchetti, L. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals impaired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity. Sci. Rep. 2016, 6, 25270. [Google Scholar] [CrossRef] [Green Version]
- Fuchi, N.; Miura, K.; Doi, H.; Li, T.S.; Masuzaki, H. Feasibility of placenta-derived mesenchymal stem cells as a tool for studying pregnancy-related disorders. Sci. Rep. 2017, 7, 46220. [Google Scholar] [CrossRef]
- Pera, M.F. Scientific considerations relating to the ethics of the use of human embryonic stem cells in research and medicine. Reprod. Fertil. Dev. 2001, 13, 23–29. [Google Scholar] [CrossRef]
- Espinoza, N.; Peterson, M. How to depolarise the ethical debate over human embryonic stem cell research (and other ethical debates too!). J. Med. Ethics 2012, 38, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Aliborzi, G.; Vahdati, A.; Mehrabani, D.; Hosseini, S.E.; Tamadon, A. Isolation, characterization and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of Guinea pig. Int. J. Stem Cells 2016, 9, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Prakoeswa, C.; Pratiwi, F.D.; Herwanto, N.; Citrashanty, I.; Indramaya, D.M.; Murtiastutik, D.; Sukanto, H.; Rantam, F.A. The effects of amniotic membrane stem cell-conditioned medium on photoaging. J. Dermatolog. Treat. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hakki, S.S.; Turac, G.; Bozkurt, S.B.; Kayis, S.A.; Hakki, E.E.; Sahin, E.; Subasi, C.; Karaoz, E. Comparison of different sources of mesenchymal stem cells: Palatal versus lipoaspirated adipose tissue. Cells Tissues Organs 2017, 204, 228–240. [Google Scholar] [CrossRef]
- Baghaei, K.; Hashemi, S.M.; Tokhanbigli, S.; Asadi, R.A.; Assadzadeh-Aghdaei, H.; Sharifian, A.; Zali, M.R. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol. Hepatol. Bed Bench 2017, 10, 208–213. [Google Scholar]
- Samsonraj, R.M.; Raghunath, M.; Nurcombe, V.; Hui, J.H.; van Wijnen, A.J.; Cool, S.M. Concise review: Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl. Med. 2017, 6, 2173–2185. [Google Scholar] [CrossRef]
- Rider, D.A.; Nalathamby, T.; Nurcombe, V.; Cool, S.M. Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells. J. Mol. Histol. 2007, 38, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Andersen, D.C.; Kortesidis, A.; Zannettino, A.C.; Kratchmarova, I.; Chen, L.; Jensen, O.N.; Teisner, B.; Gronthos, S.; Jensen, C.H.; Kassem, M. Development of novel monoclonal antibodies that define differentiation stages of human stromal (mesenchymal) stem cells. Mol. Cells 2011, 32, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Nah, J.J.; Lee, B.C.; Lee, H.T.; Lee, H.S.; So, B.J.; Cha, S.H. Maintenance and characterization of multipotent mesenchymal stem cells isolated from canine umbilical cord matrix by collagenase digestion. Res. Vet. Sci. 2013, 94, 144–151. [Google Scholar] [CrossRef]
- Martinello, T.; Bronzini, I.; Maccatrozzo, L.; Mollo, A.; Sampaolesi, M.; Mascarello, F.; Decaminada, M.; Patruno, M. Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res. Vet. Sci. 2011, 91, 18–24. [Google Scholar] [CrossRef]
- Screven, R.; Kenyon, E.; Myers, M.J.; Yancy, H.F.; Skasko, M.; Boxer, L.; Bigley, E.R.; Borjesson, D.L.; Zhu, M. Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Vet. Immunol. Immunopathol. 2014, 161, 21–31. [Google Scholar] [CrossRef]
- Boxall, S.A.; Jones, E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012, 2012, 975871. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.J.; Yeom, J.E.; Lee, H.J.; Rho, S.H.; Han, H.; Chae, G.T. Growth kinetics of human mesenchymal stem cells from bone marrow and umbilical cord blood. Acta Haematol. 2004, 112, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.A.; Chow, N.H.; Dukoff, D.; Gibson, T.W.; LaMarre, J.; Betts, D.H.; Koch, T.G. Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS ONE 2016, 11, e167442. [Google Scholar] [CrossRef]
- Bojnordi, M.N.; Azizi, H.; Skutella, T.; Movahedin, M.; Pourabdolhossein, F.; Shojaei, A.; Hamidabadi, H.G. Differentiation of spermatogonia stem cells into functional mature neurons characterized with differential gene expression. Mol. Neurobiol. 2017, 54, 5676–5682. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Li, Y.; Guan, Y.; Song, Y.; Yin, L.; Chen, H.; Lei, L.; Liu, J.; Li, X.; et al. Effects of nonesterified fatty acids on the synthesis and assembly of very low density lipoprotein in bovine hepatocytes in vitro. J. Dairy Sci. 2014, 97, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liu, F.; Zeng, L.; Geng, L.; Ouyang, X.; Wang, K.; Huang, Q. Overexpression of pyruvate kinase type M2 (PKM2) promotes ovarian cancer cell growth and survival via regulation of cell cycle progression related with upregulated CCND1 and downregulated CDKN1A expression. Med. Sci. Monit. 2018, 24, 3103–3112. [Google Scholar] [CrossRef]
- Moncada, D.L.R.C.; Radziwon-Balicka, A.; El-Sikhry, H.; Seubert, J.; Ruvolo, P.P.; Radomski, M.W.; Jurasz, P. Pharmacologic protein kinase Calpha inhibition uncouples human platelet-stimulated angiogenesis from collagen-induced aggregation. J. Pharmacol. Exp. Ther. 2013, 345, 15–24. [Google Scholar] [CrossRef]
- Hernandez, A.; Stohn, J.P. The type 3 deiodinase: Epigenetic control of brain thyroid hormone action and neurological function. Int. J. Mol. Sci. 2018, 19, 1804. [Google Scholar] [CrossRef]
- Irigoyen, M.; Anso, E.; Salvo, E.; Dotor, D.L.H.J.; Martinez-Irujo, J.J.; Rouzaut, A. TGFbeta-induced protein mediates lymphatic endothelial cell adhesion to the extracellular matrix under low oxygen conditions. Cell. Mol. Life Sci. 2008, 65, 2244–2255. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, C.; Yin, Y.; Li, X.; Zhou, L. Lysinespecific demethylase 2 contributes to the proliferation of small cell lung cancer by regulating the expression of TFPI2. Mol. Med. Rep. 2018, 18, 733–740. [Google Scholar]
- Zhang, Y.D.; Zhao, S.C.; Zhu, Z.S.; Wang, Y.F.; Liu, J.X.; Zhang, Z.C.; Xue, F. Cx43- and smad-mediated TGF-beta/ BMP signaling pathway promotes cartilage differentiation of bone marrow mesenchymal stem cells and inhibits osteoblast differentiation. Cell. Physiol. Biochem. 2017, 42, 1277–1293. [Google Scholar] [CrossRef] [PubMed]
- Sturchler, E.; Cox, J.A.; Durussel, I.; Weibel, M.; Heizmann, C.W. S100A16, a novel calcium-binding protein of the EF-hand superfamily. J. Biol. Chem. 2006, 281, 38905–38917. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, R.; Xin, J.; Sun, Y.; Li, J.; Wei, D.; Zhao, A.Z. Identification of S100A16 as a novel adipogenesis promoting factor in 3T3-L1 cells. Endocrinology 2011, 152, 903–911. [Google Scholar] [CrossRef]
- Ofner, D.; Hittmair, A.; Marth, C.; Ofner, C.; Totsch, M.; Daxenbichler, G.; Mikuz, G.; Margreiter, R.; Schmid, K.W. Relationship between quantity of silver stained nucleolar organizer regions associated proteins (Ag-NORs) and population doubling time in ten breast cancer cell lines. Pathol. Res. Pract. 1992, 188, 742–746. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Wang, B.Y.; Li, S.C.; Luo, D.Z.; Zhan, X.; Chen, S.F.; Chen, Z.S.; Liu, C.Y.; Ji, H.Q.; Bai, Y.S.; et al. Evaluation of the curative effect of umbilical cord mesenchymal stem cell therapy for knee arthritis in dogs using imaging technology. Stem Cells Int. 2018, 2018, 1983025. [Google Scholar] [CrossRef]
- El-Ashram, S.; Al, N.I.; Suo, X. Nucleic acid protocols: Extraction and optimization. Biotechnol. Rep. 2016, 12, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ashram, S.; Li, C.; Abouhajer, F.; Mehmood, R.; Al, N.I.; Zhang, Y.; Lu, T.; Yili, D.; Suo, X.; Haoji, Z.; et al. An ex vivo abomasal ovine model to study the immediate immune response in the context of Haemonchus contortus larval-stage. Vet. Parasitol. 2018, 254, 105–113. [Google Scholar] [CrossRef]
- Mata-Perez, C.; Sanchez-Calvo, B.; Begara-Morales, J.C.; Luque, F.; Jimenez-Ruiz, J.; Padilla, M.N.; Fierro-Risco, J.; Valderrama, R.; Fernandez-Ocana, A.; Corpas, F.J.; et al. Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Front. Plant. Sci. 2015, 6, 122. [Google Scholar] [CrossRef]
- El-Ashram, S.; Al, N.I.; El-Kemary, M.; Mehmood, R.; Hu, M.; Suo, X. Early and late gene expression profiles of the ovine mucosa in response to Haemonchus contortus infection employing Illumina RNA-seq technology. Parasitol. Int. 2017, 66, 681–692. [Google Scholar] [CrossRef]
Surface Marker | Gene Symbol | Gene Name | Gene ID | Expression in MSC |
---|---|---|---|---|
CD11a | ITGAL | integrin subunit alpha L | 489905 | - |
CD11b | ITGAM | integrin subunit alpha M | 489928 | - |
CD13 | ANPEP | alanyl aminopeptidase, membrane | 403913 | + |
CD14 | CD14 | CD14 molecule | 607076 | - |
CD19 | CD19 | CD19 molecule | 607898 | - |
CD33 | CD33 | myeloid cell surface antigen CD33 | 100686511 | - |
CD34 | CD34 | CD34 molecule | 415130 | - |
CD44 | CD44 | CD44 molecule | 403939 | + |
CD45 | PTPRC | protein tyrosine phosphatase, receptor type C | 490255 | - |
CD49a | ITGA1 | integrin subunit alpha 1 | 489210 | + |
CD54 | ICAM1 | intercellular adhesion molecule 1 | 403975 | + |
CD73 | NT5E | NT5E 5′-nucleotidase ecto | 474984 | + |
CD86 | CD86 | CD86 molecule | 403764 | - |
CD90 | THY-1 | Thy-1 cell surface antigen | 489365 | + |
CD105 | ENG | endoglin | 609166 | + |
CD140a | PDGFRA | platelet derived growth factor receptor alpha | 442860 | + |
CD140b | PDGFRB | platelet derived growth factor receptor beta | 442985 | + |
CD146 | MCAM | melanoma cell adhesion molecule | 489368 | - |
CD271 | NGFR | nerve growth factor receptor | 491071 | - |
MHC I | DLA88 | MHC class I DLA-88 | 474836 | + |
MHC II | DLA-DQA1 | major histocompatibility complex, class II, DQ alpha 1 | 474861 | - |
Gene ID | Symbol | Gene Name | Gene Expression in Body-Derived MSCs (FPKM) | Gene Expression in Perinatal-Derived MSCs (FPKM) | |||
---|---|---|---|---|---|---|---|
BM-MSCs | AD-MSCs | UC-MSCs | AM-MSCs | P-MSCs | |||
down-regulated genes | |||||||
476438 | APOE | apolipoprotein E | 19.48230703 | 173.6654375 | 1567.506632 | 7989.110095 | 546.5077788 |
474890 | CDKN1A | cyclin dependent kinase inhibitor 1A | 61.95423033 | 43.52563608 | 236.424318 | 1121.066431 | 218.6291872 |
487486 | THBS1 | thrombospondin 1 | 119.3758949 | 125.0178298 | 1524.233918 | 888.0058028 | 1051.135618 |
480221 | RPL17 | ribosomal protein L17 | 75.71858715 | 82.25616537 | 721.1519554 | 826.9961484 | 638.3271764 |
475792 | ACTG2 | actin, gamma 2, smooth muscle, enteric | 6.399918524 | 0.414750909 | 351.1864758 | 766.518074 | 137.3140666 |
100856417 | RASL11A | RAS like family 11 member A | 0.876201127 | 1.40855383 | 680.0949342 | 629.3313239 | 673.6109411 |
611312 | PHLDA1 | pleckstrin homology like domain family A member 1 | 23.28421611 | 12.87378946 | 310.0875622 | 595.7103922 | 192.2748208 |
612596 | DIO3 | iodothyronine deiodinase 3 | 4.054952104 | 0 | 136.8582098 | 427.3538336 | 243.7423875 |
100271858 | H19 | H19, imprinted maternally expressed transcript (non-protein coding) | 0.161668492 | 0.681456125 | 881.4958725 | 379.2382548 | 87.40665754 |
100855619 | IGFBP3 | insulin like growth factor binding protein 3 | 0.426966827 | 0.014979892 | 439.8998024 | 353.5566142 | 162.0637504 |
478256 | FSIP1 | fibrous sheath interacting protein 1 | 41.95676806 | 39.66236813 | 507.9665302 | 240.06563 | 353.193685 |
481519 | TGFBI | transforming growth factor beta induced | 22.9651713 | 35.26254056 | 200.9835386 | 178.8766204 | 205.2200716 |
up-regulated genes | |||||||
475230 | TFPI2 | tissue factor pathway inhibitor 2 | 1898.736999 | 266.7345781 | 4.765569024 | 32.96191818 | 44.31133656 |
490355 | DPT | dermatopontin | 309.4514262 | 236.9797415 | 27.20988994 | 21.23019758 | 57.24591462 |
478293 | FBN1 | fibrillin 1 | 289.0483951 | 397.5158581 | 87.97115218 | 47.3419576 | 54.44982126 |
609105 | PRRX1 | paired related homeobox 1 | 277.7767982 | 277.8458835 | 62.8372572 | 35.17884243 | 52.27789448 |
490458 | S100A16 | S100 calcium binding protein A16 | 134.3591612 | 141.5546125 | 1.853236286 | 28.06769912 | 11.59700716 |
Gene Symbol | Product Length | Temperature | Primer Sequence |
---|---|---|---|
APOE | 163 | 59.49 °C | F: GGTGAAGATGGAGGAGCAGG R: CTTAGAGGTGGGGATGGTGG |
COX1 | 198 | 58.93 °C | F: GGTCAGCCCGGTACTTTACT R: TGGAGGAAGGAGTCAGAAGC |
HSP90B1 | 164 | 58.58 °C | F: GCAGTTTGGTGTCGGTTTCT R: TAATTGTTGTTCCCCGTCCG |
HSP90A | 194 | 58.95 °C | F: GTTCGGATGAGGAGGAGGAG R: TGCCAAGTGATCTTCCCAGT |
IGFBP4 | 192 | 59.11 °C | F: CCGGAAAACAGGAGTGAAGC R: CCAGAGACAGAGCCAGGAC |
PGS1 | 190 | 58.64 °C | F: CAGCCAGCAACCAATCACTA R: CCTTTCCCCAGCATTCACAC |
PDGFRA | 187 | 59.03 °C | F: ATCGAAGGCAGGCACATCTA R: TGTACCACCCCATCATTGCT |
THBS1 | 160 | 59.09 °C | F: GCGCTCCTGTGATAGTCTCA R: GATCACACCATCACCACACG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.-S.; El-Ashram, S.; Luo, D.-Z.; Luo, H.-N.; Wang, B.-Y.; Chen, S.-F.; Bai, Y.-S.; Chen, Z.-S.; Liu, C.-Y.; Ji, H.-Q. A Comparative Study of Biological Characteristics and Transcriptome Profiles of Mesenchymal Stem Cells from Different Canine Tissues. Int. J. Mol. Sci. 2019, 20, 1485. https://doi.org/10.3390/ijms20061485
Zhan X-S, El-Ashram S, Luo D-Z, Luo H-N, Wang B-Y, Chen S-F, Bai Y-S, Chen Z-S, Liu C-Y, Ji H-Q. A Comparative Study of Biological Characteristics and Transcriptome Profiles of Mesenchymal Stem Cells from Different Canine Tissues. International Journal of Molecular Sciences. 2019; 20(6):1485. https://doi.org/10.3390/ijms20061485
Chicago/Turabian StyleZhan, Xiao-Shu, Saeed El-Ashram, Dong-Zhang Luo, Hui-Na Luo, Bing-Yun Wang, Sheng-Feng Chen, Yin-Shan Bai, Zhi-Sheng Chen, Can-Ying Liu, and Hui-Qin Ji. 2019. "A Comparative Study of Biological Characteristics and Transcriptome Profiles of Mesenchymal Stem Cells from Different Canine Tissues" International Journal of Molecular Sciences 20, no. 6: 1485. https://doi.org/10.3390/ijms20061485
APA StyleZhan, X. -S., El-Ashram, S., Luo, D. -Z., Luo, H. -N., Wang, B. -Y., Chen, S. -F., Bai, Y. -S., Chen, Z. -S., Liu, C. -Y., & Ji, H. -Q. (2019). A Comparative Study of Biological Characteristics and Transcriptome Profiles of Mesenchymal Stem Cells from Different Canine Tissues. International Journal of Molecular Sciences, 20(6), 1485. https://doi.org/10.3390/ijms20061485