Genome-Wide Analysis and Hormone Regulation of Chitin Deacetylases in Silkworm
Abstract
:1. Introduction
2. Results
2.1. Identification of Putative CDA Genes in the Silkworm Genome
2.2. Sequence Analysis of Eight Silkworm CDAs
2.3. Phylogenetic Analysis of CDAs
2.4. Tissue and Developmental Expression Patterns of BmCDAs
2.5. Influence of 20E on Expression of BmCDAs
2.6. Influence of JHA on Expression of BmCDAs
2.7. Regulation of Expression of BmCDAs by Overexpression of Transcription Factors
2.8. RNAi of BmCDA1 and BmCDA2
3. Discussion
4. Materials and Methods
4.1. Experimental Insects and in Vitro Culture of B. Mori Embryo (BmE) Cells
4.2. Identification and Analysis of Silkworm CDA Gene Family
4.3. Developmental and Tissue Expression Profiles of BmCDA Genes
4.4. Influence of 20E and Juvenile Hormone Analog (JHA) on the Expression of BmCDA Genes
4.5. Overexpression of Transcription Factors Targeting 20E
4.6. RNAi of BmCDA1 and BmCDA2
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Bm | Bombyx mori |
CDA | Chitin deacetylase |
BmE | Embryo cell lines of Bombyx mori |
20E | 20-hydroxyecdysone |
JHA | Juvenile hormone analog |
DMSO | Dimethyl sulfoxide |
DMK | Dimethyl ketone |
OE | Overexpression |
GFP | Green fluorescent protein |
EGFP | Enhanced green fluorescent protein |
References and Note
- Surinder, K.; Gurpreet Singh, D. Recent trends in biological extraction of chitin from marine shell wastes: A review. Crit. Rev. Biotechnol. 2015, 35, 44–61. [Google Scholar]
- Pearlmutter, N.L.; Lembi, C.A. Localization of chitin in algal and fungal cell walls by light and electron microscopy. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1978, 26, 782–791. [Google Scholar]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources: Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar]
- Hans, M.; Lars, Z. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 2003, 206 Pt 24, 4393–4412. [Google Scholar]
- Zhu, K.Y.; Merzendorfer, H.; Zhang, W.; Zhang, J.; Muthukrishnan, S. Biosynthesis, Turnover, and Functions of Chitin in Insects. Annu. Rev. Entomol. 2016, 61, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.R.; Liu, W.M.; Zhao, X.M.; Zhang, M.; Li, D.Q.; Zuber, R.; Ma, E.B.; Zhu, K.Y.; Moussian, B.; Zhang, J.Z. LmCDA1 organizes the cuticle by chitin deacetylation in Locusta migratoria. Insect Mol. Biol. 2018. [Google Scholar] [CrossRef]
- Qu, M.; Ren, Y.; Liu, Y.; Yang, Q. Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori. Insect Mol. Biol. 2017, 26, 432–439. [Google Scholar]
- Yu, R.; Liu, W.; Li, D.; Zhao, X.; Ding, G.; Zhang, M.; Ma, E.; Zhu, K.Y.; Li, S.; Moussian, B. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). J. Biol. Chem. 2016, 291, 24352–24363. [Google Scholar] [CrossRef]
- Kelkenberg, M.; Odman-Naresh, J.; Muthukrishnan, S.; Merzendorfer, H. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochem. Mol. Biol. 2015, 56, 21–28. [Google Scholar] [PubMed]
- Han, G.; Li, X.; Zhang, T.; Zhu, X.; Li, J. Cloning and Tissue-Specific Expression of a Chitin Deacetylase Gene from Helicoverpa armigera (Lepidoptera: Noctuidae) and Its Response to Bacillus thuringiensis. J. Insect Sci. 2015, 15, 95. [Google Scholar] [PubMed]
- Araki, Y.; Ito, E. A pathway of chitosan formation in ja:math: Enzymatic deacetylation of chitin. Eur. J. Biochem. 1975, 56, 669–675. [Google Scholar]
- Caufrier, F.; Martinou, A.; Dupont, C.; Bouriotis, V. Carbohydrate esterase family 4 enzymes: Substrate specificity. Carbohydr. Res. 2003, 338, 687–692. [Google Scholar] [CrossRef]
- Wang, P.; Pang, Y.; Li, G.; Guo, W. A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem. Mol. Biol. 2005, 35, 1224–1234. [Google Scholar]
- Radhika, D.; Yasuyuki, A.; Specht, C.A.; Chad, R.; Kramer, K.J.; Beeman, R.W.; Subbaratnam, M. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem. Mol. Biol. 2008, 38, 440–451. [Google Scholar]
- Campbell, P.M.; Cao, A.T.; Hines, E.R.; East, P.D.; Gordon, K.H.J. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. I Insect Biochem. Mol. Biol. 2008, 38, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Toprak, U.; Baldwin, D.; Erlandson, M.; Gillott, C.; Hou, X.; Coutu, C.; Hegedus, D.D. A chitin deacetylase and putative insect intestinal lipases are components of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix. Insect Mol. Biol. 2010, 17, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.; Ladd, T.; Duan, J.; Wen, F.; Doucet, D.; Cusson, M.; Krell, P.J. Characterization of a spruce budworm chitin deacetylase gene: Stage- and tissue-specific expression, and inhibition using RNA interference. Insect Biochem. Mol. Biol. 2013, 43, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Pan, P.L.; Ye, Y.X.; Yu, B.; Zhang, C.X. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol. Biol. 2014, 23, 695–705. [Google Scholar] [CrossRef]
- Yu, H.Z.; Liu, M.H.; Wang, X.Y.; Yang, X.; Wang, W.L.; Geng, L.; Yu, D.; Liu, X.L.; Liu, G.Y.; Xu, J.P. Identification and expression profiles of chitin deacetylase genes in the rice leaf folder, Cnaphalocrocis medinalis. J. Asia-Pac. Entomol. 2016, 19, 691–696. [Google Scholar] [CrossRef]
- Arakane, Y.; Dixit, R.; Begum, K.; Park, Y.; Specht, C.; Merzendorfer, H. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem. Mol. Biol. 2009, 39, 355–365. [Google Scholar] [CrossRef]
- Wang, S.; Jayaram, S.J.; Senti, K.; Tsarouhas, V.; Jin, H.; Samakovlis, C. Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr. Biol. 2006, 16, 180–185. [Google Scholar] [CrossRef]
- Luschnig, S.; Bätz, T.; Armbruster, K.; Krasnow, M.A. Serpentine and vermiform Encode Matrix Proteins with Chitin Binding and Deacetylation Domains that Limit Tracheal Tube Length in Drosophila. Curr. Biol. 2006, 16, 186–194. [Google Scholar] [CrossRef]
- Xiao-Wu, Z.; Xiao-Huan, W.; Xiang, T.; Qing-You, X.; Zhong-Huai, X.; Ping, Z. Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. Int. J. Mol. Sci. 2014, 15, 1946–1961. [Google Scholar]
- Yamanaka, N.; Rewitz, K.F.; O’Connor, M.B. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annu. Rev. Entomol. 2013, 58, 497–516. [Google Scholar] [CrossRef]
- Jindra, M.; Palli, S.R.; Riddiford, L.M. The Juvenile Hormone Signaling Pathway in Insect Development. Annu. Rev. Entomol. 2013, 58, 181–204. [Google Scholar] [CrossRef]
- Qiong, Y.; Daowei, Z.; Bin, T.; Jie, C.; Jing, C.; Liang, L.; Wenqing, Z. Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway. PLoS ONE 2010, 5, e14058. [Google Scholar]
- Shi, J.F.; Mu, L.L.; Guo, W.C.; Li, G.Q. Identification and hormone induction of putative chitin synthase genes and splice variants in Leptinotarsa decemlineata (SAY). Arch. Insect Biochem. Physiol. 2016, 92, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Michiyoshi, T.; Makoto, K.; Manabu, K. A new chitinase-related gene, BmChiR1, is induced in the Bombyx mori anterior silk gland at molt and metamorphosis by ecdysteroid. Insect Biochem. Mol. Biol. 2002, 32, 147–151. [Google Scholar]
- Zhang, X.; Zheng, S. 20-hydroxyecdysone enhances the expression of the chitinase 5 via Broad-Complex Zinc-Finger 4 during metamorphosis in silkworm, Bombyx mori. Insect Mol. Biol. 2016, 26, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002. Chapter 2, Unit 2.3. [Google Scholar] [CrossRef]
- Blair, D.E.; Hekmat, O.; Schüttelkopf, A.W.; Shrestha, B.; Tokuyasu, K.; Withers, S.G.; Van Aalten, D.M. Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry 2006, 45, 9416–9426. [Google Scholar] [CrossRef] [PubMed]
- Blair, D.E.; Schüttelkopf, A.W.; Macrae, J.I.; Van Aalten, D.M.F. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl. Acad. Sci. USA 2005, 102, 15429–15434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartharius, K.; Frech, K.; Grote, K.; Klocke, B.; Haltmeier, M.; Klingenhoff, A.; Frisch, M.; Bayerlein, M.; Werner, T. MatInspector and beyond: Promoter analysis based on transcription factor binding sites. Bioinformatics 2005, 21, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, I.; Bouriotis, V. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J. Biol. Chem. 1995, 270, 26286–26291. [Google Scholar] [CrossRef] [PubMed]
- Kafetzopoulos, D.; Thireos, G.; Vournakis, J.N.; Bouriotis, V. The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products. Proc. Natl. Acad. Sci. USA 1993, 90, 8005–8008. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.G.; Specht, C.A.; Donlin, M.J.; Lodge, J.K. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell 2007, 6, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Christodoulidou, A.; Briza, P.; Ellinger, A.; Bouriotis, V. Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett. 1999, 460, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Kadokura, K.; Sakamoto, Y.; Saito, K.; Ikegami, T.; Hirano, T.; Hakamata, W.; Oku, T.; Nishio, T. Production of a recombinant chitin oligosaccharide deacetylase from Vibrio parahaemolyticus in the culture medium of Escherichia coli cells. Biotechnol. Lett. 2007, 29, 1209. [Google Scholar] [CrossRef]
- Daimon, T.; Katsuma, S.; Iwanaga, M.; Kang, W.K.; Shimada, T. The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. Insect Biochem. Mol. Biol. 2005, 35, 1112–1123. [Google Scholar] [CrossRef]
- Yin, V.; Thummel, C. Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin. Cell Dev. Biol. 2005, 16, 237–243. [Google Scholar] [CrossRef]
- Deng, H.; Niu, K.; Zhang, J.; Feng, Q. BmBR-C Z4 is an upstream regulatory factor of BmPOUM2 controlling the pupal specific expression of BmWCP4 in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2015, 66, 42–50. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, H.; Yang, C.; Gu, J.; Shen, G.; Zhang, H.; Chen, E.; Han, C.; Zhang, Y.; Xu, Y. The POU homeodomain transcription factor POUM2 and broad complex isoform 2 transcription factor induced by 20-hydroxyecdysone collaboratively regulate vitellogenin gene expression and egg formation in the silkworm Bombyx mori. Insect Mol. Biol. 2017, 26, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res 2008, 36, W5-9. [Google Scholar] [CrossRef] [PubMed]
- Jun, D.; Ruiqiang, L.; Daojun, C.; Wei, F.; Xingfu, Z.; Tingcai, C.; Yuqian, W.; Jun, W.; Kazuei, M.; Zhonghuai, X. SilkDB v2.0: A platform for silkworm (Bombyx mori ) genome biology. Nucleic Acids Research 2010, 38, 453–456. [Google Scholar]
- Shimomura, M.; Minami, H.; Suetsugu, Y.; Ohyanagi, H.; Satoh, C.; Antonio, B.; Nagamura, Y.; Kadono-Okuda, K.; Kajiwara, H.; Sezutsu, H. KAIKObase: An integrated silkworm genome database and data mining tool. Bmc Genomics 2009, 10, 486. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res 2015, 43, D222–D226. [Google Scholar] [CrossRef]
- Li, Z.L.; Tian, S.; Yang, H.; Zhou, X.; Xu, S.P.; Zhang, Z.Y.; Gong, J.; Hou, Y.; Xia, Q.Y. Genome-wide identification of chitin-binding proteins and characterization of BmCBP1 in the silkworm, Bombyx mori. Insect Sci. 2019, 26, 400–412. [Google Scholar] [CrossRef]
- Nicholas, K.B.; Nicholas, H.B.; Deerfield, D.W.I. GeneDoc: Analysis and visualization of genetic variation, EMBNEW. Embnew News 1997, 4, 28–30. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Test was performed using GraphPad Prism version 5.0 for Windows, GraphPad Software, San Diego California USA. Available online: www.graphpad.com.
Abbreviation | Gene ID in KAIKObase | Gene ID in SilkDB | Protein ID in NCBI | mRNA Length (nt) | ORF (aa) | Chromosome Position | MW (kDa) | pI |
---|---|---|---|---|---|---|---|---|
BmCDA1 | KWMTBOMO01923 | BGIBMGA006213 | XP_004929283.1 | 1620 | 539 | Chr4: 8094528-8105043 | 61.44 | 4.87 |
BmCDA2a | KWMTBOMO01924 | BGIBMGA006214 | NP_001103795.1 | 1632 | 543 | Chr4: 8113114-8118608 | 61.54 | 5.04 |
BmCDA2b | NP_001103796.1 | 1611 | 537 | 60.86 | 5.27 | |||
BmCDA3a | KWMTBOMO01369 | BGIBMGA008988 | XP_021207356.1 | 1701 | 567 | Chr3: 2479822-2484042 | 65.74 | 6.82 |
BmCDA3b | XP_004931841.2 | 1626 | 542 | 62.67 | 6.26 | |||
BmCDA4 | KWMTBOMO07206 | BGIBMGA010573 | XP_012548585.1 | 1311 | 437 | Chr12: 6820022-6842885 | 49.79 | 4.92 |
BmCDA5 | KWMTBOMO02519 | BGIBMGA002696 | XP_021207767.1 | 7245 | 2415 | Chr5: 3321984-3333702 | 273.6 | 7.93 |
BmCDA6 | KWMTBOMO16344 | BGIBMGA013758 | XP_004923454.1 | 1137 | 379 | Chr28: 789788-792617 | 43.52 | 5.06 |
BmCDA7 | KWMTBOMO16345 | BGIBMGA013757 | XP_004923480.1 | 1137 | 379 | Chr28: 787560-804535 | 43 | 5.19 |
BmCDA8 | KWMTBOMO16346 | BGIBMGA013756 | XP_004923455.1 | 1143 | 381 | Chr28: 810851-816660 | 43.32 | 6.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yan, J.; Liu, Q.; Zhang, Y.; Gong, J.; Hou, Y. Genome-Wide Analysis and Hormone Regulation of Chitin Deacetylases in Silkworm. Int. J. Mol. Sci. 2019, 20, 1679. https://doi.org/10.3390/ijms20071679
Zhang Z, Yan J, Liu Q, Zhang Y, Gong J, Hou Y. Genome-Wide Analysis and Hormone Regulation of Chitin Deacetylases in Silkworm. International Journal of Molecular Sciences. 2019; 20(7):1679. https://doi.org/10.3390/ijms20071679
Chicago/Turabian StyleZhang, Ziyu, Jiamin Yan, Qing Liu, Yuhao Zhang, Jing Gong, and Yong Hou. 2019. "Genome-Wide Analysis and Hormone Regulation of Chitin Deacetylases in Silkworm" International Journal of Molecular Sciences 20, no. 7: 1679. https://doi.org/10.3390/ijms20071679
APA StyleZhang, Z., Yan, J., Liu, Q., Zhang, Y., Gong, J., & Hou, Y. (2019). Genome-Wide Analysis and Hormone Regulation of Chitin Deacetylases in Silkworm. International Journal of Molecular Sciences, 20(7), 1679. https://doi.org/10.3390/ijms20071679