Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved Properties as an Anticancer Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Cisplatin-Loaded PBCA NPs
2.2. Size, Size Distribution, and Zeta Potential of NPs
2.3. Evaluation of the NP Morphology
2.4. Evaluation of Cisplatin Loading Efficiency
2.5. Drug Release Study
2.6. Cytotoxicity of Cisplatin-Loaded NPs
2.7. Evaluation of the NPs’ Stability
2.8. In Vivo Antitumor Efficacy of the Formulations
3. Materials and Methods
3.1. Materials
3.2. Preparation of Cisplatin-Loaded PBCA NPs
3.3. Size, Size Distribution, and Zeta Potential of NPs
3.4. Evaluation of the NP Morphology
3.5. Evaluation of the Cisplatin Loading Efficiency
3.6. Drug Release Study
3.7. Cytotoxicity of Cisplatin-Loaded NPs
3.8. Evaluation of the NPs’ Stability
3.9. In Vivo Antitumor Efficacy of the Formulations
3.10. Histological Evaluation
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PBCA | Polybutylcyanoacrylate |
NP | Nanoparticle |
MDR | Multidrug resistance |
PEG | Polyethylene glycol |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
AAS | Atomic absorption spectroscopy |
H&E | Hematoxylin and eosin staining |
BCA | Butylcyanoacrylate |
PBS | Phosphate-buffered saline |
PCS | Photon correlation spectroscopy |
SEM | Scanning electron microscopy |
FBS | Fetal bovine serum |
IC50 | Half maximal inhibitory concentration |
TGII | Tumor growth inhibition index |
ATN | Acute tubular necrosis |
DNA | Deoxyribonucleic acid |
References
- Shahmabadi, H.E.; Movahedi, F.; Esfahani, M.K.M.; Alavi, S.E.; Eslamifar, A.; Anaraki, G.M.; Akbarzadeh, A. Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumor Biol. 2014, 35, 4799–4806. [Google Scholar] [CrossRef] [PubMed]
- Fishburn, C.S. The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. J. Pharm. Sci. 2008, 97, 4167–4183. [Google Scholar] [CrossRef]
- Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non–small-cell lung cancer: AVAiL. J. Clin. Oncol. 2009, 27, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Corinti, D.; Coletti, C.; Re, N.; Chiavarino, B.; Crestoni, M.E.; Fornarini, S. Cisplatin binding to biological ligands revealed at the encounter complex level by IR action spectroscopy. Chem. A Eur. J. 2016, 22, 3794–3803. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancho-Martínez, S.M.; Prieto-García, L.; Prieto, M.; López-Novoa, J.M.; López-Hernández, F.J. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol. Ther. 2012, 136, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.E.; Esfahani, M.K.M.; Alavi, F.; Movahedi, F.; Akbarzadeh, A. Drug delivery of hydroxyurea to breast cancer using liposomes. Indian J. Clin. Biochem. 2013, 28, 299–302. [Google Scholar] [CrossRef]
- Doun, S.K.B.; Alavi, S.E.; Esfahani, M.K.M.; Shahmabadi, H.E.; Alavi, F.; Hamzei, S. Efficacy of Cisplatin-loaded poly butyl cyanoacrylate nanoparticles on the ovarian cancer: An in vitro study. Tumor Biol. 2014, 35, 7491–7497. [Google Scholar] [CrossRef]
- Yordanov, G.; Skrobanska, R.; Petkova, M. Poly (butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: Particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells. Chem. Pap. 2016, 70, 365–374. [Google Scholar] [CrossRef]
- Fatemeh, D.R.A.; Shahmabadi, H.E.; Abedi, A.; Alavi, S.E.; Movahedi, F.; Esfahani, M.K.M.; Mehrizi, T.Z.; Akbarzadeh, A. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: Last status. Indian J. Clin. Biochem. 2014, 29, 333–338. [Google Scholar] [CrossRef]
- Yordanov, G.; Gemeiner, P.; Katrlík, J. Study of interactions between blood plasma proteins and poly (butyl cyanoacrylate) drug nanocarriers by surface plasmon resonance. Colloids Surf. A Physicochem. Eng. Asp. 2016, 510, 309–316. [Google Scholar] [CrossRef]
- Bovey, F.A.; Kolthoff, I.M.; Medalia, A.I.; Meehan, E.J. Emulsion Polymerization; Bovey, F.A., Kolthoff, I.M., Medalia, A.I., Meehan, E.J., Eds.; Interscience Publishers Inc.: New York, NY, USA, 1955; Volume 9. [Google Scholar]
- Shahmabadi, H.E.; Doun, S.K.B.; Alavi, S.E.; Mortazavi, M.; Saffari, Z.; Farahnak, M.; Akbarzadeh, A. An investigation into the parameters affecting preparation of polybutyl cyanoacrylate nanoparticles by emulsion polymerization. Indian J. Clin. Biochem. 2014, 29, 357–361. [Google Scholar] [CrossRef]
- Douglas, S.; Illum, L.; Davis, S.; Krueter, J. Particle size and size distribution of poly (butyl-2-cyanoacrylate) nanoparticles: I. Influence of physicochemical factors. J. Colloid Interface Sci. 1984, 101, 149–158. [Google Scholar] [CrossRef]
- Behan, N.; Birkinshaw, C.; Clarke, N. Poly n-butyl cyanoacrylate nanoparticles: A mechanistic study of polymerisation and particle formation. Biomaterials 2001, 22, 1335–1344. [Google Scholar] [CrossRef]
- Melguizo, C.; Cabeza, L.; Prados, J.; Ortiz, R.; Caba, O.; Rama, A.R.; Delgado, Á.V.; Arias, J.L. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly (butylcyanoacrylate) nanoparticles. Drug Des. Dev. Ther. 2015, 9, 6433. [Google Scholar]
- Zhou, X.; Shi, H.; Jiang, G.; Zhou, Y.; Xu, J. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma. Tumor Biol. 2014, 35, 12561–12566. [Google Scholar] [CrossRef]
- Sivarajakumar, R.; Mallukaraj, D.; Kadavakollu, M.; Neelakandan, N.; Chandran, S.; Bhojaraj, S.; Reddy Karri, V.V.S. Nanoparticles for the Treatment of Lung Cancers. J. Young Pharm. 2018, 10, 276–281. [Google Scholar] [CrossRef]
- Dadgar, N.; Alavi, S.E.; Esfahani, M.K.M.; Akbarzadeh, A. Study of toxicity effect of pegylated nanoliposomal artemisinin on breast cancer cell line. Indian J. Clin. Biochem. 2013, 28, 410–412. [Google Scholar] [CrossRef]
- Koyale, R.R.; Patel, I.L.; Pingale, S.D. Detection of Cholera Toxin Using Lactose-Decorated Silver Nanoparticles. Int. J. Sci. Res. Sci. Technol. 2018, 4, 902–906. [Google Scholar]
- Babaei, F.; Alavi, S.E.; Shahmabadi, H.E.; Akbarzadeh, A. Synthesis and characterization of polyethylene glycols conjugated to polybutylcyanoacrylate nanoparticles. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 738–741. [Google Scholar] [CrossRef]
- Alavi, S.E.; Esfahani, M.K.M.; Ghassemi, S.; Akbarzadeh, A.; Hassanshahi, G. In vitro evaluation of the efficacy of liposomal and pegylated liposomal hydroxyurea. Indian J. Clin. Biochem. 2014, 29, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jiang, S.; Li, Z.; Loh, X.J. Conjugation of poly (ethylene glycol) to poly (lactide)-based polyelectrolytes: An effective method to modulate cytotoxicity in gene delivery. Mater. Sci. Eng. C 2017, 73, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Lyu, J.-Y.; Yang, Y.; Cui, P.-F.; Gu, L.-Q.; Qiao, J.-B.; He, Y.-J.; Zhang, T.-Q.; Sun, M.; Lu, J.-J. PH-Responsive de-PEGylated nanoparticles based on triphenylphosphine–quercetin self-assemblies for mitochondria-targeted cancer therapy. Chem. Commun. 2017, 53, 8790–8793. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J.M.; Nienhaus, G.U.; Parak, W.J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano 2015, 9, 6996–7008. [Google Scholar] [CrossRef] [Green Version]
- Bhadra, D.; Bhadra, S.; Jain, P.; Jain, N. Pegnology: A review of PEG-ylated systems. Die Pharm. 2002, 57, 5–29. [Google Scholar]
- Zhou, Z.; Hu, Y.; Shan, X.; Li, W.; Bai, X.; Wang, P.; Lu, X. Revealing three stages of DNA-cisplatin reaction by a solid-state nanopore. Sci. Rep. 2015, 5, 11868. [Google Scholar] [CrossRef]
- Kulkarni, R.; Porter, H.; Leonard, F. Glass transition temperatures of poly (alkyl α-cyanoacrylates). J. Appl. Polym. Sci. 1973, 17, 3509–3514. [Google Scholar] [CrossRef]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef]
- Lassalle, V.; Ferreira, M.L. PLA nano-and microparticles for drug delivery: An overview of the methods of preparation. Macromol. Biosci. 2007, 7, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release 1999, 57, 171–185. [Google Scholar] [CrossRef]
- Zhaparova, L. Synthesis of Nanoparticles and Nanocapsules for Controlled Release of the Antitumor Drug“ Arglabin” and Antituberculosis Drugs. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2012. [Google Scholar]
- Barzegar-Jalali, M.; Adibkia, K.; Valizadeh, H.; Shadbad, M.R.S.; Nokhodchi, A.; Omidi, Y.; Mohammadi, G.; Nezhadi, S.H.; Hasan, M. Kinetic analysis of drug release from nanoparticles. J. Pharm. Pharm. Sci. 2008, 11, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 2003, 257, 111–124. [Google Scholar] [CrossRef]
- Sandhu, G.S. Synthesis and Characterization of Microspheres for Controlled Release. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2010. [Google Scholar]
- Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly (n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2008, 70, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Singh, S. Lipoidal nanoparticulate drug delivery of ofloxacin for ocular use. World J. Pharm. Res. 2017, 7, 1006–1025. [Google Scholar]
- Zhang, Z.; Feng, S.-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly (lactide)–Tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006, 27, 4025–4033. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Labhasetwar, V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm. 2005, 2, 373–383. [Google Scholar] [CrossRef]
- Jin, G.; Jin, M.; Yin, X.; Jin, Z.; Chen, L.; Gao, Z. A comparative study on the effect of docetaxel-albumin nanoparticles and docetaxel-loaded PEG-albumin nanoparticles against non-small cell lung cancer. Int. J. Oncol. 2015, 47, 1945–1953. [Google Scholar] [CrossRef] [Green Version]
- Cabeza, L.; Cano-Cortés, V.; Rodríguez, M.J.; Vélez, C.; Melguizo, C.; Sánchez-Martín, R.M.; Prados, J. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium. J. Nanopart. Res. 2015, 17, 37. [Google Scholar] [CrossRef]
- Jo, E.; Heo, J.S.; Lim, J.Y.; Lee, B.R.; Yoon, C.J.; Kim, J.; Lee, J. Peptide ligand-mediated endocytosis of nanoparticles to cancer cells: Cell receptor-binding- versus cell membrane-penetrating peptides. Biotechnol. Bioeng. 2018, 115, 1437–1449. [Google Scholar] [CrossRef]
- Souza, T.A.; Franchi, L.P.; Rosa, L.R.; da Veiga, M.A.; Takahashi, C.S. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2016, 795, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Wuelfing, W.P.; Gross, S.M.; Miles, D.T.; Murray, R.W. Nanometer gold clusters protected by surface-bound monolayers of thiolated poly (ethylene glycol) polymer electrolyte. J. Am. Chem. Soc. 1998, 120, 12696–12697. [Google Scholar] [CrossRef]
- Casettari, L.; Vllasaliu, D.; Castagnino, E.; Stolnik, S.; Howdle, S.; Illum, L. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Prog. Polym. Sci. 2012, 37, 659–685. [Google Scholar] [CrossRef]
- Lenaerts, V.; Couvreur, P.; Christiaens-Leyh, D.; Joiris, E.; Roland, M.; Rollman, B.; Speiser, P. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 1984, 5, 65–68. [Google Scholar] [CrossRef]
- Coutinho, C.; dos Santos, C.; dos Santos, E.P.; Mansur, C.R. Nanosystems in Photoprotection. J. Nanosci. Nanotechnol. 2015, 15, 679–9688. [Google Scholar]
- Zhang, J.; Tao, W.; Chen, Y.; Chang, D.; Wang, T.; Zhang, X.; Mei, L.; Zeng, X.; Huang, L. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J. Mater. Sci. Mater. Med. 2015, 26, 165. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Tang, Z.; Li, M.; Lin, J.; Song, W.; Liu, H.; Huang, Y.; Zhang, Y.; Chen, X. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 2014, 35, 6118–6129. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Byeon, H.J.; Choi, J.S.; Thao, L.; Kim, I.; Lee, E.S.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control. Release 2015, 197, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Cata, J.P.; Dougherty, P.M.; Smith, R.G. Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 2007, 149, 455–460. [Google Scholar] [CrossRef]
- Varshney, D.; Singh, M. (Eds.) Lyophilized Biologics and Vaccines: Modality-Based Approaches; Springer: New York, NY, USA, 2015; Volume 175. [Google Scholar]
- Esfahani, M.K.M.; Alavi, S.E.; Movahedi, F.; Alavi, F.; Akbarzadeh, A. Cytotoxicity of liposomal Paclitaxel in breast cancer cell line mcf-7. Indian J. Clin. Biochem. 2013, 28, 358–360. [Google Scholar] [CrossRef]
- Dadgar, N.; Esfahani, M.K.M.; Torabi, S.; Alavi, S.E.; Akbarzadeh, A. Effects of nanoliposomal and pegylated nanoliposomal artemisinin in treatment of breast cancer. Indian J. Clin. Biochem. 2014, 29, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.T.; Dang, L.T.M.; Hoang, N.T.M.; La, H.T.; Nguyen, H.T.M.; Le, H.Q. Antitumor activity of docetaxel PLGA-PEG nanoparticles with a novel anti-HER2 scFv. J. Nanomed. Nanotechnol. 2015, 6. [Google Scholar] [CrossRef]
Properties | Size (nm) | Size Distribution | Zeta Potential (mV) | |
---|---|---|---|---|
Batches of NPs | ||||
A1 | 355.0 ± 32.0 | 0.44 ± 0.05 | −10.0 ± 0.8 | |
A2 | 382.0 ± 39.0 | 0.38 ± 0.07 | −11.0 ± 0.4 | |
A3 | 360.0 ± 40.0 | 0.25 ± 0.02 | −7.0 ± 0.3 | |
A4 | 386.0 ± 37.0 | 0.31 ± 0.02 | −8.0 ± 0.4 |
Animal Group | Days after Tumor Cell Inoculation | |||
---|---|---|---|---|
10 | 18 | 26 | 35 | |
Cisplatin | 2.6 ± 0.5 | 19.0 ± 1.9 | 19.4 ± 2.0 | 31.0 ± 2.5 |
Nanodrug | 8.0 ± 0.9 | 41.0 ± 3.0 | 35.0 ± 2.0 | 40.0 ±3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alavi, S.E.; Muflih Al Harthi, S.; Ebrahimi Shahmabadi, H.; Akbarzadeh, A. Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved Properties as an Anticancer Agent. Int. J. Mol. Sci. 2019, 20, 1531. https://doi.org/10.3390/ijms20071531
Alavi SE, Muflih Al Harthi S, Ebrahimi Shahmabadi H, Akbarzadeh A. Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved Properties as an Anticancer Agent. International Journal of Molecular Sciences. 2019; 20(7):1531. https://doi.org/10.3390/ijms20071531
Chicago/Turabian StyleAlavi, Seyed Ebrahim, Sitah Muflih Al Harthi, Hasan Ebrahimi Shahmabadi, and Azim Akbarzadeh. 2019. "Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved Properties as an Anticancer Agent" International Journal of Molecular Sciences 20, no. 7: 1531. https://doi.org/10.3390/ijms20071531
APA StyleAlavi, S. E., Muflih Al Harthi, S., Ebrahimi Shahmabadi, H., & Akbarzadeh, A. (2019). Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved Properties as an Anticancer Agent. International Journal of Molecular Sciences, 20(7), 1531. https://doi.org/10.3390/ijms20071531