Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis
Abstract
:1. Introduction
2. Results
2.1. Identification and Analysis of the Full-Length Gene of Jasmonic Acid Signalling Path of Taxus
2.1.1. JAZ
2.1.2. COI1
2.1.3. MYC Transcription Factor
2.1.4. MED25
2.2. Interaction between Jasmonic Acid Signalling Pathway Genes in Taxus
2.2.1. JAZ and COI1
2.2.2. JAZ and MYC
2.2.3. JAZ and JAZ
2.2.4. MYC and MYC
2.2.5. MYC and MED25
2.3. Jasmonic Acid Signalling Pathway MYC Transcription Factor Regulates Paclitaxel Biosynthesis
2.3.1. Detection and Analysis of MYC Transcription Factor Activity
2.3.2. Synthetic Pathway Gene Promoter Separation and Analysis
2.3.3. Activated MYC Transcription Factor Induces a Paclitaxel Biosynthesis Pathway Gene Promoter
2.3.4. Inhibitory MYC Transcription Factor Inhibits Activation MYC Transcription Factor
2.3.5. Mutant MYC Transcription Factor Activity is not Affected by JAZ
3. Discussion
3.1. Taxus Has a Similar Mechanism of Signal Accepting and Conduction of Jasmonic Acid
3.2. Jasmonic Acid Signalling Pathway Transcription Factor Regulates Paclitaxel Biosynthesis Pathway Gene Expression
4. Materials and Methods
4.1. Cell Culture, Jasmonate Treatment, and RNA Isolation
4.2. RACE PCR
4.3. Yeast Two-Hybrid
4.4. Bimolecular Fluorescence Complementation
4.5. Genome Walker PCR Separation Promoter Sequence
4.6. Detection of Transcription Factor Activity in Protoplasts
4.7. Detection of Transcription Factor Regulation in Protoplasts
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
10-DAB | 10-deacetylbaccatin III |
IPP | isopentenyl pyrophosphate |
DMAPP | dimethyl propylene pyrophosphate |
MEP | 2-C-methyl-D-erythritol-4-phosphate MVA formaldehyde valeric acid |
DXP | 1-deoxy-D-xylulose-5-phosphate |
MCT | 2-C-methyl-D-erythritol-4-phosphate cytidine transferase CDP-ME 4-diphosphate cytidine-2-C-methyl erythritol |
CDP-MEP | 4-diphosphate cytidine-2-C-methyl-D-erythritol-2-phosphate HMB-PP(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate |
GGPPS | di-geranyl pyrophosphate synthase |
TS | taxadiene synthase |
5αOH | taxadiene 5α hydroxylase |
10βOH | taxol 0β hydroxylase |
14βOH | cedar 14β hydroxylase |
TAT | taxadiene-5α-Alcohol - Acetyltransferase |
DBTNBT | 3′-N-desphenylylated paclitaxel N-benzoyltransferase |
TBT | taxane 2-α-O-phenylacetyltransferase |
DBAT | 10-deacetylbaccatin III-10-O-acetyltransferase 13αOH taxane 13α hydroxylation |
BAPT | phenylpropionyl transferase |
2αOH | paclitaxel 2α hydroxylase |
7βOH | paclitaxel 7β hydroxylase |
PAM | phenylalanine isomerase |
JAR1 | jasmonyl isoleucine ligase |
JA | Jasmonic acid |
JA-Ile | jasmonoyl isoleucine |
MED25 | Mediator25 |
JAM | JA-associated MYC2-like |
MYC | similar gene of myeloma virus oncogene |
RACE | rapid amplification of cDNA ends |
GTC buffer | guanidine isothiocyanate buffer |
Appendix A. Gene Sequence
JAZ sequence
MYC sequence
COI1 sequence
MED25 sequence
Appendix B. Promoter Sequence
Appendix C. Figures
References
- Wani, M.C.; Horwitz, S.B. Nature as a remarkable chemist: A personal story of the discovery and development of Taxol. Anti-Cancer Drug 2014, 25, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Lenka, S.K.; Nims, N.E.; Vongpaseuth, K.; Boshar, R.A.; Roberts, S.C.; Walker, E.L. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Front. Plant Sci. 2015, 6, 115. [Google Scholar]
- Li, S.; Zhang, P.; Zhang, M.; Fu, C.; Yu, L. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis. Plant Biol. 2013, 15, 19–26. [Google Scholar] [CrossRef]
- Zhang, M.; Li, S.T.; Nie, L.; Chen, Q.P.; Xu, X.P.; Yu, L.J.; Fu, C. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. Plant Mol. Biol. 2015, 89, 463–473. [Google Scholar] [CrossRef]
- Croteau, R.; Ketchum, R.E.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev. 2006, 5, 75–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajikumar, P.K.; Xiao, W.H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Science 2010, 330, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Croteau, R. Taxol biosynthetic genes. Phytochemistry 2001, 58, 1–7. [Google Scholar] [CrossRef]
- Hampel, D.; Mau, C.J.D.; Croteau, R.B. Taxol biosynthesis: Identification and characterization of two acetyl CoA: Taxoid-O-acetyl transferases that divert pathway flux away from Taxol production. Arch. Biochem. Biophys. 2009, 487, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Patra, B.; Schluttenhofer, C.; Wu, Y.M.; Pattanaik, S.; Yuan, L. Transcriptional regulation of secondary metabolite biosynthesis in plants. BBA-Gene Regul. Mech. 2013, 1829, 1236–1247. [Google Scholar] [CrossRef]
- Li, S.T.; Zhang, P.; Zhang, M.; Fu, C.H.; Zhao, C.F.; Dong, Y.S.; Guo, A.Y.; Yu, L.J. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC Genom. 2012, 13, 295. [Google Scholar] [CrossRef]
- Sun, G.L.; Yang, Y.F.; Xie, F.L.; Wen, J.F.; Wu, J.Q.; Wilson, I.W.; Tang, Q.; Liu, H.; Qiu, D. Deep Sequencing Reveals Transcriptome Re-Programming of Taxus × media Cells to the Elicitation with Methyl Jasmonate. PLoS ONE 2013, 8, e62865. [Google Scholar]
- Dai, S.H.; Zheng, P.; Marmey, P.; Zhang, S.P.; Tian, W.Z.; Chen, S.Y.; Beachy, R.N.; Fauquet, C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 2001, 7, 25–33. [Google Scholar] [CrossRef]
- Mao, R.; Chen, J.; Chen, Y.; Guo, Z. Identification of early jasmonate-responsive genes in Taxus 3 media cells by analyzing time series digital gene expression data. Physiol. Mol. Biol. Plants 2018, 24, 715–727. [Google Scholar] [CrossRef]
- Chen, R.; Jiang, H.L.; Li, L.; Zhai, Q.Z.; Qi, L.L.; Zhou, W.K.; Liu, X.; Li, H.; Zheng, W.; Sun, J.; et al. The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors. Plant Cell 2012, 24, 2898–2916. [Google Scholar] [CrossRef]
- Fernandez-Calvo, P.; Chini, A.; Fernandez-Barbero, G.; Chico, J.M.; Gimenez-Ibanez, S.; Geerinck, J.; Eeckhout, D.; Schweizer, F.; Godoy, M.; Franco-Zorrilla, J.M.; et al. The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses. Plant Cell 2011, 23, 701–715. [Google Scholar] [CrossRef]
- Sasaki-Sekimoto, Y.; Jikumaru, Y.; Obayashi, T.; Saito, H.; Masuda, S.; Kamiya, Y.; Ohta, H.; Shirasu, K. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis. Plant Physiol. 2013, 163, 291–304. [Google Scholar] [CrossRef]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; Mcphail, A.T. Plant Antitumor Agents. 6. Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus-Brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Hong, H.; Xiao, H.; Yuan, H.; Zhai, J.; Huang, X. Cloning and characterisation of JAZ gene family in Hevea brasiliensis. Plant Biol. 2015, 17, 618–624. [Google Scholar] [CrossRef]
- Stitz, M.; Hartl, M.; Baldwin, I.T.; Gaquerel, E. Jasmonoyl-l-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata). Plant Cell 2014, 26, 3964–3983. [Google Scholar] [CrossRef]
- Chini, A.; Fonseca, S.; Fernandez, G.; Adie, B.; Chico, J.M.; Lorenzo, O.; García-Casado, G.; López-Vidriero, I.; Lozano, F.M.; Ponce, M.R.; et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007, 448, 666–671. [Google Scholar] [CrossRef]
- Thines, B.; Katsir, L.; Melotto, M.; Niu, Y.; Mandaokar, A.; Liu, G.; Garcia-Casado, G.; López-Vidriero, I.; Lozano, F.M.; Ponce, M.R.; et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 2007, 448, 661–665. [Google Scholar] [CrossRef]
- Wager, A.; Browse, J. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front. Plant Sci. 2012, 3, 41. [Google Scholar] [CrossRef]
- Thireault, C.; Shyu, C.; Yoshida, Y.; St Aubin, B.; Campos, M.L.; Howe, G.A. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J. 2015, 82, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, L.; Goossens, A. The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. Plant Cell 2011, 23, 3089–3100. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yan, Y.X.; Guo, Z.G. Identification of hydrogen peroxide responsive ESTs involved in phenylethanoid glycoside biosyn-thesis in Cistanche salsa cell culture. Biol. Plant. 2015, 59, 695–700. [Google Scholar] [CrossRef]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef]
Unigene ID | Hit Gene Description | Similarity (%) | RPKM | |||
---|---|---|---|---|---|---|
0 h | 0.5 h | 3 h | 24 h | |||
comp47611_c0 | - | - | 11.1 | 18.8 | 99.8 | 135.7 |
comp60304_c0 | - | - | 0.2 | 0.2 | 2.9 | 1.5 |
comp64513_c0 | - | - | 0.3 | 1.2 | 51.4 | 41.1 |
comp65899_c0 | Protein TIFY 9; | 41.94 | 0.9 | 9.1 | 131.5 | 81.3 |
comp66635_c0 | Protein TIFY 9; | 40.66 | 0.1 | 1.2 | 25.5 | 2.9 |
comp66717_c0 | Protein TIFY 9; | 32.52 | 40.4 | 92.2 | 419.4 | 220.0 |
comp68543_c0 | - | - | 0.4 | 0.9 | 27.3 | 1.0 |
comp70749_c0 | - | - | 0.1 | 10.8 | 97.8 | 2.5 |
comp73423_c0 | Protein TIFY 6B; | 28.37 | 45.1 | 42.1 | 49.0 | 63.0 |
comp73780_c0 | Protein TIFY 9; | 42.11 | 17.6 | 42.9 | 177.5 | 85.9 |
comp73885_c0 | Protein TIFY 10B; | 41.03 | 20.5 | 28.8 | 111.3 | 116.0 |
comp75328_c0 | - | - | 0.3 | 14.0 | 101.3 | 2.7 |
comp76274_c0 | Protein TIFY 9; | 40.22 | 2.6 | 10.1 | 122.8 | 11.1 |
comp76841_c0 | Protein TIFY 6B; | 30.12 | 36.9 | 49.0 | 140.3 | 71.3 |
comp77597_c0 | Protein TIFY 6B; | 35 | 0.2 | 3.1 | 34.2 | 2.3 |
comp78571_c0 | Protein TIFY 6B; | 33.01 | 0.1 | 2.8 | 24.4 | 0.6 |
Unigene ID | Name | Length | Folds | ||
---|---|---|---|---|---|
0.5 h | 3 h | 24 h | |||
comp47611_c0 | JAZ11 | 171 | 1.7 | 9.0 | 12.2 |
comp65899_c0 | JAZ7 | 142 | 10.1 | 146.1 | 90.3 |
comp66635_c0 | JAZ12 | 200 | 12.0 | 255.0 | 29.0 |
comp66717_c0 | JAZ6 | 205 | 2.3 | 10.4 | 5.4 |
comp73423_c0 | JAZ4 | 393 | 0.9 | 1.1 | 1.4 |
comp73780_c0 | JAZ5 | 182 | 2.4 | 10.1 | 4.9 |
comp73885_c0 | JAZ10 | 168 | 1.4 | 5.4 | 5.7 |
comp75328_c0 | JAZ1 | 225 | 46.7 | 337.7 | 9.0 |
comp76274_c0 | JAZ9 | 202 | 3.9 | 47.2 | 4.3 |
comp76841_c0 | JAZ3 | 448 | 1.3 | 3.8 | 1.9 |
comp77597_c0 | JAZ8 | 530 | 15.5 | 171.0 | 11.5 |
comp78571_c0 | JAZ2 | 201 | 28.0 | 244.0 | 6.0 |
Unigene ID | Name | AA Length | Folds | ||
---|---|---|---|---|---|
0.5 h | 3 h | 24 h | |||
comp74670_c0 | MYC2 | 662 | 1.35 | 1.72 | 1.05 |
comp77131_c0 | JAM2 | 587 | 1.54 | 4.63 | 1.64 |
comp78752_c0 | MYC3 | 843 | 1.58 | 3.33 | 1.63 |
comp77888_c0 | MYC4 | 634 | 1.78 | 3.44 | 1.91 |
comp78399_c0 | EGL3 | 686 | 0.92 | 0.96 | 1.24 |
comp77266_c0 | TT8 | 734 | 0.96 | 1.71 | 1.04 |
comp77888s_c0 | JAM1 | 566 | - | - | - |
Cor (μM) | BD | pB42AD, Prey(AD) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JAZ1 | JAZ2 | JAZ3 | JAZ4 | JAZ5 | JAZ6 | JAZ7 | JAZ8 | JAZ9 | JAZ10 | JAZ11 | JAZ12 | ||
0 | COI1-1 | - | - | - | - | - | - | - | ++ | - | - | - | - |
COI1-2 | - | - | - | - | - | - | - | - | ++ | - | - | - | |
10 | COI1-1 | - | - | - | - | - | - | - | ++ | - | - | - | - |
COI1-2 | - | - | - | - | - | - | - | - | ++ | - | - | + | |
30 | COI1-1 | - | - | - | - | - | + | - | ++ | + | - | - | + |
COI1-2 | - | - | - | - | - | - | + | + | ++ | + | - | ++ |
pB42AD, Prey(AD) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JAZ1 | JAZ2 | JAZ3 | JAZ4 | JAZ5 | JAZ6 | JAZ7 | JAZ8 | JAZ9 | JAZ10 | JAZ11 | JAZ12 | ||
pLexA Bait(BD) | JAZ1 | - | - | - | - | - | - | - | - | - | - | - | - |
JAZ2 | - | - | - | - | - | - | - | - | - | - | - | - | |
JAZ3 | - | - | - | - | - | - | - | +++ | - | ++ | - | - | |
JAZ4 | + | - | - | + | - | ++ | - | - | - | - | - | - | |
JAZ5 | - | - | - | - | - | - | - | - | + | - | - | - | |
JAZ6 | - | - | - | - | - | +++ | ++ | - | ++ | - | - | - | |
JAZ7 | ++ | - | + | ++ | + | + | ++++ | - | +++ | +++ | +++ | +++ | |
JAZ8 | + | - | ++ | + | ++ | ++ | - | ++ | +++ | ++ | +++ | +++ | |
JAZ9 | - | + | - | - | ++ | ++ | - | - | ++++ | ++++ | +++ | +++ | |
JAZ10 | - | - | +++ | - | - | +++ | - | +++ | +++ | +++ | +++ | ++ | |
JAZ11 | - | - | - | - | - | - | - | - | - | - | - | - | |
JAZ12 | - | - | - | - | - | - | +++ | - | +++ | ++++ | +++ | +++ |
Gene Name | Promoter Length | G-Box | Modified G-Box | HA E-Box | Total HA cis-Element | LA E-box | Folds at 3 h |
---|---|---|---|---|---|---|---|
TBT | 1378 | 0 | 2 | 7 | 9 | 5 | 94.1 |
TAT | 1153 | 1 | 4 | 2 | 7 | 4 | 39.9 |
DBTNBT | 1257 | 1 | 2 | 2 | 5 | 4 | 9.9 |
2αOH | 1179 | 1 | 0 | 3 | 4 | 3 | 16464.7 |
7βOH | 1481 | 0 | 0 | 4 | 4 | 2 | 748.5 |
10βOH | 1144 | 0 | 1 | 3 | 4 | 4 | 14.8 |
PAM | 501 | 1 | 1 | 2 | 4 | 2 | 656.5 |
TS | 1183 | 1 | 3 | 0 | 4 | 5 | 16.3 |
5αOH | 1002 | 2 | 0 | 1 | 3 | 3 | 33.3 |
13αOH | 734 | 0 | 2 | 1 | 3 | 3 | 3155.3 |
DBAT | 1820 | 0 | 1 | 1 | 2 | 6 | 48 |
BAPT | 976 | 0 | 1 | 0 | 1 | 2 | 19.5 |
GGPPS | 970 | 0 | 1 | 0 | 1 | 6 | 3.5 |
14βOH | 792 | 0 | 0 | 0 | 0 | 1 | 33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Mao, R.; Chen, J.; Guo, Z. Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis. Int. J. Mol. Sci. 2019, 20, 1843. https://doi.org/10.3390/ijms20081843
Cui Y, Mao R, Chen J, Guo Z. Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis. International Journal of Molecular Sciences. 2019; 20(8):1843. https://doi.org/10.3390/ijms20081843
Chicago/Turabian StyleCui, Yunpeng, Rongjia Mao, Jing Chen, and Zhigang Guo. 2019. "Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis" International Journal of Molecular Sciences 20, no. 8: 1843. https://doi.org/10.3390/ijms20081843
APA StyleCui, Y., Mao, R., Chen, J., & Guo, Z. (2019). Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis. International Journal of Molecular Sciences, 20(8), 1843. https://doi.org/10.3390/ijms20081843