The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases
Abstract
:1. Introduction
2. Results and Discussions
2.1. Apparent Viscosity
2.2. Storage and Loss Moduli
2.3. Transient Response
3. Materials and Methods
4. Conclusions
- (1)
- The apparent viscosity results showed that the presence of anisotropic-shaped CI particles was able to reduce the initial apparent viscosity; 0.1139 kPa.s for MRG5, due to its orientation in the bedding plane. Conversely, the bidisperse MRG showed enhancement in the initial apparent viscosity as well as stiffness compared to the mono-shaped MRG, with 21.43 kPa.s, 44.48 kPa.s, and 1051 kPa.s for MRG3, MRG2, and MRG4 respectively. This indicates that the bidisperse MRG has an improved particle structuring process by strengthening the chain structures and reducing the void in the thixotropic medium.
- (2)
- The LVE region for the mono-shaped MRG comprised of spherical CI particles improved in the presence of a magnetic field from 0.03% to 0.1%. Meanwhile, the mono-shaped plate-like and bidisperse MRGs have shown limited LVE region with 0.04% magnetic field. This LVE region indirectly limits the performance of the MRG in devices. From this study, MRG5 exhibited the highest MR effect of about 250%, followed by the mono-shaped spherical CI particles (240%) and bidisperse MRG (220%). The MR effect of the bidisperse MRG is lower than expected due to the bedding orientation of the plate-like CI particles in the medium and restriction of the grease structure.
- (3)
- The transient response was evaluated in this study, which is vital to device performances. The results showed that MRG1, MRG2, MRG3, and MRG4 have better storage modulus at LVE region of 0.1% with transient responses of two seconds during stepwise magnetic field application compared to MRG5, which at 0.01% had a response time of six seconds.
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Ashtiani, M.; Hashemabadi, S.H.; Ghaffari, A. A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 2015, 374, 716–730. [Google Scholar] [CrossRef]
- De Vicente, J.; Klingenberg, D.J.; Hidalgo-Alvarez, R. Magnetorheological fluids: A review. Soft Matter 2011, 7, 3701. [Google Scholar] [CrossRef]
- Park, B.J.; Fang, F.F.; Choi, H.J. Magnetorheology: Materials and application. Soft Matter 2010, 6, 5246. [Google Scholar] [CrossRef]
- Goncalves, F.D.; Jeong-Hoi, K.; Ahmadian, M. A Review of the State of the Art in Magnetorheological Fluid Technologies—Part I: MR fluid and MR fluid models. Shock Vib. Dig. 2006, 38, 203–219. [Google Scholar] [CrossRef]
- Bica, I.; Liu, Y.D.; Choi, H.J. Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 2013, 19, 394–406. [Google Scholar] [CrossRef]
- Shah, K.; Oh, J.-S.; Choi, S.-B.; Upadhyay, R.V. Plate-like iron particles based bidisperse magnetorheological fluid. J. Appl. Phys. 2013, 114, 213904. [Google Scholar] [CrossRef]
- Upadhyay, R.V.; Laherisheth, Z.; Shah, K. Rheological properties of soft magnetic flake shaped iron particle based magnetorheological fluid in dynamic mode. Smart Mater. Struct. 2014, 23, 15002. [Google Scholar] [CrossRef]
- Shilan, S.T.; Mazlan, S.A.; Ido, Y.; Hajalilou, A.; Jeyadevan, B.; Choi, S.; Yunus, N.A. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids. Smart Mater. Struct. 2016, 25, 095025. [Google Scholar] [CrossRef]
- Leong, S.A.N.; Mohd Samin, P.; Idris, A.; Mazlan, S.A.; Rahman, A.H.A. Synthesis, characterization and magnetorheological properties of carbonyl iron suspension with superparamagnetic nanoparticles as an additive. Smart Mater. Struct. 2016, 25, 025025. [Google Scholar] [CrossRef]
- Laherisheth, Z.; Upadhyay, R.V. Influence of Particle Shape on the Magnetic and Steady Shear Magnetorheological Properties of Nanoparticle based MR Fluids. Smart Mater. Struct. 2017, 26, 054008. [Google Scholar] [CrossRef]
- Wang, X.; Gordaninejad, F. Study of magnetorheological fluids at high shear rates. Rheol. Acta 2006, 45, 899–908. [Google Scholar] [CrossRef]
- Yunus, N.A.; Mazlan, S.A.; Ubaidillah; Choi, S.-B.; Imaduddin, F.; Abdul Aziz, S.A.; Ahmad Khairi, M.H. Rheological properties of isotropic magnetorheological elastomers featuring an epoxidized natural rubber. Smart Mater. Struct. 2016, 25, 107001. [Google Scholar] [CrossRef]
- Chen, K.; Tian, Y.; Shan, L.; Jiang, J. Transient response of sheared magnetic powder excited by a stepwise magnetic field and its comparison with ER and MR fluids. Smart Mater. Struct. 2013, 22, 97001. [Google Scholar] [CrossRef]
- Ulicny, J.C.; Golden, M.A.; Namuduri, C.S.; Klingenberg, D.J. Transient response of magnetorheological fluids: Shear flow between concentric cylinders. J. Rheol. (N. Y. N. Y.) 2005, 49, 87–104. [Google Scholar] [CrossRef]
- Ubaidillah, N.A.; Hudha, K.; Jamaluddin, H. Simulation and experimental evaluation on a skyhook policy-based fuzzy logic control for semi-active suspension system. Int. J. Struct. Eng. 2011, 2, 243. [Google Scholar] [CrossRef]
- López-López, M.T.; Kuzhir, P.; Bossis, G.; Mingalyov, P. Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties. Rheol. Acta 2008, 47, 787–796. [Google Scholar] [CrossRef]
- Gómez-Ramírez, A.; López-López, M.T.; Durán, J.D.G.; González-Caballero, F. Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions. Soft Matter 2009, 5, 3888. [Google Scholar] [CrossRef]
- Chin, B.D.; Park, J.H.; Kwon, M.H.; Park, O.O. Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol. Acta 2001, 40, 211–219. [Google Scholar] [CrossRef]
- Phulé, P.P.; Mihalcin, M.P.; Genc, S. The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids. J. Mater. Res. 1999, 14, 3037–3041. [Google Scholar] [CrossRef]
- Mohamad, N.; Mazlan, S.A.; Ubaidillah; Choi, S.-B.; Imaduddin, F.; Abdul Aziz, S.A. The field-dependent viscoelastic and transient responses of plate-like carbonyl iron particle based magnetorheological greases. J. Intell. Mater. Syst. Struct. 2019, 30, 788–797. [Google Scholar] [CrossRef]
- Rankin, P.J.; Horvath, A.T.; Klingenberg, D.J. Magnetorheology in viscoplastic media. Rheol. Acta 1999, 38, 471–477. [Google Scholar] [CrossRef]
- Kavlicoglu, B.M.; Gordaninejad, F.; Wang, X. Study of a magnetorheological grease clutch. Smart Mater. Struct. 2013, 22, 125030. [Google Scholar] [CrossRef]
- Gordaninejad, F.; Miller, M.; Wang, X.; Sahin, H.; Fuchs, A. Study of a magneto-rheological grease (MRG) damper. In Proceedings of the SPIE, San Diego, CA, USA, 27 April 2007; pp. 65250G.1–65250G.6. [Google Scholar]
- Park, B.O.; Park, B.J.; Hato, M.J.; Choi, H.J. Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field. Colloid Polym. Sci. 2011, 289, 381–386. [Google Scholar] [CrossRef]
- Sahin, H.; Wang, X.; Gordaninejad, F. Temperature Dependence of Magneto-rheological Materials. J. Intell. Mater. Syst. Struct. 2009, 20, 2215–2222. [Google Scholar] [CrossRef]
- Mohamad, N.; Mazlan, S.A.; Ubaidillah; Choi, S.B.; Nordin, M.F.M. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles. Smart Mater. Struct. 2016, 25, 10. [Google Scholar] [CrossRef]
- De Laurentis, N.; Kadiric, A.; Lugt, P.; Cann, P. The influence of bearing grease composition on friction in rolling/sliding concentrated contacts. Tribol. Int. 2016, 94, 624–632. [Google Scholar] [CrossRef] [Green Version]
- Karis, T.E.; Kono, R.-N.; Jhon, M.S. Harmonic Analysis in Grease Rheology. J. Appl. Polym. Sci. 2003, 90, 334–343. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, X.; Xuan, S.; Zhang, W.; Fan, Y. A high-performance magnetorheological material: Preparation, characterization and magnetic-mechanic coupling properties. Soft Matter 2011, 7, 5246. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Zhao, G.; Wang, X.; Liu, W. Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease. Tribol. Lett. 2011, 41, 113–119. [Google Scholar] [CrossRef]
- Song, K.H.; Park, B.J.; Choi, H.J. Effect of Magnetic Nanoparticle Additive on Characteristics of Magnetorheological Fluid. IEEE Trans. Magn. 2009, 45, 4045–4048. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Ko, J.-D.; Liu, Y.D.; Kim, I.G.; Choi, H.J. Effect of Medium Oil on Magnetorheology of Soft Carbonyl Iron Particles. IEEE Trans. Magn. 2012, 48, 3442–3445. [Google Scholar] [CrossRef]
- Mohamad, N.; Ubaidillah; Mazlan, S.A.; Imaduddin, F.; Choi, S.-B.; Yazid, I.I.M. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- De Vicente, J.; Vereda, F.; Segovia-Gutiérrez, J.P.; del Puerto Morales, M.; Hidalgo-Álvarez, R. Effect of particle shape in magnetorheology. J. Rheol. (N. Y. N. Y.) 2010, 54, 1337. [Google Scholar] [CrossRef]
- Shah, K.; Phu, D.X.; Seong, M.-S.; Upadhyay, R.V.; Choi, S.-B. A low sedimentation magnetorheological fluid based on plate-like iron particles, and verification using a damper test. Smart Mater. Struct. 2014, 23, 027001. [Google Scholar] [CrossRef]
- Yang, P.; Yu, M.; Fu, J.; Luo, H. Rheological properties of dimorphic magnetorheological gels mixed dendritic carbonyl iron powder. J. Intell. Mater. Syst. Struct. 2017, 29, 12–23. [Google Scholar] [CrossRef]
- Yang, J.; Yan, H.; Niu, F.; Zhang, H. Probing of the magnetic responsive behavior of magnetorheological organogel under step field perturbation. Colloid Polym. Sci. 2018, 296, 309–317. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, Y.; Feng, J.; Gong, X. Transient response of magnetorheological elastomers to step magnetic field. Appl. Phys. Lett. 2018, 113, 081902. [Google Scholar] [CrossRef]
- Takesue, N.; Furusho, J.; Sakaguchi, M. Improvement of Response Properties of MR-Fluid Actuator by Torque Feedback Control 2 Characteristics of MR fluids 1 Introduction 4 The MR-fluid actuator 3 Principle of MR-fluid actuator. Proc. IEEE Conf. Robot. Autom. 2001, 4, 3825–3830. [Google Scholar]
- Yang, G.; Spencer, B.F.; Carlson, J.D.; Sain, M.K. Large-scale MR fluid dampers: Modeling and dynamic performance considerations. Eng. Struct. 2002, 24, 309–323. [Google Scholar] [CrossRef]
- Senkal, D.; Gurocak, H. Compact mr-brake with serpentine flux path for haptics applications. In Proceedings of the Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (World Haptics 2009), Salt Lake City, UT, USA, 18–20 March 2009; pp. 91–96. [Google Scholar]
- Jahan, N.; Pathak, S.; Jain, K.; Pant, R.P. Enchancment in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 88–94. [Google Scholar] [CrossRef]
- Shan, L.; Chen, K.; Zhou, M.; Zhang, X.; Meng, Y.; Tian, Y. Shear history effect of magnetorheological fluids. Smart Mater. Struct. 2015, 24, 105030. [Google Scholar]
- Jones, S.B.; Friedman, S.P. Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resour. Res. 2000, 36, 2821–2833. [Google Scholar] [CrossRef] [Green Version]
- Niu, R.; Gong, J.; Xu, D.; Tang, T.; Sun, Z.Y. Relationship between structures and rheological properties of plate-like particle suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 470, 22–30. [Google Scholar] [CrossRef]
- Qazi, S.J.S.; Rennie, A.R.; Wright, J.P.; Cockcroft, J.K. Alignment of Plate-Like Particles in a Colloidal Dispersion under Flow in a Uniform Pipe Studied by High-Energy X-ray Diffraction. Langmuir 2010, 26, 18701–18709. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, M.; Olsztyńska-Janus, S. Grease thixotropy: Evaluation of grease microstructure change due to shear and relaxation. Ind. Lubr. Tribol. 2014, 66, 223–237. [Google Scholar] [CrossRef]
- Audus, D.J.; Hassan, A.M.; Garboczi, E.J.; Douglas, J.F. Interplay of particle shape and suspension properties: A study of cube-like particles. Soft Matter 2015, 11, 3360–3366. [Google Scholar] [CrossRef]
- Wang, W.; Guo, J.; Long, C.; Li, W.; Guan, J. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 2015, 637, 106–111. [Google Scholar] [CrossRef]
- Yu, M.; Qi, S.; Fu, J.; Zhu, M. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Agirre-Olabide, I.; Elejabarrieta, M.J. Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron powder. J. Polym. Res. 2017, 24, 139. [Google Scholar] [CrossRef]
- Kikuchi, T.; Noma, J.; Akaiwa, S.; Ueshima, Y. Response time of magnetorheological fluid–based haptic device. J. Intell. Mater. Syst. Struct. 2016, 27, 859–865. [Google Scholar] [CrossRef]
- Liu, T.; Xu, Y.; Gong, X.; Pang, H.; Xuan, S. Magneto-induced normal stress of magnetorheological plastomer. AIP Adv. 2013, 3, 082122. [Google Scholar] [CrossRef]
Samples | Initial Storage Modulus, G’0 (MPa) | Absolute MR Effect (MPa) | Relative MR Effect (%) |
---|---|---|---|
MRG1 | 0.76383 | 1.83474 | 240.20 |
MRG2 | 0.72047 | 1.71398 | 237.90 |
MRG3 | 0.77925 | 1.72605 | 221.50 |
MRG4 | 0.75217 | 1.70625 | 226.84 |
MRG5 | 0.73861 | 1.89573 | 256.66 |
Samples | Spherical CI Particles | Plate-Like CI Particles | Grease |
---|---|---|---|
MRG1 | 70 | 0 | 30 |
MRG2 | 50 | 20 | 30 |
MRG3 | 35 | 35 | 30 |
MRG4 | 20 | 50 | 30 |
MRG5 | 0 | 70 | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad, N.; Ubaidillah; Mazlan, S.A.; Choi, S.-b.; Abdul Aziz, S.A.; Sugimoto, M. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. Int. J. Mol. Sci. 2019, 20, 1525. https://doi.org/10.3390/ijms20071525
Mohamad N, Ubaidillah, Mazlan SA, Choi S-b, Abdul Aziz SA, Sugimoto M. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. International Journal of Molecular Sciences. 2019; 20(7):1525. https://doi.org/10.3390/ijms20071525
Chicago/Turabian StyleMohamad, Norzilawati, Ubaidillah, Saiful Amri Mazlan, Seung-bok Choi, Siti Aishah Abdul Aziz, and Masataka Sugimoto. 2019. "The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases" International Journal of Molecular Sciences 20, no. 7: 1525. https://doi.org/10.3390/ijms20071525
APA StyleMohamad, N., Ubaidillah, Mazlan, S. A., Choi, S. -b., Abdul Aziz, S. A., & Sugimoto, M. (2019). The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. International Journal of Molecular Sciences, 20(7), 1525. https://doi.org/10.3390/ijms20071525