Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characteristics of the S17 Isolate
2.2. Plant Growth Parameters
2.3. Content of Photosynthetic Pigments
2.4. Content of Elements
2.5. Content of Flavonoids and Phenolics and the Level of Antioxidant Capacity
2.6. Activity of Antioxidant Enzymes—Plant Resistance Markers
2.7. Activity of Defence-Related Enzymes—Plant Resistance Markers
2.8. Content of Allantoin
2.9. Content of LMWOAs
2.10. Relationship among the Studied Parameters
3. Discussion
4. Materials and Methods
4.1. S17 Isolate Activity
4.2. Plant Material, Growth Condition, and Experimental Design
4.3. Measurement of Growth Parameters
4.4. Quantification of Pigments
4.5. Measurement of Selected Elements in Leaves and Roots
4.6. Quantification of Flavonoids, Phenolics, and Antioxidant Capacity
4.7. Quantification of Antioxidant Enzymes
4.8. Quantification of Defence-Related Enzymes
4.9. Quantification of ALLA and LMWOAs
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
J | Methyl jasmonate |
Chl a | Chlorophyll a |
Chl b | Chlorophyll b |
Car | Carotenoids |
ABTS | 2-Azino-bis-3-ethylbenzthiazoline-6-sulphonic acid |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
AC | Antioxidant capacity |
FLAVO | Total flavonoids |
TPC | Total phenolics compounds |
SM | Secondary metabolites |
SOD | Superoxide dismutase |
CAT | Catalase |
APX | Ascorbate peroxidase |
GPX | Guaiacol peroxidase |
PAL | Phenylalanine ammonia-lyase |
TAL | Tyrosine ammonia-lyase |
GLU | β-1,3-Glucanase |
ALLA | Allantoin |
LMWOAs | Low molecular weight organic acids |
PGP | Plant growth promotion |
References
- Ávila-Juárez, L.; Torres-Pacheco, I.; Ocampo-Velázquez, R.V.; Feregrino-Pérez, A.A.; Cruz Hernández, A.; Guevara-González, R.G. Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health: A review. Int. J. Agric. Biol. 2017, 19, 391–402. [Google Scholar] [CrossRef]
- Wasternack, C.; Hause, B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 2013, 111, 1021–1058. [Google Scholar] [CrossRef]
- Jankiewicz, U.; Kołtonowicz, M. The involvement of Pseudomonas bacteria in induced systemic resistance in plants (review). Appl. Biochem. Microbiol. 2012, 48, 244–249. [Google Scholar] [CrossRef]
- Van Doorn, W.G.; Ketsa, S. Cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biol. Technol. 2014, 95, 64–69. [Google Scholar] [CrossRef]
- Hanaka, A.; Maksymiec, W.; Bednarek, W. The effect of methyl jasmonate on selected physiological parameters of copper-treated Phaseolus coccineus plants. Plant Growth Regul. 2015, 77, 167–177. [Google Scholar] [CrossRef]
- Hanaka, A.; Wójcik, M.; Dresler, S.; Mroczek-Zdyrska, M.; Maksymiec, W. Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotoxicol. Environ. Saf. 2016, 124, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Hanaka, A.; Lechowski, L.; Mroczek-Zdyrska, M.; Strubińska, J. Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium. Physiol. Mol. Biol. Plants 2018, 24. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Jendresen, C.B.; Stahlhut, S.G.; Li, M.; Gaspar, P.; Siedler, S.; Förster, J.; Maury, J.; Borodina, I.; Nielsen, A.T. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2015, 81, 4458–4476. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Chitosan and chitin oligomers increase phenylalanine ammonia-lyaseand tyrosine ammonia-lyase activities in soybean leaves. J. Plant Physiol. 2003, 160, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Chun, S.C. Expression of PR protein genes and induction of defense-related enzymes by Bacillus subtilis CBR05 in tomato (Solanum lycopersicum) plants challenged with Erwinia carotovora subsp. carotovora. Biosci. Biotechnol. Biochem. 2016, 80, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, V.; Vashisht, D.; Cletus, J.; Sakthivel, N. Plant β-1,3-glucanases: Their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol. Lett. 2012, 34, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Jin, S.; Yoshida, M.; Hoshino, T.; Opassiri, R.; Cairns, J.R.K. Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. J. Plant Physiol. 2009, 166, 1814–1825. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Ishiga, Y.; Watanabe, S.; Konishi, T.; Egusa, M.; Akiyoshi, N.; Matsuura, T.; Mori, I.C.; Hirayama, T.; Kaminaka, H.; et al. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J. Exp. Bot. 2016, 67, 2519–2532. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhong, G. Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol. Trace Elem. Res. 2011, 143, 489–499. [Google Scholar] [CrossRef]
- Díaz-Leal, J.L.; Gálvez-Valdivieso, G.; Fernández, J.; Pineda, M.; Alamillo, J.M. Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L. J. Exp. Bot. 2012, 63, 4095–4106. [Google Scholar] [CrossRef]
- Baral, B.; da Silva, J.A.T.; Izaguirre-Mayoral, M.L. Early signaling, synthesis, transport and metabolism of ureides. J. Plant. Physiol. 2016, 193, 97–109. [Google Scholar] [CrossRef]
- López-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160. [Google Scholar] [CrossRef]
- Sebastian, A.; Prasad, M.N.V. Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: Probing role of cadmium localization and iron nutrition. Ecotoxicol. Environ. Saf. 2018, 166, 215–222. [Google Scholar] [CrossRef]
- Dresler, S.; Wójciak-Kosior, M.; Sowa, I.; Stanisławski, G.; Bany, I.; Wójcik, M. Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations. Plant Physiol. Biochem. 2017, 115, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Dresler, S.; Hanaka, A.; Bednarek, W.; Maksymiec, W. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 2014, 36, 1565–1575. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, F.; Bu, T.; Liu, Y.; Zhu, J. Effects of organic acids on dissolution of Fe and Mn from weathering coal gangue. Acta Geochim. 2016, 35, 316–328. [Google Scholar] [CrossRef]
- Cornu, J.Y.; Huguenot, D.; Jézéquel, K.; Lollier, M.; Lebeau, T. Bioremediation of copper contaminated soils by bacteria. World J. Microbiol. Biotechnol. 2017, 33. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Kurek, E.; Jaroszuk-Ściseł, J. Rye (Secale cereale) growth promotion by Pseudomonas fluorescens strains and their interactions with Fusarium culmorum under various soil conditions. Biol. Control 2003, 26, 48–56. [Google Scholar] [CrossRef]
- Charlson, D.V.; Shoemaker, R.C. Evolution of iron acquisition in higher plants. J. Plant Nutr. 2006, 29, 1109–1125. [Google Scholar] [CrossRef]
- Ferret, C.; Cornu, J.Y.; Elhabiri, M.; Sterckeman, T.; Braud, A.; Jézéquel, K.; Lollier, M.; Lebeau, T.; Schalk, I.J.; Geoffroy, V.A. Effect of pyoverdine supply on cadmium and nickel complexation and phytoavailability in hydroponics. Environ. Sci. Pollut. 2015, 22, 2106–2116. [Google Scholar] [CrossRef]
- Sheng, X.F.; Xia, J.J.; Jiang, C.Y.; He, L.Y.; Qian, M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 2008, 156, 1164–1170. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Freitas, H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 2009, 75, 719–725. [Google Scholar] [CrossRef]
- Meier, S.; Borie, F.; Bolan, N.; Cornejo, P. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit. Rev. Environ. Sci. Technol. 2012, 42, 741–775. [Google Scholar] [CrossRef]
- Fatnassi, I.C.; Chiboub, M.; Saadani, O.; Jebara, M.; Jebara, S.H. Phytostabilization of moderate copper contaminated soils using coinoculation of Vicia faba with plant growth promoting bacteria. J. Basic Microb. 2015, 5, 303–311. [Google Scholar] [CrossRef]
- Liu, W.; Yang, C.; Shi, S.; Shu, W. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings. Chemosphere 2014, 97, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Łabuda, H. Runner bean (Phaseolus coccineus L.)—Biology and use. Acta Sci. Pol. Hortorum Cultus 2010, 9, 117–132. [Google Scholar]
- Hanaka, A.; Ozimek, E.; Majewska, M.; Rysiak, A.; Jaroszuk-Ściseł, J. Physiological diversity of Spitsbergen soil microbial communities suggests their potential as plant growth-promoting bacteria. Int. J. Mol. Sci. 2019, 20, 1207. [Google Scholar] [CrossRef]
- Sharaff, M.; Kamat, S.; Archana, G. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Ecotoxicol. Environ. Saf. 2017, 138, 113–121. [Google Scholar] [CrossRef]
- Faurie, B.; Cluzet, S.; Mérillon, J.M. Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J. Plant Physiol. 2009, 166, 1863–1877. [Google Scholar] [CrossRef]
- Nowogórska, A.; Patykowski, J. Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection. Acta Physiol. Plant. 2015, 37. [Google Scholar] [CrossRef]
- Dresler, S.; Hawrylak-Nowak, B.; Kováčik, J.; Pochwatka, M.; Hanaka, A.; Strzemski, M.; Sowa, I.; Wójciak-Kosior, M. Allantoin attenuates cadmium-induced toxicity in cucumber plants. Ecotoxicol. Environ. Saf. 2019, 170, 120–126. [Google Scholar] [CrossRef]
- Dresler, S.; Rutkowska, E.; Bednarek, W.; Stanisławski, G.; Kubrak, T.; Bogucka-Kocka, A.; Wójcik, M. Selected secondary metabolites in Echium vulgare L. populations from nonmetalliferous and metalliferous areas. Phytochemistry 2017, 133, 4–14. [Google Scholar] [CrossRef]
- Nourimand, M.; Todd, C.D. There is a direct link between allantoin concentration and cadmium tolerance in Arabidopsis. Plant Physiol. Biochem. 2019, 135, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.; Todd, C.D. Exogenous allantoin increases Arabidopsis seedlings tolerance to NaCl stress and regulates expression of oxidative stress response genes. J. Plant Physiol. 2018, 221, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kong, C.H.; Sun, B.; Xu, X.H. Distribution and function of allantoin (5-ureidohydantoin) in rice grains. J. Agric. Food Chem. 2012, 60, 2793–2798. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kong, C.H.; Hu, F.; Xu, X.H. Allantoin involved in species interactions with rice and other organisms in paddy soil. Plant Soil 2007, 296, 43–51. [Google Scholar] [CrossRef]
- Lescano, C.I.; Martini, C.; González, C.A.; Desimone, M. Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol. Biol. 2016, 91, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Coleto, I.; Pineda, M.; Rodiño, A.P.; De Ron, A.M.; Alamillo, J.M. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance. Ann. Bot. 2014, 113, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Todd, C.D.; Tipton, P.A.; Blevins, D.G.; Piedras, P.; Pineda, M.; Polacco, J.C. Update on ureide degradation in legumes. J. Exp. Bot. 2006, 57, 5–12. [Google Scholar] [CrossRef]
- Scheible, W.R.; Morcuende, R.; Czechowski, T.; Fritz, C.; Osuna, D.; Palacios-Rojas, N.; Schindelasch, D.; Thimm, O.; Udvardi, M.K.; Stitt, M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopis in response to nitrogen. Plant Physiol. 2004, 136, 2483–2499. [Google Scholar] [CrossRef]
- Morcuende, R.; Bari, R.; Gibon, Y.; Zheng, W.; Pant, B.D.; Bläsing, O.; Usadel, B.; Czechowski, T.; Udvardi, M.K.; Stitt, M.; et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 2007, 30, 85–112. [Google Scholar] [CrossRef]
- Rohde, A.; Morreel, K.; Ralph, J.; Goeminne, G.; Hostyn, V.; De Rycke, R.; Kushnir, S.; Van Doorsselaere, J.; Joseleau, J.P.; Vuylsteke, M.; et al. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 2004, 16, 2749–2771. [Google Scholar] [CrossRef]
- Boccardo, N.A.; Segretin, M.E.; Hernandez, I.; Mirkin, F.G.; Chacón, O.; Lopez, Y.; Borrás-Hidalgo, O.; Bravo-Almonacid, F.F. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistanceto filamentous pathogens under field trials. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Khalvandi, M.; Amerian, M.; Pirdashti, H.; Keramati, S.; Hosseini, J. Essential oil of peppermint in symbiotic relationship with Piriformospora indica and methyl jasmonate application under saline condition. Ind. Crop. Prod. 2019, 127, 195–202. [Google Scholar] [CrossRef]
- Rai, M.; Acharya, D.; Singh, A.; Varma, A. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 2001, 11, 123–128. [Google Scholar] [CrossRef]
- Tassoni, A.; Durante, L.; Ferri, M. Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J. Plant Physiol. 2012, 169, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Vondráčková, S.; Száková, J.; Drábek, O.; Tejnecký, V.; Hejcman, M.; Müllerová, V.; Tlustoš, P. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake, translocation, and regulation in higher plants. Ann. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.C.; George, S.J.; Price, C.A.; Shahsavari, E.; Ball, A.S.; Tibbett, M.; Ryan, M.H. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil 2016, 2, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Ertani, A.; Francioso, O. Soil–root cross-talking: The role of humic substances. J. Plant Nutr. Soil Sci. 2017, 180, 5–13. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Li, P.; Zhang, F.; Thomas, B.W. Effect of difference between day and night temperature on tomato (Lycopersicon esculentum Mill.) root activity and low molecular weight organic acid secretion. Soil Sci. Plant Nutr. 2016, 62, 423–431. [Google Scholar] [CrossRef]
- Guo, H.; Chen, H.; Hong, C.; Jiang, D.; Zheng, B. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Ecotoxicol. Environ. Saf. 2017, 141, 119–128. [Google Scholar] [CrossRef]
- Chai, F.; Liu, W.; Xiang, Y.; Meng, X.; Sun, X.; Cheng, C.H.; Liu, G.; Duan, L.; Xin, H.; Li, S. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Hortic. Res. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Israr, D.; Mustafa, G.; Khan, K.S.; Shahzad, M.; Ahmad, N.; Masood, S. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol. Biochem. 2016, 108, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Maistry, P.M.; Muasya, A.M.; Valentine, A.J.; Chimphango, S.B. Balanced allocation of organic acids and biomass for phosphorus and nitrogen demand in the fynbos legume Podalyria calyptrata. J. Plant Physiol. 2015, 174, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Hansch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Liu, H.G.; Hu, C.X.; Sun, X.C.; Tan, Q.L.; Nie, Z.J.; Hu, X.M. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant Soil 2010, 326, 345–353. [Google Scholar] [CrossRef]
- Yu, W.W.; Cao, F.L.; Wu, G.L. Leaf growth and medicinal quality of ginkgo seedling with spraying Mg, Zn, Mo fertilizers. Acta Bot. Boreal Occid. Sin. 2012, 32, 1214–1221. [Google Scholar]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef]
- Hossain, M.M.; Tsuyumu, S. Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J. Gen. Plant. Pathol. 2006, 72, 34–39. [Google Scholar] [CrossRef]
- Folin, O. Tyrosine and tryptophan determination in proteins. J. Biol. Chem. 1927, 73, 649–673. [Google Scholar]
- Gibson, F.; Magrath, D.I. The isolation and characterization of hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1. Biochim. Biophys. Acta 1969, 192, 175–184. [Google Scholar] [CrossRef]
- Atkin, C.L.; Neilands, J.B.; Phaff, H. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 1970, 103, 722–733. [Google Scholar]
- Csaky, T.Z. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 1948, 2, 4500–4540. [Google Scholar] [CrossRef]
- Arnow, L.E. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosinemixtures. J. Biol. Chem. 1937, 118, 531–537. [Google Scholar]
- Bradford, M. Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis, Part 3, Chemical Methods; Sparks, D.L., Ed.; SSSA and ASA: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Deng, H.; Berkel, V. Electrospray mass spectrometry and UV/visible spectrophotometry studies of aluminum(III)-flavonoid complexe. J. Mass Spectrom. 1998, 33, 1080–1087. [Google Scholar] [CrossRef]
- Kováčik, J.; Bačkor, M.; Kaduková, J. Physiological responses of Matricaria chamomilla to cadmium and copper excess. Environ. Toxicol. 2008, 23, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Garcı́a-Limones, C.; Hervás, A.; Navas-Cortés, J.A.; Jiménez-Dı́az, R.M.; Tena, M. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol. 2002, 61, 325–337. [Google Scholar] [CrossRef]
- Patel, J.S.; Kharwar, R.N.; Singh, H.B.; Upadhyay, R.S.; Sarma, R.S. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Alfonso, C.; del Amo, F.; Nuero, O.M.; Reyes, F. Physiological and biochemical studies on Fusarium oxysporum f. sp. lycopersici race 2 for its biocontrol by nonpathogenic fungi. FEMS Microbiol. Lett. 1992, 99, 169–174. [Google Scholar] [CrossRef]
- Nelson, H. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar]
- Somogyi, M. A new reagent for the determination of sugar. J. Biol. Chem. 1945, 160, 61–73. [Google Scholar]
- Hope, C.F.A.; Burns, R.G. Activity, origins and location of cellulases in a silt loam soil. Biol. Fert. Soils 1987, 5, 164–170. [Google Scholar]
- Dresler, S.; Kubrak, T.; Bogucka-Kocka, A.; Szymczak, G. Determination of shikonin and rosmarinic acid in Echium vulgare L. and Echium russicum J.F. Gmel. by capillary electrophoresis. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 698–701. [Google Scholar] [CrossRef]
Parameter/ Metabolite | Incubation Time | Medium/Treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MM9 Glucose | MM9 Sucrose | LB | ||||||||
+Trp −Cu | −Trp −Cu | −Trp +Cu | +Trp −Cu | −Trp −Cu | −Trp +Cu | +Trp −Cu | −Trp −Cu | −Trp +Cu | ||
Growth (OD600) | 24 h | 0.037 ± 0.007 | 0.027 ± 0.006 | 0.006 ± 0.001 | 0.028 ± 0.001 | 0.012 ± 0.004 | 0.001 ± 0.001 | 1.221 ± 0.011 | 1.229 ± 0.001 | 1.282 ± 0.026 |
48 h | 0.095 ± 0.001 | 0.101 ± 0.002 | 0.054 ± 0.001 | 0.084 ± 0.007 | 0.079 ± 0.006 | 0.004 ± 0.003 | 1.274 ± 0.029 | 1.252 ± 0.023 | 1.299 ± 0.002 | |
Proteins (µg·mL−1) | 24 h | 5.79 ± 1.46 | 1.94 ± 1.14 | 4.87 ± 1.56 | 3.10 ± 1.60 | 2.58 ± 1.65 | 6.69 ± 1.75 | 8.62 ± 2.87 | 3.65 ± 1.46 | 5.24 ± 1.26 |
48 h | 7.56 ± 1.48 | 3.29 ± 0.09 | 2.68 ± 0.31 | 2.41 ± 0.24 | 1.79 ± 0.04 | 2.12 ± 1.47 | 7.91 ± 0.21 | 12.31 ± 1.65 | 7.58 ± 1.29 | |
pH | 24 h | 3.80 ± 0.05 | 3.90 ± 0.02 | 3.89 ± 0.03 | 3.74 ± 0.06 | 3.69 ± 0.09 | 3.82 ± 0.02 | 8.44 ± 0.15 | 8.54 ± 0.12 | 8.52 ± 0.10 |
48 h | 3.24 ± 0.01 | 3.21 ± 0.04 | 3.79 ± 0.01 | 3.70 ± 0.05 | 4.39 ± 0.03 | 3.69 ± 0.02 | 8.97 ± 0.14 | 8.92 ± 0.21 | 8.90 ± 0.13 | |
IAA (µg·mL−1) | 24 h | 4.95 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 | 6.50 ± 0.40 | 0.00 ± 0.00 | 0.12 ± 0.02 | 3.75 ± 0.19 | 1.53 ± 0.12 | 1.40 ± 0.07 |
48 h | 3.70 ± 0.03 | 0.43 ± 0.13 | 0.20 ± 0.02 | 2.60 ± 0.09 | 0.00 ± 0.00 | 0.00 ± 0.00 | 9.35 ± 0.28 | 3.70 ± 0.03 | 5.13 ± 0.02 | |
Fe(III)CC FeCl3 test (µg·mL−1) | 24 h | 5.31 ± 0.11 | 5.05 ± 0.09 | 4.93 ± 0.01 | 6.41 ± 0.38 | 5.49 ± 0.05 | 4.93 ± 0.01 | 3.79 ± 0.20 | 4.03 ± 0.07 | 1.54 ± 0.12 |
48 h | 5.21 ± 0.01 | 6.23 ± 0.07 | 4.93 ± 0.06 | 5.07 ± 0.03 | 4.94 ± 0.18 | 4.76 ± 0.03 | 5.49 ± 0.50 | 6.90 ± 0.07 | 3.35 ± 0.19 | |
Siderophores total CAS test (psu unit) | 24 h | 8.09 ± 0.08 | 3.47 ± 0.04 | 1.60 ± 0.08 | 15.01 ± 0.07 | 5.75 ± 0.01 | 0.49 ± 0.01 | 51.80 ± 0.02 | 51.01 ± 0.04 | 47.08 ± 0.02 |
48 h | 19.98 ± 0.02 | 15.92 ± 0.15 | 1.57 ± 0.08 | 20.80 ± 0.06 | 14.62 ± 0.03 | 0.89 ± 0.07 | 62.01 ± 0.02 | 71.10 ± 0.01 | 62.84 ± 0.03 | |
Hydroxamate siderophores (µg·mL−1) | 24 h | 5.29 ± 0.84 | 2.46 ± 0.10 | 0.88 ± 0.07 | 1.81 ± 0.37 | 0.32 ± 0.06 | 0.21 ± 0.17 | 7.42 ± 0.64 | 0.35 ± 0.03 | 0.23 ± 0.05 |
48 h | 2.16 ± 0.24 | 4.29 ± 0.58 | 0.23 ± 0.03 | 2.37 ± 0.17 | 0.57 ± 0.03 | 1.50 ± 1.15 | 5.56 ± 0.32 | 1.64 ± 0.03 | 0.19 ± 0.01 | |
Catechole siderophores (µg·mL−1) | 24 h | 1.21 ± 0.04 | 1.02 ± 0.01 | 1.09 ± 0.13 | 1.25 ± 0.19 | 1.05 ± 0.02 | 1.20 ± 0.17 | 1.15 ± 0.03 | 2.45 ± 0.12 | 1.19 ± 0.13 |
48 h | 1.05 ± 0.03 | 0.99 ± 0.10 | 0.98 ± 0.05 | 1.00 ± 0.04 | 0.92 ± 0.01 | 1.12 ± 0.03 | 0.93 ± 0.04 | 0.97 ± 0.17 | 1.19 ± 0.01 | |
Phenolic compounds (µg·mL−1) | 24 h | nd | 25.04 ± 0.68 | 14.61 ± 0.20 | nd | 14.74 ± 0.76 | 16.32 ± 2.28 | nd | nd | nd |
48 h | nd | 20.18 ± 0.01 | 25.32 ± 1.71 | nd | 17.30 ± 1.37 | 30.80 ± 1.31 | nd | nd | nd |
Treatment | FLAVO | TPC | AC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ABTS | DPPH | |||||||||
mg·g−1·FW | ||||||||||
Leaf | Root | Leaf | Root | Leaf | Root | Leaf | Root | |||
J0 | −Cu | NI − S17 | 0.22 ± 0.02 e,f | 0.012 ± 0.001 d | 0.72 ± 0.06 e,f | 0.25 ± 0.02 e,f | 0.33 ± 0.01 d | 0.025 ± 0.002 f | 0.074 ± 0.007 g,h | 0.006 ± 0.001 f |
J1 | −Cu | NI − S17 | 0.22 ± 0.02 e,f | 0.016 ± 0.002 d | 0.57 ± 0.05 f,g | 0.26 ± 0.03 e,f | 0.30 ± 0.03 d | 0.033 ± 0.002 e,f | 0.061 ± 0.006 g,h | 0.003 ± 0.000 f |
J10 | −Cu | NI − S17 | 0.29 ± 0.02 d | 0.012 ± 0.001 d | 0.91 ± 0.08 d,e | 0.22 ± 0.02 e,f | 0.61 ± 0.06 c | 0.026 ± 0.001 f | 0.203 ± 0.018 d,e | 0.004 ± 0.000 f |
J0 | +Cu | NI − S17 | 0.40 ± 0.02 b,c | 0.055 ± 0.005 a | 1.52 ± 0.09 b | 0.75 ± 0.03 a | 0.78 ± 0.03 a,b | 0.133 ± 0.007 a | 0.305 ± 0.030 a,b | 0.093 ± 0.011 a |
J1 | +Cu | NI − S17 | 0.24 ± 0.02 d,e | 0.038 ± 0.003 c | 1.16 ± 0.11 c | 0.66 ± 0.03 b,c | 0.56 ± 0.06 c | 0.116 ± 0.005 b | 0.114 ± 0.009 f,g | 0.059 ± 0.006 c,d |
J10 | +Cu | NI − S17 | 0.36 ± 0.03 c | 0.054 ± 0.003 a | 1.44 ± 0.14 b | 0.67 ± 0.04 a,b,c | 0.55 ± 0.05 c | 0.120 ± 0.006 a,b | 0.338 ± 0.033 a | 0.077 ± 0.007 b |
J0 | −Cu | I + S17 | 0.17 ± 0.02 f | 0.012 ± 0.000 d | 0.47 ± 0.05 g | 0.20 ± 0.01 f | 0.33 ± 0.02 d | 0.032 ± 0.003 e,f | 0.050 ± 0.005 h | 0.004 ± 0.000 f |
J1 | −Cu | I + S17 | 0.24 ± 0.02 d,e | 0.015 ± 0.003 d | 0.66 ± 0.06 f,g | 0.29 ± 0.03 d,e | 0.35 ± 0.04 d | 0.041 ± 0.003 d,e | 0.088 ± 0.008 g,h | 0.008 ± 0.001 f |
J10 | −Cu | I + S17 | 0.24 ± 0.02 d,e,f | 0.016 ± 0.002 d | 0.63 ± 0.05 f,g | 0.35 ± 0.03 d | 0.42 ± 0.02 d | 0.051 ± 0.005 d | 0.101 ± 0.011 f,g,h | 0.003 ± 0.000 f |
J0 | +Cu | I + S17 | 0.56 ± 0.04 a | 0.055 ± 0.003 a | 1.77 ± 0.11 a | 0.66 ± 0.03 b,c | 0.81 ± 0.06 a | 0.103 ± 0.005 c | 0.273 ± 0.029 b,c | 0.030 ± 0.001 e |
J1 | +Cu | I + S17 | 0.44 ± 0.02 b | 0.047 ± 0.002 b | 1.51 ± 0.13 b | 0.73 ± 0.06 a,b | 0.67 ± 0.06 b,c | 0.133 ± 0.005 a | 0.222 ± 0.010 c,d | 0.070 ± 0.003 b,c |
J10 | +Cu | I + S17 | 0.36 ± 0.02 c | 0.032 ± 0.002 c | 0.96 ± 0.08 c,d | 0.59 ± 0.06 c | 0.63 ± 0.03 c | 0.131 ± 0.005 a | 0.153 ± 0.026 e,f | 0.051 ± 0.005 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanaka, A.; Nowak, A.; Plak, A.; Dresler, S.; Ozimek, E.; Jaroszuk-Ściseł, J.; Wójciak-Kosior, M.; Sowa, I. Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess. Int. J. Mol. Sci. 2019, 20, 1909. https://doi.org/10.3390/ijms20081909
Hanaka A, Nowak A, Plak A, Dresler S, Ozimek E, Jaroszuk-Ściseł J, Wójciak-Kosior M, Sowa I. Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess. International Journal of Molecular Sciences. 2019; 20(8):1909. https://doi.org/10.3390/ijms20081909
Chicago/Turabian StyleHanaka, Agnieszka, Artur Nowak, Andrzej Plak, Sławomir Dresler, Ewa Ozimek, Jolanta Jaroszuk-Ściseł, Magdalena Wójciak-Kosior, and Ireneusz Sowa. 2019. "Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess" International Journal of Molecular Sciences 20, no. 8: 1909. https://doi.org/10.3390/ijms20081909
APA StyleHanaka, A., Nowak, A., Plak, A., Dresler, S., Ozimek, E., Jaroszuk-Ściseł, J., Wójciak-Kosior, M., & Sowa, I. (2019). Bacterial Isolate Inhabiting Spitsbergen Soil Modifies the Physiological Response of Phaseolus coccineus in Control Conditions and under Exogenous Application of Methyl Jasmonate and Copper Excess. International Journal of Molecular Sciences, 20(8), 1909. https://doi.org/10.3390/ijms20081909